TABLE DES MATIÈRES

AVERTISSEMENT	5
Introduction	7
Chapitre 1 - La collecte de l'énergie	13
1.1 - Respirations et fermentations	15
1.2 - Le rôle des fermentations	20
1.3 - ATPases - ATP synthases	26
1.4 - Cytochromes	30
1.5 - Complexes de type bc₁	34
1.6 - Oxydases respiratoires terminales	<i>38</i>
1.7 - Phototrophie non-oxygénique	46
1.8 - Les cyanobactéries	56
Conclusion	66
Chapitre 2 - Génomes - adaptations - communications	71
2.1 - La génomique des micro-organismes	71
2.2 - Protéomique et complexes multi-protéiques	80
2.3 - Transferts génétiques horizontaux	84
2.4 - Plasmides	90
2.5 - Séquences d'insertion - Transposition	95
2.6 - Les transposons simples et composites	99
2.7 - Intégrons et cassettes	107
2.8 - La biologie particulière des biofilms	115
2.9 - Communication et bioluminescence	119
Conclusion rapide	126

Chapitre 3 - Oxydations minérales	133
3.1 - Un cycle naturel du méthane	133
3.2 - Le méthane, source de carbone et d'énergie	135
3.3 - Croissance sur méthane et méthanol	144
3.4 - Méthanotrophes contre organochlorés	152
3.5 - Halométhanes	155
3.6 - L'oxydation de l'ammoniac	159
3.7 - Monoxyde de carbone et carboxydotrophes	167
3.8 - Du sulfure au sulfate	171
3.9 - Élimination de composés soufrés simples	177
3.10 - L'oxydation du fer et du manganèse	179
3.11 - Cyanure - cyanate - thiocyanate	184
Conclusion brève	189
Chapitre 4 - Hydrogène - Acétate - Méthane	197
4.1 - Hydrogène et hydrogénases	197
4.2 - Les hydrogénases sont régulées	201
4.3 - Bactéries acétogènes	205
4.4 - La genèse du méthane	213
4.5 - Les étapes de la méthanogenèse	218
4.6 - L'énergie de l'hétérodisulfure réductase	227
4.7 - De l'acide acétique au méthane	229
4.8 - Méthanogènes et biodégradations	232
4.9 - Hydrogénosomes	235
Conclusion	237
CHAPITRE 5 - AZOTE ET ANAÉROBIOSE	245
5.1 - Le cycle biologique de l'azote	245
5.2 - Ceux qui assimilent l'azote	248
5.3 - La nitrogénase	252
5.4 - Contrôle de l'assimilation de l'azote	<i>258</i>

TABLE DES MATIÈRES	795
5.5 - Les voies du nitrate	264
5.6 - Le passage à l'anaérobiose	270
5.7 - Une optimisation très poussée	275
Conclusion	280
CHAPITRE 6 - RÉDUCTION DES OXYDES D'AZOTE	287
6.1 - Nitrate réductases et molybdène	287
6.2 - Nitrate réductases variées	290
6.3 - La réduction des nitrites	293
6.4 - Le passage direct du nitrite à l'ammonium	301
6.5 - De l'oxyde nitrique à l'oxyde nitreux	303
6.6 - De N₂O au diazote	307
6.7 - Des champignons dénitrifient	309
En guise de conclusion	311
CHAPITRE 7 - OXYDATIONS ANAÉROBIES DIVERSES	319
7.1 - Des accepteurs variés et inattendus	319
7.2 - Du sulfate au sulfure	326
7.3 - Biochimie de la réduction du sulfate	332
7.4 - Le fer et le manganèse comme accepteurs anaérobies	340
7.5 - Déshalogénation respiratoire - Oxyde de chlore	351
Conclusion sommaire	359
CHAPITRE 8 - L'OXYGÉNATION DES AROMATIQUES	365
8.1 - Introduction	365
8.2 - L'oxygénation du benzène	366
8.3 - L'attaque du toluène et du styrène	368
8.4 - Des oxygénases aux cibles nombreuses et variées	373
8.5 - La naphtalène dioxygénase	377
8.6 - L'abondance naturelle des phénols	<i>38</i> 2
8.7 - Dérivés nitrés	386
8.8 - Haloaromatiques	394

8.9 - Le benzoate et les halobenzoates	<i>398</i>
8.10 - Aromatiques fluorés	404
Conclusion	406
Chapitre 9 - Ouverture intradiol du cycle aromatique	413
9.1 - Rupture aérobie du cycle	413
9.2 - Voies ortho	414
9.3 - Régulateurs	422
9.4 - Voies ortho modifiées	424
9.5 - Les dioxygénases ortho	429
9.6 - Déshalogénation aérobie avec ouverture du cycle	435
9.7 - Les cyclo-isomérases	439
9.8 - Hydrolases et réductases des voies ortho	443
9.9 - Déshalogénation aérobie après ouverture du cycle	445
Conclusion	448
Chapitre 10 - Ouverture extradio - Voie du gentigate	455
10.1 - Rupture extradiol du cycle aromatique	455
10.2 - Le plasmide TOL	458
10.3 - Naphtalène et salicylate	464
10.4 - Les polycycliques	467
10.5 - Biphényle et PCB	470
10.6 - Dioxygénases de l'ouverture extradiol	476
10.7 - Aromatiques azotés	482
10.8 - Dioxines !	485
10.9 - Voie du gentisate	490
Conclusion	495
Chapitre 11 - Les aromatiques à l'abri de l'oxygène	503
11.1 - Attaque anaérobie par les dénitrifiants	503
11.2 - Benzène - toluène - éthylbenzène - crésol	507
11.3 - La voie du benzylsuccinate	512

Table des matières	797
11.4 - La déshydroxylation du cycle aromatique	516
11.5 - Les voies anaérobies du benzoyl-coenzyme A	520
11.6 - Déshalogénations aérobies utilisant le coenzyme A	523
Conclusion	<i>528</i>
Chapitre 12 - Aliphatiques et organohalogénés	535
12.1 - Les tristes marées noires	535
12.2 - Bactéries et levures sur aliphatiques	537
12.3 - L'intervention des bactéries	542
12.4 - Alicycliques et terpènes	547
12.5 - Le cytochrome P450 du camphre	550
12.6 - Dégradation anaérobie des aliphatiques	560
12.7 - Décontamination de solvants chlorés	563
12.8 - La déshalogénation et ses divers modes	568
12.9 - Déshalogénation hydrolytique des haloalcanes	571
12.10 - Le cas des 2-haloacides	575
Conclusion	580
CHAPITRE 13 - HERBICIDES - PESTICIDES - RÉCALCITRANTS	589
13.1 - Quelques aspects généraux	589
13.2 - Dégradation d'un herbicide	592
13.3 - Des herbicides chlorés	598
13.4 - Les acides phosphoniques - le Roundup	601
13.5 - Organophosphates - Parathion et autres	606
13.6 - Organochlorés - Lindane et DDT	610
13.7 - Le pentachlorophénol	616
13.8 - Carbamates et pyréthroïdes	620
13.9 - Herbicides du groupe des triazines	623
13.10 - Anilides et analogues	627
13.11 - Sulfates - Sulfonates	629
13.12 - Les peroxydases, une arme absolue ?	633
Conclusion	638

CHAPITRE 14 - LA CIRCULATION DES MÉTAUX	645
14.1 - Gérer le taux de métal	645
14.2 - Le fer - un métal essentiel	647
14.3 - Quelques métaux indispensables	653
14.4 - Métaux et pollution	657
14.5 - Le pompage du cadmium et du zinc	661
14.6 - Le contrôle du plomb	666
14.7 - La résistance au cuivre	668
14.8 - Transport par potentiel membranaire	674
14.9 - Mercure et mercuriels	678
14.10 - Résistances à l'arsenic et à l'antimoine	685
Conclusion	689
GLOSSAIRE	695
INDEX	775
TABLE DES MATIÈRES	793