Table des matières

Av	vant-	ropos	vii				
1	Introduction Matériaux et nanomatériaux : propriétés, élaboration						
	1.1	Propriétés spécifiques des nanoparticules	2				
		1.1.1 Effets de volume	2				
		1.1.2 Effets de surface	7				
		1.1.3 Effets de taille	10				
	1.2	Nécessités dans l'élaboration des nanoparticules	17				
2	L'ea	et les cations en solution	19				
	2.1	L'eau solvant, physicochimie du liquide	20				
		2.1.1 Structure électronique de la molécule d'eau	20				
		2.1.2 Structure de l'eau liquide	22				
		2.1.3 Hydratation des ions, structure des solutions	24				
		2.1.4 L'eau dans les conditions hydrothermales	30				
	2.2	Acidité et spéciation des cations en solution aqueuse	32				
	2.3	Mécanisme de l'hydroxylation des cations en solution					
		et des réactions d'oxydo-réduction	38				
	2.4	Annexe. Évaluation des charges partielles sur les atomes					
		d'une combinaison	41				
3	Cor	lensation des cations en solution : polycations,					
		anions	49				
	3.1	Hydroxylation et condensation des cations	49				
		3.1.1 Généralités sur la réaction de condensation					
		en solution	49				
		3.1.2 Les différentes classes de cations vis-à-vis					
		de la condensation	56				
	3.2	Olation et polycations	58				
	- "	3.2.1 Mécanisme et considérations structurales	58				
		3.2.2 Les polycations du chrome III	63				

	3.3	Oxolation et polyanions								
		3.3.1	Éléments du bloc p	69						
		3.3.2	Éléments de transition à haut degré d'oxydation :							
			polyoxo-métallates	75						
4	Formation des oxydes en solution : structures et mécani									
	4.1	Forma	tion du solide : aspect thermodynamique et structural .	112						
		4.1.1	Éléments divalents : Mg, Ni, Cu, Pd, Pt, Zn	113						
		4.1.2	Hydroxydes doubles lamellaires	120						
		4.1.3	Éléments trivalents	123						
		4.1.4	Éléments tétravalents et pentavalents : Si, Sb	130						
		4.1.5	Éléments de transition à hauts degrés							
			d'oxydation : V, Mo, W	138						
		4.1.6	Oxydes polymétalliques	153						
	4.2	Cinétie	que de la formation du solide et mécanismes							
		de cris	stallisation	154						
		4.2.1	Les étapes de la précipitation	155						
		4.2.2	Nucléation et croissance : énergétique							
			et dynamique	158						
		4.2.3	Mécanismes de cristallisation et évolution							
			morphologique des nanoparticules en suspension	168						
		4.2.4	Effet du chauffage micro-onde sur la nucléation							
			et la cristallisation	180						
5	Chi	Chimie et physico-chimie de surface des oxydes 185								
	5.1		ace oxyde-solution	186						
		5.1.1	Origine de la charge électrique de surface	186						
		5.1.2	Acidité de surface : modèle de complexation							
			multisite	188						
	5.2	Solvat	ation et structure de l'interface	197						
		5.2.1	Solvatation des particules	197						
		5.2.2	Interactions surface-électrolytes	199						
	5.3	Stabili	té des dispersions de nanoparticules vis-à-vis							
			régation	204						
	5.4		vité de surface : adsorption	208						
		5.4.1	Interactions électrostatiques, complexes à sphère							
			externe	209						
		5.4.2	Interactions spécifiques, complexes à sphère interne .	210						
		5.4.3	Adsorption et transferts à l'interface oxyde-solution .	219						
		5.4.4	Adsorption et énergie de surface : contrôle de la taille							
			et de la morphologie des particules par l'acidité							
			du milieu de synthèse	225						

Table des matières v

6	Alumines et aluminosilicates 6.1 Généralités							
	6.2	Hydroxylation et condensation en solution : les polycations .						
	6.3	Formati	ion des phases solides	243				
		6.3.1 6.3.2	$\label{eq:hydroxydes} \mbox{Hydroxydes et oxydes d'aluminium} .$ Aluminosilicates	244 256				
7	Oxydes de fer : un exemple de versatilité structurale 20							
	7.1							
	7.2	Formation des phases solides						
		7.2.1	Hydroxyde ferreux et dérivés oxydés : feroxyhyte et lépidocrocite	272				
		7.2.2	Composés ferriques : goethite, hématite, akaganéite .	274				
		7.2.3	Phases mixtes ferriques-ferreuses : rouilles vertes	294				
		7.2.4	et magnétite					
			et grenats	313				
8	Dioxydes de titane, de manganèse et de zirconium 33							
	8.1 Spéciation des cations Ti^{IV} , Mn^{IV} , Zr^{IV} en solution							
	8.2	Oxydes	de titane	321				
		8.2.1	Précipitation de $\mathrm{Ti}^{\mathrm{IV}}$ en milieu acide ou neutre	323				
		8.2.2 8.2.3	Transformation de titanates la mellaires Oxydation du ${\rm Ti^{III}}$ et du ${\rm Ti^0}$ en milieu acide	335				
			ou neutre	339				
		8.2.4	Synthèse du titanate de baryum $BaTiO_3$	345				
	8.3	Oxydes	de manganèse	348				
		8.3.1	Les principales phases solides du dioxyde MnO_2	348				
		8.3.2	Précipitation des oxydes de manganèse	350				
	8.4	Oxydes	de zirconium	363				
		8.4.1	Variétés cristallines de la zircone	364				
		8.4.2	Précipitation de la zircone	365				
		8.4.3	Synthèse de la zircone stabilisée	369				
Co	onclu	sion		375				
Ré	éfére	nces		377				
In	\mathbf{dex}			431				