Table des matières

Préface					
A	vant-	propo	${f s}$	xv	
1	Intr	roduct	ion	1	
	1.1	Espac	ce des phases, portrait de phase	. 1	
	1.2	Stabil	lité d'un point fixe	. 3	
		1.2.1	Points fixes	. 3	
		1.2.2	Stabilité linéaire d'un point fixe	. 3	
		1.2.3	Stabilité d'un point fixe non hyperbolique	. 6	
	1.3	Bifure	cations	. 6	
		1.3.1	Définition	. 6	
		1.3.2	Bifurcation nœud-col	. 7	
		1.3.3	Bifurcation fourche	. 9	
		1.3.4	Bifurcation de Hopf	. 12	
	1.4	Illustr	rations hydrodynamiques	. 13	
		1.4.1	Stabilité d'un film de savon	. 13	
		1.4.2	Stabilité d'une bulle	. 17	
		1.4.3	Stabilité d'une suspension colloïdale	. 21	
		1.4.4	Convection dans un anneau	. 23	
		1.4.5	Double diffusion thermique et massique	. 27	
	1.5	Non-r	normalité de l'opérateur linéarisé	. 30	
		1.5.1	Croissance algébrique transitoire	. 30	
		1.5.2	Excitation optimale d'un mode instable	. 34	
	1.6	Exerc	ices	. 37	
		1.6.1	Oscillateur harmonique forcé	. 37	
		1.6.2	Particule dans un potentiel à deux puits	. 37	
		1.6.3	Avalanches dans un tas de sable	. 38	
		1.6.4	Transition de phase du second ordre	. 39	
		1.6.5	Transition de phase du premier ordre	. 39	
		1.6.6	Problème modèle de l'instabilité d'un film de savon	. 40	
		1.6.7	Croissance transitoire et perturbation optimale	. 40	

		1.6.8	Excitation optimale d'un mode instable	41
		1.6.9	Bifurcation sous-critique via une croissance transitoire	41
2	Inst	abilité	és de fluides au repos	43
	2.1		luction	43
	2.2		pilité gravitationnelle de Jeans	44
		2.2.1	Ondes acoustiques	44
		2.2.2	Effet de la gravitation aux grandes échelles	47
		2.2.3	Discussion	51
	2.3	Instab	pilité interfaciale de Rayleigh-Taylor	53
		2.3.1	Analyse dimensionnelle	53
		2.3.2	Équations des perturbations	55
		2.3.3	Linéarisation, modes normaux et relation de dispersion	59
		2.3.4	Discussion	60
		2.3.5	Effets des parois et de la viscosité	61
	2.4	Instab	oilité capillaire de Rayleigh-Plateau	64
		2.4.1	Description	64
		2.4.2	Analyse dimensionnelle	66
	2.5	Instab	pilité thermique de Rayleigh-Bénard	68
		2.5.1	Description	68
		2.5.2	Mécanisme de l'instabilité $(Pr \gg 1) \dots \dots \dots$	71
		2.5.3	Étude de stabilité dans l'approximation de Boussinesq	72
	2.6	Instab	pilité thermocapillaire de Bénard-Marangoni	76
		2.6.1	Description	76
		2.6.2	Analyse dimensionnelle	77
	2.7	Discus	ssion	78
		2.7.1	Échelles caractéristiques et sélection de modes	78
		2.7.2	Caractéristiques générales d'une instabilité à seuil	79
	2.8	Exerc		80
		2.8.1	Instabilité de Rayleigh-Taylor entre parois	80
		2.8.2	Instabilité d'un film mince suspendu	81
		2.8.3	Instabilité de Saffman-Taylor en milieu poreux	81
		2.8.4	Instabilité de Darrieus-Landau d'un front de flamme	83
3	Éco	uleme	nts ouverts : notions de base	87
	3.1	Introd	luction	87
		3.1.1	Dynamique linéaire d'un paquet d'ondes	87
		3.1.2	Stabilité au sens de Lyapunov, stabilité asymptotique	91
		3.1.3	Stabilité et instabilité linéaires	92
	3.2	Critèr	re de stabilité linéaire	95
		3.2.1	Évolution spatio-temporelle d'une perturbation générale	95
		3.2.2	Illustration	97
	3.3	Instab	oilités convective et absolue	98
		3.3.1	Critère d'instabilité absolue	98
		3.3.2	Branches spatiales d'une instabilité convective	99

Table des matières vii

		3.3.3	Illustrations	99
		3.3.4		
	3.4	Exerci	ices	
		3.4.1	T I I I I I I I I I I I I I I I I I I I	
		3.4.2	Branches spatiales d'une instabilité convective 1	02
4	Inst		è non visqueuse des écoulements parallèles 1	
	4.1		luction	
	4.2	Résult	tats généraux	
		4.2.1	Équations linéarisées des petites perturbations 1	
		4.2.2	1	80
		4.2.3	Équation de Rayleigh des perturbations	
			bidimensionnelles	
		4.2.4	Théorème du point d'inflexion de Rayleigh 1	12
		4.2.5		
			uniforme	
	4.3		oilité d'une couche de mélange	
		4.3.1		
		4.3.2	Cas d'une épaisseur de vorticité non nulle	
		4.3.3		
	4.4		oilité centrifuge de Couette-Taylor	
		4.4.1		
		4.4.2	Maurice Couette (1890) et Geoffrey Taylor (1923) 1	
		4.4.3	Critère d'instabilité pour un écoulement non visqueux 1	
		4.4.4	Effet de la viscosité – Nombre de Taylor	
	4.5		ices	32
		4.5.1	Instabilité de Kelvin-Helmholtz avec gravité	0.0
		4.5.0	et capillarité	
		4.5.2	Effet de parois sur l'instabilité de Kelvin-Helmholtz 1	32
		4.5.3	Ondes internes dans un écoulement cisaillé stratifié	0.0
		4 5 4	en densité	32
		4.5.4	Instabilité de l'écoulement non visqueux	2.4
		4 5 5	de Couette-Taylor	
		4.5.5	Instabilité d'un film visqueux	.34
5			e visqueuse des écoulements parallèles 1	37
	5.1	Introd	luction	37
			Instabilité de l'écoulement de Poiseuille en tube 1	
		5.1.2	Instabilité d'une couche limite	
	5.2		tats généraux	
		5.2.1	Équations linéarisées des perturbations	
		5.2.2	Théorème de Squire	
		5.2.3	Équation d'Orr-Sommerfeld	
	F 0	5.2.4	Mécanisme de l'instabilité visqueuse	
	5.3	Ecoule	ement de Poiseuille plan)c

		 5.3.1 Stabilité marginale, modes propres
		5.3.3 Croissance transitoire
	5.4	Écoulement de Poiseuille en tube
	5.5	Couche limite sur une plaque plane
		5.5.1 Mise en évidence expérimentale
		5.5.2 Analyse locale
		5.5.3 Modes propres, stabilité marginale, effets non parallèles 159
		5.5.4 Croissance transitoire
6		abilités à faible nombre de Reynolds 165
	6.1	Introduction
	6.2	Films tombant sur un plan incliné
		6.2.1 Écoulement de base et échelles caractéristiques 169
		6.2.2 Formulation du problème de stabilité
		6.2.3 Instabilité interfaciale de grande longueur d'onde 172
		6.2.4 Mécanisme de l'instabilité interfaciale
		6.2.5 Étude expérimentale
		6.2.6 Instabilité à faible pente du mode de paroi 184
	6.3	Films liquides cisaillés
		6.3.1 Introduction
		6.3.2 Mécanisme de l'instabilité des ondes longues 186
	0.4	6.3.3 Ondes « moins longues »
	6.4	Exercices
		6.4.1 Inclinaison critique d'un film tombant
		6.4.2 Conditions aux limites sur une interface libre 191
		6.4.3 Résolution pour les ondes longues 191
7		lanches, rides et dunes 193
	7.1 7.2	Introduction
	1.2	Avalanches
		7.2.1 Dynamique d'un écoulement granulaire dense 195 7.2.2 Stabilité
		7.2.3 Expériences
	7.3	Transport de sédiments par un écoulement
	1.5	7.3.1 Analyse dimensionnelle
		7.3.2 Vitesse des grains mobiles
		7.3.3 Densité de grains mobiles
		7.3.4 Flux de grains
		7.3.5 Effets de relaxation
	7.4	Rides et dunes : première analyse dimensionnelle
	1.4	7.4.1 Rides et dunes éoliennes
		7.4.2 Rides et dunes aquatiques
	7.5	Rides aquatiques sous un écoulement continu
	1.0	7.5.1 Le modèle classique

Table des matières ix

		7.5.2	Phénomènes de relaxation	. 214
		7.5.3	Discussion	. 217
	7.6	Rides	aquatiques sous un écoulement oscillant	. 223
		7.6.1	Introduction	. 223
		7.6.2	Observations	
		7.6.3	Mécanisme d'initiation des rides à grains roulant	. 227
		7.6.4	Discussion	
	7.7	Dunes	s aquatiques : un modèle élémentaire	. 232
		7.7.1	Introduction	
		7.7.2	Modélisation et écoulement de base	
		7.7.3	Stabilité sur un fond rigide	
		7.7.4	Stabilité sur un fond érodable	. 235
	7.8	Exerci	ices	
		7.8.1	Dunes : coefficient de frottement constant	
		7.8.2	Dunes : coefficient de frottement non constant	. 238
8	D	anmiai	ue non linéaire à petit nombre de degrés	
0	-	iannqu iberté		239
	8.1		luction	
	8.2		ateurs non linéaires	
	0.2	8.2.1	Oscillateur fortement dissipatif dans un potentiel	1-
		0.2.1	à deux puits	. 243
		8.2.2	Oscillateur de Van der Pol : saturation de l'amplitude	
		8.2.3	Oscillateur de Duffing : correction de la fréquence	
		8.2.4	Oscillateurs forcés	
	8.3	Systèr	mes à petit nombre de degrés de liberté	
		8.3.1	Équation modèle	
		8.3.2	Équations d'amplitude	
		8.3.3	Réduction à la dynamique du mode marginal	
		0.0.0	au voisinage du seuil	. 254
	8.4	Illustr	ration : instabilité d'une interface cisaillée	
	8.5	Exerci		
		8.5.1	Oscillateur de Van der Pol-Duffing	
		8.5.2	Oscillateur de Van der Pol – Restabilisation	
		8.5.3	Oscillateur de Van der Pol – Accrochage de fréquence	
		8.5.4	Oscillateur de Van der Pol soumis à un forçage constant	
		8.5.5	Oscillateur paramétrique	
		8.5.6	Dynamique faiblement non linéaire	
			de l'équation KS-KdV	
o	ъ			205
9	9.1		ue non linéaire d'une onde dispersive	265
	9.1		oilité des ondes de gravité	
	0.2		Ondes de Stokes	
			Instabilité de Benjamin-Feir	
		0.4.4	insumstructed Deliphiniti-Length	. 400

	9.3	Instab	ilité par interactions résonnantes
		9.3.1	Problème modèle
		9.3.2	Onde non linéaire de Klein-Gordon
		9.3.3	Instabilité d'une onde non linéaire monochromatique 275
	9.4	Instab	ilité vis-à-vis de modulations
		9.4.1	Dynamique linéaire d'un paquet d'ondes :
			équation d'enveloppe
		9.4.2	Dynamique non linéaire : l'équation de Schrödinger 279
		9.4.3	Stabilité d'une onde quasi monochromatique 280
		9.4.4	Interprétation en termes d'instabilité de phase 282
		9.4.5	Dérivation de l'équation NLS pour l'onde
			de Klein-Gordon
	9.5	Retour	r sur les résonances
	9.6	Exerci	ces
		9.6.1	Onde non linéaire incluant un harmonique (1) 285
		9.6.2	Onde non linéaire incluant un harmonique (2) 286
		9.6.3	Onde non linéaire de Korteweg-de Vries 287
		0.000	0
10	Dyn	amiqu	e non linéaire des systèmes dissipatifs 289
	10.1	Introd	uction
	10.2	Dynan	nique faiblement non linéaire
		10.2.1	Évolution linéaire d'un paquet d'ondes 290
		10.2.2	Effets faiblement non linéaires :
			équation de Ginzburg-Landau
		10.2.3	Exemple de dérivation de l'équation
			de Ginzburg-Landau
	10.3	Satura	tion de l'instabilité primaire
	10.4	Instab	ilité secondaire d'Eckhaus
		10.4.1	Critère d'instabilité
		10.4.2	Interprétation en termes de dynamique de la phase 296
		10.4.3	Illustrations expérimentales
	10.5	Instab	ilité d'une onde propagative
		10.5.1	Évolution d'un paquet d'ondes
			Onde non linéaire
		10.5.3	Instabilité de Benjamin-Feir-Eckhaus 303
		10.5.4	Ondes de Tollmien-Schlichting et transition
			à la turbulence
	10.6	Coupla	age avec un champ à grande échelle
		_	Invariance galiléenne et lois de conservation 307
			Équations d'évolution couplées
			Stabilité des ondes
			Illustration expérimentale
	10.7		ces

Table des matières xi

		10.7.1	Dérivation de l'équation GL à partir du modèle	
			de Swift-Hohenberg	. 313
		10.7.2	Invariance par translation et invariance galiléenne $$. 314
11	Syst	èmes	dynamiques et bifurcations	315
	11.1	Introd	uction	. 315
	11.2	Espace	e des phases, attracteurs	. 316
		11.2.1	Flot engendré par un champ de vecteurs.	
			Orbites dans l'espace des phases	. 316
		11.2.2	Systèmes dissipatifs et conservatifs. Attracteurs	. 318
		11.2.3	Sections de Poincaré	. 320
	11.3	Étude	du système linéarisé – Stabilité linéaire	. 323
		11.3.1	Solution du système linéarisé	. 323
		11.3.2	Sous-espaces invariants	. 324
		11.3.3	Types de points fixes	. 324
		11.3.4	« Ressemblance » des champs non linéaire et linéarisé	325
	11.4	Variété	és invariantes et formes normales	. 327
		11.4.1	Variétés stable et instable d'un point fixe hyperbolique	327
		11.4.2	Variété centrale	. 329
			Forme normale d'un champ de vecteurs	
	11.5		té structurelle et généricité	
			Position du problème	
			Stabilité structurelle et généricité : définitions	
			Conditions de stabilité structurelle	
	11.6	Bifurca	ations	. 340
		11.6.1	Introduction	. 340
			Définition d'une bifurcation	
		11.6.3	Codimension d'une bifurcation	. 341
		11.6.4	Bifurcation nœud-col	. 343
		11.6.5	Bifurcation de Hopf	. 347
		11.6.6	Un exemple de bifurcation de codimension deux	. 349
	11.7	Exerci	ces	. 353
		11.7.1	Attracteur de Hénon	. 353
			Exponentielles de matrice	
		11.7.3	Intégration de systèmes différentiels linéaires	. 354
			Portrait de phases	
		11.7.5	Variétés stable et instable	. 354
		11.7.6	Variété centrale	. 354
		11.7.7	Résonances de valeurs propres	. 355
			Forme normale	
		11.7.9	Stabilité structurelle d'une orbite hétérocline $\ \ldots \ \ldots$. 355
		11.7.10	Forme normale des équations de Lorenz	. 355
			l Diagramme de bifurcation (1)	
		11.7.12	2 Diagramme de bifurcation (2)	. 356

	11.7.13 Bifurcation de Hopf		
	11.7.14 Bifurcation de Hopf du système de Lorenz	. 356	
Annex	e A : Équations de Saint-Venant	357	
A.1	Débit sortant d'une tranche d'un écoulement	. 357	,
A.2	Conservation de la masse	. 358	,
A.3	Conservation de la quantité de mouvement	. 358	,
A.4	Modélisation du frottement pariétal	. 360	
Bibliog	graphie	363	
Index		381	