Table des matières

T	Tran	nsformations de symétrie	Τ
	A	Symétries fondamentales	1
	В	Symétries en mécanique classique	6
	С	Symétries en mécanique quantique	24
$\mathbf{A_{I}}$	Poir	nts de vue d'Euler et de Lagrange en mécanique classique	29
	1	Point de vue d'Euler	30
	2	Point de vue de Lagrange	32

II	Not	ions sur la théorie des groupes	37
	A	Propriétés générales des groupes	38
	В	Représentations linéaires d'un groupe	48
$\mathbf{A_{I}}$	_I Cla	sses résiduelles d'un sous-groupe; groupe quotient	57
	1	Classes résiduelles à gauche	57
	2	Groupe quotient	58

III	Int	roduction aux groupes continus et groupes de Lie	61
	A	Propriétés générales	62
	В	Exemples	78
	С	Groupes de Galilée et de Poincaré	86
$\mathbf{A_{I}}$	II R	eprésentation adjointe, forme de Killing, opérateur de	
	Casi	mir	97
	1	Représentation adjointe à l'algèbre de Lie	97
	2	Forme de Killing; produit scalaire et changement de base dans	
		\mathscr{L}	99
	3	J I	101
	4	Opérateur de Casimir	102

IV	Re	eprésentations induites dans l'espace des états	105
	A	Conditions imposées aux transformations dans l'espace des éta	ts107
	В	Théorème de Wigner	109
	\mathbf{C}	Transformations des observables	114
	D	Représentations linéaires dans l'espace des états	
	E	Facteurs de phase et représentations projectives	
Αı	v F	Représentations projectives unitaires de dimension fini	le
1		s groupes de Lie connexes	127
	1	Cas où \mathscr{G} est simplement connexe	
	2	Cas où \mathscr{G} est p-connexe	
Вт	v T	héorème de Uhlhorn-Wigner	133
_ 1	1	Espace réel	
	2	Espace complexe	

1 /	Ro	présentations des groupes de Galilée et de Poincaré	
v		sse, spin et énergie	139
	A	Groupe de Galilée	
	В	Groupe de Poincaré	
A	0-		1 771
A		uelques propriétés des opérateurs S et W^2	171
	1	Opérateur S	
	2	Valeurs propres de l'opérateur W^2	173
$\mathbf{B}_{\mathbf{v}}$	√ Gı	roupe des déplacements géométriques	177
	1	Rappels : propriétés classiques des déplacements	178
	2	Opérateurs associés dans l'espace des états	190
$\mathbf{C}_{\mathbf{v}}$	√ Gı	roupe de Lorentz propre	201
	1	Lien avec le groupe $SL(2,C)$	201
	2	Petit groupe associé à un quadrivecteur	207
	3	Opérateur W^2	211
D	$_{ m V}$ R	téflexions d'espace (parité)	213
	1	Action dans l'espace réel	213
	2	Opérateur associé dans l'espace des états	215
	3	Conservation de la parité	217

VI	Construction d'espaces des états et d'équations d'onde	221
1	A Groupe de Galilée, équation de Schrödinger	222
I	B Groupe de Poincaré, équations de Klein-Gordon et de Dirac .	234
A_{VI}	Lagrangiens des équations d'onde	245
1	Lagrangien pour un champ	245
2	Equation de Schrödinger	248
5	B Equation de Klein-Gordon	249
4	Equation de Dirac	249

VII	Représentations irréductibles du groupe des rotations,	
S	1	251
1	A Représentations unitaires irréductibles du groupe des rota-	
_	tions	
_	B Particules de spin 1/2; spineurs	
(C Composition des moments cinétiques	281
A_{VI}	• •	
		297
]	Transformation d'un vecteur P induite par une matrice de	
		297
2		
9	1	
4	· · · · · · · · · · · · · · · · · · ·	
5	Lien avec les représentations bivaluées	303

VII	•	305
I	A Opérateurs vectoriels	
_	B Opérateurs tensoriels	
	Théorème de Wigner-Eckart	
I	Décomposition de la matrice densité sur les opérateurs tensoriels	345
A_{VI}	III Rappels élémentaires sur les tenseurs classiques	355
_		355
2		356
	1	359
4		361
		361
6	1	362
7	7 Tenseurs irréductibles	363

B_{λ}	/III	Opérateurs tensoriels du second ordre	367
	1	Produit tensoriel de deux opérateurs vectoriels	367
	2	Composantes cartésiennes du tenseur dans le cas général	369
C_{3}	/III	Les moments multipolaires	373
	1	Moments multipolaires électriques	374
	2	Moments multipolaires magnétiques	387
	3	Moments multipolaires d'un système quantique dans une multiplicité de moment cinétique J donné	393

IX	Gı	roupes $SU(2)$ et $SU(3)$	399
	A	Système de particules discernables mais équivalentes	401
	В	Groupe $SU(2)$ et symétrie d'isospin	
	С	Symétrie $SU(3)$	423
$\mathbf{A_{I}}$		La nature d'une particule est équivalente à un nombre	
	_	1	449
	1	Antisymétrisation partielle ou totale d'un vecteur d'état	
	2	Correspondance entre les états de deux systèmes physiques .	
	3	Conséquences physiques	455
B_{I}		Opérateurs changeant la symétrie d'un vecteur d'état par rmutation	$rac{1}{455}$
	ре 1	Fermions	
	2	Bosons	
	_		100

\mathbf{X}	\mathbf{Br}	isures de symétrie	461
	A	Magnétisme, brisure de la symétrie de rotation	462
	В	Quelques autres exemples	469
		APPENDICE	477
Ι	Le	renversement du temps	477
	1	Renversement du temps en mécanique classique	478
	2	Opérateurs antilinéaires et antiunitaires en mécanique quan-	
		tique	483
	3	Renversement du sens du temps et antilinéarité	491
	4	Forme explicite de l'opérateur de renversement du temps	498
	5	Applications	503