TABLE DES MATIÈRES

Avant-propos	1	
Remerciements 3		
Symboles et abréviations 5		
Constantes	10	
Chapitre 1. Le milieu plasma : définition et principales grandeurs	11	
1.1. Définition et nature essentielle du plasma	11	
1.1.1. Un plasma est un milieu à comportement collectif	11	
1.1.2. Un plasma est un milieu macroscopiquement neutre	12	
1.1.3. Premiers exemples de plasma	13	
1.2. Domaines d'étude et d'applications	15	
1.2.1. Fusion thermonucléaire contrôlée	15	
1.2.2. Astrophysique et physique de l'environnement spatial	17	
1.2.3. Pompage des lasers	18	
1.2.4. Chimie dans les plasmas	19	
1.2.5. Traitement de surface	20	
1.2.6. Stérilisation d'objets médicaux	21	
1.2.7. Analyse élémentaire (chimie analytique)	22	
1.2.8. Éclairage	23	
1.2.9. Écrans plasma	23	
1.2.10. Sources d'ions		

1.2.11.	Propulseurs ioniques	24
1.3. Diff	'érents types de décharge en laboratoire	25
1.3.1.	La décharge en courant continu ou alternatif de basse fréquence	25
1.3.2.	La décharge de haute fréquence (HF)	25
1.3.3.	La décharge par rayonnement laser	26
1.4. Der	nsité électronique et température d'un plasma	26
1.4.1.	Domaine des valeurs de densité électronique des plasmas	26
1.4.2.	Concept d'équilibre thermodynamique et définition de la température d'un plasma	27
1.4.3.	Divers niveaux d'écart par rapport à l'équilibre thermodynamique complet	30
1.5. Fré	quence propre d'oscillation des électrons d'un plasma	32
1.5.1.	Origine et description du phénomène	32
1.5.2.	Calcul de la fréquence propre des électrons du plasma	34
1.6. Lon	gueur de Debye : effet d'écran dans les plasmas	36
1.6.1.	Description du phénomène	36
1.6.2.	Calcul du potentiel exercé par un ion dans un plasma à deux températures : définition de la longueur de Debye	37
1.7. Phé	nomènes de collision dans les plasmas	42
1.7.1.	Types de collision	42
1.7.2.	Échange de quantité de mouvement et transfert d'énergie lors d'une collision entre deux particules	45
1.7.3.	Section efficace microscopique différentielle	53
1.7.4.	Section efficace microscopique intégrée (totale)	57
1.7.5.	Section efficace macroscopique totale	59
1.7.6.	Expression de la température d'un plasma en électron-volt $\ldots\ldots$	61
1.7.7.	Fréquence de collision et libre parcours probable entre deux collisions	63
1.7.8.	Fréquence moyenne de collision et libre parcours moyen	64
1.7.9.	Exemples de sections efficaces collisionnelles	67

Table des matières	VII
TABLE DES MATIERES	VII

1.8. Mé	canismes de perte et de création des particules chargées	72
1.8.1.	Mécanismes de perte	72
1.8.2.	Mécanismes de création	74
1.8.3.	Équation de conservation des particules chargées	75
Chapitre 2	. Mouvement individuel d'une particule chargée dans E et B	77
2.1. Équ	nation générale du mouvement d'une particule chargée	79
2.1.1.	Équation du mouvement	79
2.1.2.	Équation des forces vives	80
2.2. Ana	alyse de cas particuliers de $m{E}$ et $m{B}$	80
2.2.1.	Champ électrique seul $(\boldsymbol{B}=0)$	81
2.2.2.	Champ magnétique constant et uniforme	90
2.2.3.	Champ magnétique (légèrement) non uniforme ou (lentement) variable dans le temps	111
Chapitre 3	. Description hydrodynamique d'un plasma	131
3.1. Con	nsidérations élémentaires sur l'équation de Boltzmann	133
3.1.1.	Présentation sommaire de l'équation de Boltzmann	133
3.1.2.	Approximation du terme de collisions élastiques de Boltzmann : relaxation de la fonction de distribution vers un état isotrope	136
3.1.3.	Deux méthodes classiques de recherche de solution analytique de l'équation de BOLTZMANN	138
3.2. For	ctions de distribution et notions de corrélation	138
3.2.1.	Densité de probabilité de présence dans l'espace des phases	139
3.2.2.	Fonction de distribution simple (cas de particules corrélées)	140
3.2.3.	Fonction de distribution simple (cas de particules non corrélées) $$.	140
3.2.4.	Fonction de distribution double (cas de particules corrélées)	141
3.2.5.	Fonction de distribution double (cas de particules non corrélées) .	142
3.2.6.	Fonction de distribution à N -tuples	142
3.3. For	actions de distribution et grandeurs hydrodynamiques	143

3.4. Con	ductivité électrique due aux électrons d'un plasma
3.4.1.	Forme cinétique de la conductivité électrique due aux électrons en champ HF
3.4.2.	Forme hydrodynamique de la conductivité électrique due aux électrons en champ HF
3.5. Équ	ations de transport
3.5.1.	Équation de continuité (1er moment hydrodynamique : moment d'ordre zéro en $\boldsymbol{w})$ 153
3.5.2.	Équation de transport de quantité de mouvement (2e moment hydrodynamique : moment d'ordre un en \boldsymbol{w}) 155
3.5.3.	Équations du moment d'ordre deux en \boldsymbol{w}
3.5.4.	Équations des moments d'ordres supérieurs
3.6. Ferr	neture des équations de transport
3.7. Mod	lèle du plasma d'électrons de LORENTZ
3.8. Diff	usion et mobilité de particules chargées
3.8.1.	Les concepts de diffusion et de mobilité $\dots 171$
3.8.2.	Solution de l'équation de Langevin avec dérivée particulaire nulle (d $m{v}/\mathrm{d}t=0$)
3.9. Mod	les propres de diffusion
3.9.1.	Notions de modes propres de diffusion : étude d'une post-décharge temporelle
3.9.2.	Distribution spatiale de la densité des particules chargées en régime stationnaire de diffusion
3.10. Diff	usion en régime ambipolaire
3.10.1.	Hypothèses nécessaires à une description analytique complète du régime de diffusion ambipolaire
3.10.2.	Équations régissant la diffusion ambipolaire et le régime de transition de la diffusion libre vers la diffusion ambipolaire \dots 189
3.10.3.	Valeur de l'intensité du champ électrique de charge d'espace 191
3.10.4.	Expression de la densité des charges ρ_0 sur l'axe : limite de validité du calcul analytique
3.10.5.	Conditions à remplir pour qu'une décharge en mode de diffusion soit en régime ambipolaire

Table des matières IX

3.11. Diff	usion ambipolaire en champ magnétique statique
3.12. Rég	ime de chute libre par opposition à celui de diffusion
3.13. Loi	d'échelle $T_e(pR)$
3.13.1.	Hypothèses du modèle
3.13.2.	Dérivation de la relation $T_e(p_0R)$
3.14. Not	ion de gaine
3.14.1.	Cas d'un potentiel de paroi positif par rapport au potentiel du plasma : gaine électronique 208
3.14.2.	Cas d'un potentiel de paroi négatif par rapport au potentiel de plasma : gaine ionique
3.14.3.	Potentiel flottant
Chanitas 1	Introduction à la physique des décharges HF
_	ambule
	ambule
4.2. Irai	
4.2.1.	Décharge en courant continu
4.2.3.	Décharges HF en présence d'un champ magnétique statique 223
4.2.4.	Évolution de la valeur de θ en fonction de \bar{n}_e dans diverses conditions de plasma
	uence de la fréquence
4.3.1.	Position du problème
4.3.2.	Fonction de distribution en énergie des électrons en régime non stationnaire
4.3.3.	FDEE en régime stationnaire
4.3.4.	Trois cas limites de l'influence de ω sur la FDEE stationnaire $\ldots237$
4.3.5.	Influence de ω sur la valeur de la puissance θ
4.3.6.	Densité d'espèces produites par seconde à densité de puissance absorbée constante : efficacité énergétique
4.3.7.	Résultats expérimentaux et modélisation
4.3.8.	Conclusion sommaire à l'étude des propriétés des plasmas HF à basse pression

4.4.	Les plasmas HF à haute pression	46
4.4	1.1. Observation expérimentale des phénomènes de contraction et de filamentation à la pression atmosphérique	47
4.4	1.2. Modélisation du phénomène de la contraction à la pression atmosphérique 2	52
4.4	1.3. Validation par un modèle auto-cohérent des hypothèses émises sur la contraction à la pression atmosphérique	57
4.4	1.4. Décharges à pression atmosphérique en expansion résultant de l'addition de traces de gaz rares	59
4.4	4.5. Résumé des propriétés des plasmas HF à haute pression $\ \ldots \ 2$	62
Exercice	es du chapitre 1 2	63
Exercice	es du chapitre 2 3	13
Exercice	es du chapitre 3 3	63
Exercice	es du chapitre 4	:19
Annexe	s 4	.35
A1.	Rappels sur la fonction de distribution des vitesses de MAXWELL-BOLTZMANN (M-B)	35
A2.	Expression complète de la loi de Saha	39
A3.	Équilibre thermodynamique local partiel 4	41
A4.	Représentation des collisions binaires dans les repères du centre de masse et du laboratoire	43
A5.	Interactions collisionnelles de nature coulombienne. Limitation de leur portée (logarithme coulombien)	44
A6.	Ionisation par étapes	56
A7.	Notions de tenseur	59
A8.	Opérations sur les tenseurs	62
A9.	Orientation de $\boldsymbol{w}_{2\perp}$ dans le trièdre de référence $(\boldsymbol{E}_{0\perp} \wedge \boldsymbol{B}, \boldsymbol{E}_{0\perp}, \boldsymbol{B})$	67
A10.	Force agissant sur une particule chargée dans la direction d'un champ B faiblement non uniforme axialement	68

Table des matières XI

A11.	Le moment magnétique, un invariant dans l'approximation du centre de guidage
A12.	Vitesse de dérive d'une particule chargée soumise à une force ${\pmb F}_{\rm D}$ dans un champ ${\pmb B}$
A13.	Vitesse de dérive magnétique dans le repère de FRENET associé aux lignes de force d'un champ magnétique
A14.	Harmoniques sphériques
A15.	Expression des termes de l'équation de transport de la pression cinétique
A16.	Fermeture de l'équation hydrodynamique de transport de pression cinétique dans le cas d'une compression adiabatique 476
A17.	Compléments de calcul pour l'expression de $T_e(pR)$
A18.	Propagation d'une onde plane électromagnétique dans un plasma et épaisseur de peau
A19.	Plasmas d'onde de surface (POS)
A20.	Intégrales utiles et expressions des principaux opérateurs différentiels
${f Bibliogr}$	aphie
Référen	ces
\mathbf{Index}	499