Table des matières

	Pré	Préface				
	Avant-propos					
	\mathbf{Pre}	mière	partie : Turbulence forte	1		
1	Introduction					
	1.1	Bref h	istorique	4		
		1.1.1	Premières avancées cognitives	4		
		1.1.2	Loi de Kolmogorov et intermittence			
		1.1.3	Théories spectrales et fermetures	9		
		1.1.4	Cascade inverse	10		
		1.1.5	Essor de la simulation numérique directe	12		
		1.1.6	La turbulence aujourd'hui	13		
	1.2	Chaos	et imprédictibilité	14		
	1.3	Transi	tion vers la turbulence	17		
	1.4	Outils	statistiques et symétries	19		
		1.4.1	Moyenne d'ensemble	19		
		1.4.2	Autocorrélation	19		
		1.4.3	Distribution et densité de probabilité	21		
		1.4.4	Moments et cumulants	21		
		1.4.5	Fonctions de structure	21		
		1.4.6	Symétries	21		
	Bibl	iograph	ie	22		
2	Lois	s de Ko	olmogorov en hydrodynamique	29		
	2.1		uations de Navier-Stokes	29		
	2.2		lence et chauffage	29		
		2.2.1	Expérience de Joule	29		
		2.2.2	Taux moyen de dissipation d'énergie	31		
		2.2.3	Brisure spontanée de symétrie	33		
	2.3	Équati	ion de Kármán-Howarth	35		
	2.4	Hypot	hèse de localité et cascade	37		
	2.5	V 1				
	2.6	· ·				
	2.7		ation inertielle	43		
		2.7.1	Conjecture d'Onsager	43		
		2.7.2	Formulation faible	45		
	2.8	Interm	nittence	48		
		2.8.1	Qu'est-ce que l'intermittence?			

		2.8.2	Modèle fractal	51			
		2.8.3	Modèle log-normal	55			
		2.8.4	Modèle log-Poisson	57			
		2.8.5	Contraintes exactes	60			
	Bibl	liograph	ie	60			
3	Thé	éorie sp	pectrale en hydrodynamique	65			
	3.1		atique	65			
		3.1.1	Tenseur spectral	65			
		3.1.2	Spectre d'énergie	67			
	3.2	Conse	rvation détaillée de l'énergie	67			
	3.3 Théorie statistique						
		3.3.1	Flux et transfert	70			
		3.3.2	Spectre de Kolmogorov	72			
		3.3.3	Hiérarchie infinie d'équations	74			
		3.3.4	Fermeture QN	75			
		3.3.5	Fermetures EDQN et EDQNM	76			
		3.3.6	Fermeture DIA	77			
	3.4	Turbu	lence bi-dimensionnelle	79			
		3.4.1	Phénoménologie de Fjørtoft	80			
		3.4.2	Conservation détaillée	82			
		3.4.3	Solutions en loi de puissance	84			
		3.4.4	Flux d'énergie et d'enstrophie	86			
	3.5	Casca	de duale	89			
	3.6		e de diffusion non-linéaire	90			
	Bibl		ie	92			
4	Apı	plicatio	on : la turbulence magnétohydrodynamique	97			
_	4.1	-	lence du vent solaire	98			
	4.2			100			
	4.3			101			
	4.4			106			
	4.5			108			
	4.6			110			
	4.7			112			
	4.8		1	116			
		_		117			
5	Per	snectiv	ve : la turbulence compressible 1	21			
•	5.1	_		121			
	5.2		1 1	124			
	5.3		-	$124 \\ 126$			
	5.4			$\frac{120}{127}$			
				$\frac{127}{128}$			
	וטוע	uograpii	40	140			

Table des matières v

	Exercice et correction I						
	1. Turbulence HD 1D : l'équation de Burgers						
	2. T	bulence HD 2D : la conservation détaillée	35				
	Bibl	graphie	39				
	Det	ième partie : Turbulence d'ondes 14	11				
6	Introduction						
	6.1	Bref historique	44				
		3.1.1 Préhistoire	44				
		3.1.2 Interactions d'ondes résonnantes	45				
		3.1.3 Méthode des échelles multiples	46				
		S.1.4 Spectre de Kolmogorov-Zakharov	46				
		3.1.5 Applications de la turbulence d'ondes	48				
	6.2	Méthode des échelles multiples	51				
		5.2.1 Équation de Duffing	51				
	6.3	Modèle faiblement non-linéaire	55				
		5.3.1 Équation fondamentale	55				
		3.3.2 Relation de dispersion et résonance	56				
		5.3.3 Développement asymptotique uniforme	57				
	Bibl	graphie	62				
7	Thé	rie de la turbulence d'ondes capillaires 16	37				
	7.1	<u>*</u>	67				
	7.2		70				
	7.3		73				
	7.4	·	76				
	7.5	*	80				
	7.6	~	81				
	7.7	Nature des solutions exactes	85				
	7.8	Confrontation avec l'expérience	86				
	7.9		89				
	Bibl	graphie	93				
8	Δnı	ication: les ondes inertielles)7				
O	8.1		97				
	8.2		99				
	0.2		99				
			01				
			$01 \\ 02$				
	8.3		$02 \\ 04$				
	8.4						
	8.5						
	8.6						
	0.0		09				
		-	11				

		8.6.3	Étude numérique					
		8.6.4	Universalité de l'anomalie spectrale					
	8.7	Perspe	ctives	217				
	Bibli	iographi	ie	218				
9	Application : les ondes d'Alfvén							
	9.1	La MH	ID en variables d'Elsässer	223				
	9.2	Phénor	ménologie d'Iroshnikov-Kraichnan	225				
		9.2.1	Fondement de la phénoménologie triadique					
		9.2.2	Phénoménologie anisotrope					
	9.3	Théori	e de la turbulence d'ondes d'Alfvén					
		9.3.1	Variables canoniques					
		9.3.2	Condition de résonance					
		9.3.3	Équations cinétiques					
		9.3.4	Traitement du mode 2D $(k_{\parallel} = 0)$					
		9.3.5	Autres résultats	234				
	9.4	Simula	tion numérique directe					
	9.5		ation: la couronne solaire					
	9.6		à de la MHD standard					
	9.7		ctives					
	Bibli		ie					
10		-	e: la turbulence d'ondes gravitationnelles	249				
			ence d'ondes gravitationnelles					
			sion					
	Bibli	iographi	ie	255				
	Exe	rcice e	t correction II	257				
	1. M	odèle M	IHD de diffusion non-linéaire	257				
	2. Tu	ırbulend	ce d'ondes gravitationnelles	259				
			ie					
	Ann	exe : f	ormulaire	263				
	Inde	ex		267				