Table des Matières

Indications générales	1
CHAPITRE I. Que peut-on faire avec les orbitales frontières ?	3
I. Intérêt de la méthode des perturbations	3
II. Utilité des orbitales frontières Cinq questions de réactivité traitées par les orbitales frontières Trois questions de structure traitées par les orbitales frontières	4 4 5
CHAPITRE II. Orbitales atomiques et orbitales moléculaires	6
I. Orbitales atomiques	6
II. Orbitales moléculaires	10
III. OM d'une diatomique homonucléaire 1. Calcul des OM par la méthode de Hückel avec recouvrement 2. Interprétation physique A. Les orbitales moléculaires B. Les paramètres Intégrale coulombienne Intégrale de résonance Intégrale de recouvrement C. Analyse de Mulliken Population de recouvrement Charges atomiques nettes	10 10 13 13 14 14 14 14 15 15
IV. OM d'une diatomique hétéronucléaire1. Calculs2. Interprétation physique	16 16 17
 V. OM π des molécules polyatomiques 1. La méthode Hückel appliquée aux molécules polyatomiques A. OM Hückel de l'allyle B. Formules de Coulson pour les polyènes linéaires C. Indices de liaison et charges nettes 2. Calcul pratique des OM Hückel A. Choix des paramètres α et β Hétéroatomes Substituants alkyles Effet industif du métholo 	18 18 18 19 20 22 22 22 22 23 23
Effet inductif du méthyle B. Écriture du déterminant séculaire	23 24

CHAPITRE III. La méthode des perturbations 1. Perturbations et Hückel 27 II. Étude des réactions bimoléculaires par la méthode des perturbations 1. Système à deux orbitales A. Les OM de départ ne sont pas dégénérées B. Les OM de départ ne sont pas dégénérées 2. Système à plus de deux orbitales 3. Approximation des orbitales frontières 4. Cas des systèmes unimoléculaires 30 III. Utilisation pratique des formules de perturbation 1. Calculs numériques Les trois schémas de perturbations 2. Applications qualitatives IV. La méthode PMO de Dewar 1. Hydrocarbures alternants Théorème d'appariement 2. La méthode PMO de Dewar 2. La méthode PMO de Dewar Règles de Hückel Règle de Dewar-Zimmerman 3. Avantages et inconvénients de la méthode PMO A. Avantages B. Inconvénients Pour en savoir plus CHAPITRE IV. Réactivités absolues et relatives I. Réactions bimoléculaires A. Cycloadditions B. Justification de l'approximation des orbitales frontières 48 A. Cycloadditions B. Justification de l'approximation des orbitales frontières 2. Réactions unimoléculaires A. Transpositions sigmatropiques B. Réactions de l'approximation des orbitales frontières 57 1. Réactions de lectrocycliques Limites de validité des règles de sélection précédentes 1. Réactivités relatives 1. Réactions electrophiles Géométrie des complexes « ates » 2. Réactions nucléophiles	C. Contrôle des calculsD. Décompte des électrons	24 25
I. Perturbations et Hückel 27 II. Étude des réactions bimoléculaires par la méthode des perturbations 28 1. Système à deux orbitales 28 A. Les OM de départ sont dégénérées 28 B. Les OM de départ ne sont pas dégénérées 28 2. Système à plus de deux orbitales 29 3. Approximation des orbitales frontières 30 4. Cas des systèmes unimoléculaires 30 III. Utilisation pratique des formules de perturbation 30 1. Calculs numériques 30 Les trois schémas de perturbations 31 2. Applications qualitatives 33 IV. La méthode PMO de Dewar 37 1. Hydrocarbures alternants 37 Théorème d'appariement 37 2. La méthode PMO de Dewar 39 Règles de Hückel 40 Règles de Hückel 40 Règles de Dewar-Zimmerman 42 3. Avantages et inconvénients de la méthode PMO 45 A. Avantages 45 B. Inconvénients 45 Pour en savoir plus 46 CHAPITRE IV. Réactivités absolues et relatives 47	Pour en savoir plus	26
II. Étude des réactions bimoléculaires par la méthode des perturbations 1. Système à deux orbitales A. Les OM de départ sont dégénérées B. Les OM de départ ne sont pas dégénérées 28. Système à plus de deux orbitales 3. Approximation des orbitales frontières 4. Cas des systèmes unimoléculaires 30. III. Utilisation pratique des formules de perturbation 1. Calculs numériques Les trois schémas de perturbations 2. Applications qualitatives 31. Applications qualitatives 32. Applications qualitatives 33. Approximation de Dewar 34. Hydrocarbures alternants Théorème d'appariement 35. La méthode PMO de Dewar 36. La méthode PMO de Dewar 37. Règles de Hückel Règle d'aromaticité généralisée Règle d'aromaticité généralisée Règle de Dewar-Zimmerman 3. Avantages et inconvénients de la méthode PMO 4. A. Avantages B. Inconvénients 45. Pour en savoir plus 46. CHAPITRE IV. Réactivités absolues et relatives 47. Réactions bimoléculaires A. Cycloadditions B. Justification de l'approximation des orbitales frontières 2. Réactions unimoléculaires A. Transpositions sigmatropiques B. Réactions électrocycliques Limites de validité des règles de sélection précédentes 11. Réactivités relatives 12. Réactions électrocycliques Limites de validité des règles de sélection précédentes 13. Réactions electrocycliques C-Géométrie des complexes « ates » 2. Réactions nucléophiles 46. Services 47. Réactions nucléophiles 48. Acctivités relatives 49. Réactions nucléophiles 49. Réactions nucléophiles 49. Réactions nucléophiles 49. Réactions nucléophiles	CHAPITRE III. La méthode des perturbations	27
1. Système à deux orbitales 28 A. Les OM de départ sont dégénérées 28 B. Les OM de départ ne sont pas dégénérées 28 2. Système à plus de deux orbitales 29 3. Approximation des orbitales frontières 30 4. Cas des systèmes unimoléculaires 30 III. Utilisation pratique des formules de perturbation 30 1. Calculs numériques 30 Les trois schémas de perturbations 31 2. Applications qualitatives 33 IV. La méthode PMO de Dewar 37 1. Hydrocarbures alternants 37 Théorème d'appariement 37 2. La méthode PMO de Dewar 39 Règles de Hückel 40 Règle de Dewar-Zimmerman 41 3. Avantages et inconvénients de la méthode PMO 45 A. Avantages 45 B. Inconvénients 45 Pour en savoir plus 46 CHAPITRE IV. Réactivités absolues et relatives 47 I. Réactions bimoléculaires 48 A. Cycloadditions 48 B. Justification de l'approximation des orbitales frontières 49 2. Ré	I. Perturbations et Hückel	27
1. Calculs numériques Les trois schémas de perturbations 2. Applications qualitatives IV. La méthode PMO de Dewar 1. Hydrocarbures alternants Théorème d'appariement 2. La méthode PMO de Dewar Règles de Hückel Règle d'aromaticité généralisée Règle de Dewar-Zimmerman 3. Avantages et inconvénients de la méthode PMO 4. A vantages B. Inconvénients Pour en savoir plus CHAPITRE IV. Réactivités absolues et relatives 1. Réactivité absolue 1. Réactivité absolue 2. Réactions bimoléculaires A. Cycloadditions B. Justification de l'approximation des orbitales frontières 2. Réactions unimoléculaires A. Transpositions sigmatropiques B. Réactivités relatives 1. Réactivités relatives 2. Réactions nucléophiles Géométrie des complexes « ates » 2. Réactions nucléophiles 60	 Système à deux orbitales A. Les OM de départ sont dégénérées B. Les OM de départ ne sont pas dégénérées Système à plus de deux orbitales Approximation des orbitales frontières 	28 28 28 28 29 30 30
1. Hydrocarbures alternants Théorème d'appariement 2. La méthode PMO de Dewar Règles de Hückel Règle d'aromaticité généralisée Règle de Dewar-Zimmerman 3. Avantages et inconvénients de la méthode PMO A. Avantages B. Inconvénients 45 Pour en savoir plus CHAPITRE IV. Réactivités absolues et relatives 1. Réactivité absolue 1. Réactions bimoléculaires A. Cycloadditions B. Justification de l'approximation des orbitales frontières 2. Réactions unimoléculaires A. Transpositions sigmatropiques B. Réactions électrocycliques Limites de validité des règles de sélection précédentes 1. Réactivités relatives 1. Réactions électrophiles Géométrie des complexes « ates » 2. Réactions nucléophiles 60	1. Calculs numériques Les trois schémas de perturbations	30 30 31 33
CHAPITRE IV. Réactivités absolues et relatives I. Réactivité absolue 1. Réactions bimoléculaires A. Cycloadditions B. Justification de l'approximation des orbitales frontières 2. Réactions unimoléculaires A.Transpositions sigmatropiques B. Réactions électrocycliques Limites de validité des règles de sélection précédentes II. Réactivités relatives 1. Réactivités relatives 5. Géométrie des complexes « ates » 2. Réactions nucléophiles 60	 Hydrocarbures alternants Théorème d'appariement La méthode PMO de Dewar Règles de Hückel Règle d'aromaticité généralisée Règle de Dewar-Zimmerman Avantages et inconvénients de la méthode PMO A. Avantages 	37 37 37 39 40 41 42 45 45
I. Réactivité absolue 1. Réactions bimoléculaires A. Cycloadditions B. Justification de l'approximation des orbitales frontières 2. Réactions unimoléculaires A. Transpositions sigmatropiques B. Réactions électrocycliques Limites de validité des règles de sélection précédentes 1. Réactivités relatives 1. Réactivités relatives 1. Réactions électrophiles Géométrie des complexes « ates » 2. Réactions nucléophiles 60	Pour en savoir plus	46
1. Réactions bimoléculaires 48 A. Cycloadditions 48 B. Justification de l'approximation des orbitales frontières 49 2. Réactions unimoléculaires 51 A.Transpositions sigmatropiques 51 B. Réactions électrocycliques 52 Limites de validité des règles de sélection précédentes 54 II. Réactivités relatives 57 1. Réactions électrophiles 57 Géométrie des complexes « ates » 57 2. Réactions nucléophiles 60	CHAPITRE IV. Réactivités absolues et relatives	47
1. Réactions électrophiles57Géométrie des complexes « ates »572. Réactions nucléophiles60	 Réactions bimoléculaires A. Cycloadditions B. Justification de l'approximation des orbitales frontières Réactions unimoléculaires A.Transpositions sigmatropiques B. Réactions électrocycliques 	47 48 48 49 51 51 52 54
A Urdre de nucléonhile des halogénures 60	1. Réactions électrophiles Géométrie des complexes « ates »	57 57 57 60

:	:	:	
8	ı	ĸ	

B. Assistance électrophile	60
C. Un exemple de chimiosélectivité : ordre de réactivité des	<i>(</i> 1
composés carbonylés vis-à-vis d'un même nucléophile	61
3. Réactions péricycliques	66
La règle d'Alder	66
III. Limitations des règles 1 et 2	71
1. Problèmes liés à la règle 1	71
A. Réactions chélétropiques	71
Décompte des électrons dans les réactions chélétropiques	73
B. Systèmes faisant intervenir plus de 2 composantes	74
2. Problèmes liés à la règle 2	74 75
A. Violations apparentes de la règle 2	75 75
Réactivité comparée des alcènes et des alcynes	76
Ordre de réactivité des composés carbonylés	76
Réaction de Staudinger Comment prévoir les cas de violation	77
B. Pourquoi faut-il négliger le recouvrement ?	77
C. Orbitales frontières « nominales » et orbitales frontières « chimique	
C. Officiales Hollieres wildinates wet officiales Hollieres we managed	5 // 10
CHAPITRE V. Régiosélectivité	85
I. Cycloadditions	85
II. Réactions électrophiles	93
1. Règle de Markovnikov	93
2. Régiosélectivité des énols et énolates	93
Régiosélectivité des composés soufrés	97
3. Théorie des OF et réactions ioniques	99
Étude des réactions ioniques par la méthode de Hückel	99
Étude des réactions ioniques par les calculs autocohérents (SCF)	100
OF et réactions en phase gazeuse	102
III. Réactions nucléophiles	102
Additions sur les carbonyles conjugués	102
IV. Réactions radicalaires	106
V. Périsélectivité	108
VI. Limitations de la règle 3	109
CYLL DIFFER AND CALL AND	104
CHAPITRE VI. Stéréosélectivité	124
I. Réactions péricycliques	124
1. Réactions électrocycliques	124
A. Torquosélectivité	124
B. Extensions de la théorie de Rondan-Houk et analyses quantitatives	126
Généralisations	126
Analyses quantitatives	127
C. Un exercice d'analyse qualitative	130

2. Transpositions sigmatropiques	132
A. Torquosélectivité	132
B. Transpositions de Cope	132
3. Orientations dans les cycloadditions	133
A. Orientation endo-exo	133
B. Orientation syn-anti	136
II. Réactions d'addition	138
1. Additions nucléophiles	138
A. L'attaque non perpendiculaire de Dunitz-Bürgi	138
B. Les règles de cyclisation de Baldwin	139
C. Le problème de l'induction asymétrique 1,2	143
Les modèles de Cram, de Cornforth et de Felkin	143
Le modèle de Karabatsos	149
La règle de l'aplatissement	149
A défaut d'être constant, il importe d'être flexible!	153
Le classement G, M, P des substituants et le modèle de Cieplak D. Quels facteurs contrôlent l'induction asymétrique ?	154 157
E. Quelques modèles récents	162
Modèle de Houk pour les additions électrophiles sur les alcènes	162
Modèle de Morokuma pour les additions conjuguées	163
Additions radicalaires aux alcènes	164
Les modèles d'Evans	164
L'effet alcoxy interne (inside alkoxy effect)	164
2. Additions électrophiles	165
3. Application à l'aldolisation	168
III. Réactions de substitution	171
1. Substitutions électrophiles bimoléculaires	171
2. Substitutions nucléophiles bimoléculaires	171
IV. Limitations de la règle 4	174
CHAPITRE VII. Quelques problèmes structuraux	180
I. Principe de la méthode	180
II. Conformations stables	181
1. Aldéhydes, alcènes et éthers d'énol	
A. Éthanal et propène	181
Orbitales CH du groupe méthylène	183
B. Propanal et méthyl vinyl éther	184
C. Chloroéthanal et 2-chloropropanal	188
2. Conformations de quelques ions	189
Orbitales de Walsh	189
A. Le cation cyclopropylcarbinyle	190
B. Les ions éthyles substitués	190
Application à la stéréochimie des $S_N 2$ vinyliques	192
3. Effet anomère A. Les paires libres des éthers	193
A. Les paires nores des einers	193

B. L'effet anomère	194
C. Applications	195
D. Mise en garde	195
4. Effet géminal	196
5. Effet gauche	197
Deux paires libres adjacentes	198
Une paire libre adjacente à une liaison polaire	198
Deux liaisons polaires adjacentes	199
III. Conformations réactives	199
IV. Comment stabiliser des espèces instables	201
Le cyclobutadiène	201
Le triméthylèneméthane	203
Des carbènes stables	203
V. Liaisons de longueurs anormales	203
1. Conséquences structurales de l'interaction HO-BV	203
2. Applications aux additions nucléophiles	205
A. Additions et additions-éliminations	205
B. Réactions réversibles et irréversibles. Réactions en plusieurs	
étapes	205
3. Effet de substituants	205
A. Fragmentations, énolisations et réactions apparentées	205
Comment couper une liaison CC	205
Comment couper une liaison CH	207
B. La réaction de Cope	209
Substitutions sur les positions 3 et 4. La réaction	
oxy-Cope anionique	209
Substitutions sur les autres positions	210
Polysubstitutions	212
C. La réaction de Claisen	215
D. Le cyclopropane substitué	219
VI. Angles de valence anormaux	220
CHAPITRE VIII. Pour aller plus loin	223
I. Limitations de la théorie des orbitales frontières	224
1. Les hypothèses simplificatrices de la théorie des orbitales frontières	224
2. Conséquences	224
Limitations dues à l'approximation (1)	224
Limitations dues à l'approximation (2)	224
Limitations dues à la condition (3)	225
Limitations dues à l'approximation (4)	226
Limitations dues à la condition (5)	226
II. Les possibilités de la chimie computationnelle	226
1. Problèmes structuraux	226
2. Problèmes de réactivité	227

3. Au delà des surfaces de potentiel et des états de transition	227
III. Les différentes méthodes de chimie quantique	228
1. Les raisons des approximations	228
2. Les principaux modèles théoriques	229
A. Les modèles <i>ab initio</i> et semi-empiriques	229
B. Les bases	230
C. Les modèles théoriques incluant la corrélation	232
Les interactions de configurations	232
Les méthodes de Møller-Plesset	233
Les méthodes de la fonctionnelle de densité	233
D. Effets de solvants	234
3. Quelques questions techniques	234
Choix du modèle	234
Choix de la base	235
Pour en savoir plus	236
APPENDICE. Catalogue des OM	237
I. Organisation du catalogue	237
II. Chapitre 3	237
III. Chapitre 4	239
IV. Chapitre 5	254
V. Chapitre 6	264
Tableau récapitulatif des molécules citées	265
Remerciements	270
Index	271