TABLE DES MATIÈRES

Avant-propos 1					
Remerciements					
Symboles et abréviations 7					
Constantes physiques					
Chapitre 1. Notions de base et terminologie	15				
1.1. Paramètres et caractéristiques des spectres	15				
1.1.1. Diagramme des niveaux d'énergie d'un atome	15				
1.1.2. Spectre de raies, spectre moléculaires et continuum	17				
1.1.3. Profil de raie	25				
1.1.4. Fond continu des spectres	35				
1.2. Longueur d'onde : étalon et précision	40				
1.3. Coefficient d'absorption et épaisseur optique d'un milieu	43				
$1.4.\;$ Règles de sélection des transitions entre niveaux d'énergie et notation .	45				
1.4.1. Transitions radiatives permises et interdites	45				
1.4.2. Aperçu des notations désignant l'état d'excitation d'un atome \dots	47				
$1.5.\;$ Excitation et désexcitation d'un atome (molécule) en phase gazeuse $\;$	51				
1.5.1. Mécanismes mettant en jeu des photons	51				
1.5.2. Mécanismes collisionnels	54				
1.6. Excitation et désexcitation des atomes dans les solides	55				
1.7. Spectres expérimentaux de l'atome d'hydrogène	57				

Chapitre 2.	Modèle de Bohr et ses améliorations	61
2.1. Mor	nent cinétique en mécanique classique	61
2.2. Mod	dèle de Bohr de l'atome d'hydrogène	63
2.2.1.	Point de départ de Bohr : Rutherford	64
2.2.2.	Postulats de Bohr	65
2.2.3.	Calcul du rayon des orbites quantifiées et de leur énergie	66
2.2.4.	Conclusion sur le modèle de Bohr (première version)	72
	itation des atomes par collisions électroniques : érience de Franck et Hertz	73
2.3.1.	Principes de l'expérience et montage	73
2.3.2.	Résultats expérimentaux	74
2.3.3.	Conclusion	79
2.4. Mod	dèle de Bohr-Sommerfeld	79
2.4.1.	Dérivation du postulat de Bohr sur la quantification du moment cinétique orbital	79
2.4.2.	Améliorations à la quantification de l'atome hydrogénoïde suivant Wilson et Sommerfeld	83
2.4.3.	Correction relativiste de Sommerfeld (structure fine)	90
2.4.4.	Principe de correspondance	91
2.4.5.	Bilan et critique du modèle de Bohr-Sommerfeld	94
2.5. La d	dualité onde-corpuscule	96
Chapitre 3.	Propriétés quantiques de l'atome à un électron	99
3.1. Élec	etron dans un potentiel coulombien	100
3.1.1.	Équation de Schrödinger stationnaire	100
3.1.2.	Séparation de la fonction d'onde de l'équation de SCHRÖDINGER stationnaire	102
3.1.3.	Valeurs permises des nombres quantiques	107
3.1.4.	Densité de présence de l'électron	110
	me à un électron en périphérie ne configuration orbitale de gaz rares	116

	3.3.	Défi	nition et propriétés du moment cinétique	9
	3.3	.1.	Définition et axiomatique	9
	3.3	.2.	Relations entre les valeurs propres de \hat{J}^2 et celles de \hat{J}_z	0
Cł	apitı	e 4.	Spectroscopie de l'atome à deux électrons	7
	4.1.		cipe d'indiscernabilité des particules : étrie des fonctions d'onde	9
	4.2.	App	lication du principe d'indiscernabilité	0
	4.2.1.		Mode d'expression de la symétrie de la fonction d'onde 13	1
4.		.2.	Cas d'électrons interagissant, sans corrélation position-spin 13	3
	4.2	.3.	Fonctions de spin pour deux électrons en faible corrélation de spin	3
	4.3.	Éner	rgie des niveaux singulet et triplet de l'hélium	5
Cł	napitı	re 5.	Atomes à plusieurs électrons	3
	5.1.	Insu	ffisance du principe d'exclusion de PAULI	4
	5.2. É		ation de Schrödinger; approximation de Hartree-Fock 14	5
	5.2	.1.	Expression de l'énergie potentielle répulsive	7
	5.2.2.		Algorithme du calcul auto-cohérent	8
5.2.		.3.	Énergie potentielle moyenne et charge effective	3
	5.2	.4.	Propriétés de la partie radiale R_{nl} de la fonction d'onde $\dots 15$	4
	5.3.	Con	figuration orbitale des éléments du tableau périodique 16	0
	5.3	.1.	Précisions sur la désignation d'une configuration orbitale 16	0
5.3		.2.	Habillage en orbitales des différents éléments du tableau périodique	2
	5.3	.3.	Examen des résultats du remplissage du tableau périodique 16	5
	5.4.	Add	ition de moments cinétiques : modèle vectoriel	8
	5.5.		eaux d'approximation de l'hamiltonien ant les différents types de couplage	0
	5.5	.1.	Couplage $L \cdot S$	3
	5.5	.2.	Couplage $j-j$	9
	5.5	.3.	Couplage (j,l) dit de RACAH	3
	5.5	.4.	Structure hyperfine et moment cinétique nucléaire	8

Chapitre 6. Interaction rayonnement-matière				
6.1.	Pro	babilité de transition radiative spontanée	201	
6.2.	Ém	ission stimulée et absorption	205	
6.3.	Thé	eorie classique de LORENTZ du rayonnement EM par les atomes 2	206	
6.3	3.1.	Absorption	207	
6.3	3.2.	Émission	214	
6.4.	Inte	eraction rayonnement-matière : théorie semi-quantique	218	
6.4	.1.	Hamiltonien tenant compte de l'incidence du rayonnement EM sur l'atome	219	
6.4	.2.	Solution de l'hamiltonien par une méthode de perturbation 2	220	
6.4	3.	Probabilité de transition indépendante du temps	226	
6.4	.4.	Expression des coefficients d'EINSTEIN	227	
6.4	.5.	Probabilité de transition spontanée	228	
6.4	.6.	Règles de sélection pour les transitions dipolaires électriques $ \ldots 2$	229	
6.4.7.		Règles de sélection pour les transitions dipolaires magnétiques et quadripolaires électriques	234	
6.5.		vonnement EM dans un système en équilibre thermodynamique : orps noir	235	
6.6.		ensités du spectre d'émission dans un milieu équilibre thermodynamique : loi de BOLTZMANN	244	
6.7.	Inte	ensités du spectre d'émission dans un milieu s équilibre thermodynamique	248	
6.8.	Coe	efficient d'absorption optique	251	
6.8	3.1.	Coefficient d'absorption optique $k_{\nu}(\nu)$ intégré sur la largeur de raie	251	
6.8	5.2.	Cas d'un ensemble d'atomes obéissant à une distribution en vitesse de Maxwell-Boltzmann	255	
6.8	3.3.	Coefficient global d'absorption	256	
Exercic	es d	lu chapitre 1	261	
Exercic	es d	lu chapitre 2 2	271	
Exercices du chapitre 3				
Exercices du chapitre 4			315	

Exercices du chapitre 5				
Annexes				
A1.	Énergie totale de l'électron dans l'atome d'hydrogène			
A2.	Niveaux d'énergie d'une molécule et nombres quantiques 387			
A3.	Notation des systèmes moléculaires des décharges dans N_2			
A4.	Notation en couplage $L \cdot S$ des états d'énergie des molécules diatomiques homonucléaires			
A5.	Séparation minimale de deux raies : critère de RAYLEIGH 402			
A6.	Structure fine de l'atome d'hydrogène dans la série de Balmer 404			
A7.	Piégeage du rayonnement dans un milieu à $T_{\rm gaz}$ inhomogène $ 406$			
A8.	Principe de la convolution de deux profils spectraux 408			
A9.	Continuum de recombinaison des hydrogénoïdes			
A10.	Rayonnement de freinage (Bremsstrahlung)			
A11.	Transfert radiatif à travers un milieu gazeux			
A12.	Loi de Kirchoff dans un milieu en équilibre thermique 418			
A13.	Fluorescence et résonance : reconstitution des niveaux d'un atome $\ldots420$			
A14.	Effet Zeeman			
A15.	Postulats de la mécanique quantique			
A16.	He I : série de termes singulet et série de termes triplet $\dots 429$			
A17.	Illustration de la méthode de perturbation stationnaire pour un état non dégénéré			
A18.	Champ magnétique créé par la charge électrique du noyau dans le repère de l'électron			
A19.	Lien des coefficients d'Einstein B_{ij} avec ceux de Milne \overline{B}_{ij} 434			
A20.	Variante du calcul du coefficient d'absorption optique 435			
A21.	Coefficient d'absorption optique intégré dans le cas d'une raie élargie par effet DOPPLER			
Postface	e			
Bibliographie				
Index 445				