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Farrokh Vakili (Observatoire de la Côte d’Azur)
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C. Aime, É. Aristidi and Y. Rabbia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Astronomical Imaging... Atmospheric Turbulence? Adaptive Optics!
M. Carbillet . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Introduction to Wavefront Coding for Incoherent Imaging
M. Roche . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Adaptive Optics Feedback Control
J.-P. Folcher, M. Carbillet, A. Ferrari and A. Abelli . . . . . . . . . . . . . . . . . . 93

SCIROCCO+: Simulation Code of Interferometric-observations
for ROtators and CirCumstellar Objects including Non-Radial Pulsations

M. Hadjara, F. Vakili, A. Domiciano de Souza, F. Millour, R. Petrov,
S. Jankov and P. Bendjoya . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 131

High Angular Resolution and Young Stellar Objects: Imaging
the Surroundings of MWC 158 by Optical Interferometry

J. Kluska, F. Malbet, J.-P. Berger, M. Benisty, B. Lazareff,
J.-B. Le Bouquin and C. Pinte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

Physical Models and Data Processing

Principles of Image Reconstruction in Interferometry
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Foreword

This book is a collection of 19 articles which reflect the courses given at the
Collège de France/Summer school “Reconstruction d’images – Applications as-
trophysiques” held in Nice and Fréjus, France, from June 18 to 22, 2012.

The articles presented in this volume share a common point: they all address
emerging concepts and methods that are useful in the complex process of improving
our knowledge of the celestial objects, including Earth.

In the spirit of a school, several articles underline using historical elements
how essential have been instruments of high angular resolution, mathematical
description of the observations, transmission of knowledge and reliance on long
term research projects to our current representation of the Universe. Many articles
can be read as tutorials of the specific research field they address.

The book contains three parts.
The first part is titled “Physical bases and new challenges in high res-

olution imaging”. In these articles, the strategy followed for attacking such
challenges relies on a careful description of the electromagnetic waves emitted by
the celestial sources, and of their perturbations. This part draws a picture of
some of the high angular resolution instruments of the near to far future, and of
the issues to overcome to make this picture real. It deals with hypertelescopes,
optical interferometry, adaptive optics, wavefront coding, and with polychromatic
astrophysical models.

The point of view of the articles of the second part, titled “Physical models
and data processing”, is twofold. Of concern to these articles are not only
the data description using physical modeling of electromagnetic waves, but also
the resulting data processing. These articles address issues such as sampling,
information modeling and restoration in radio and optical interferometry, including
hypertelescopes.

The third part is titled “Statistical models in signal and image pro-
cessing”. These contributions cover past and recent developments in multires-
olution analysis, Bayesian modeling, sparsity and convex optimization. The last
three papers deal specifically with hyperspectral data of Earth and of the deep
Universe, images recorded at hundreds of wavelengths resulting in massive data.
This last part illustrates the benefits brought by a careful data processing, and
comes perhaps in contrast to the conventional wisdom which claims that too much
information kills information.

c© EAS, EDP Sciences 2013
DOI: 10.1051/eas/1359000
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While the volume is divided in three parts to clarify which topics are cov-
ered and where, the issues addressed in the first and third parts are in reality
connected by the observation instruments. These connections are mentioned at
various places, and especially in the articles of the second part, which is a hyphen.
As it goes, the alert reader will notice many more such connections.

Obviously, the successful realization of more powerful observation technologies
and the best extraction of the astrophysical information encapsulated in their data
involve the joint expertise of several research communities. The various articles
collected in this book may contribute to such a synergy.



Physical Bases and New Challenges

in High Resolution Imaging





New Concepts in Imaging: Optical and Statistical Models
D. Mary, C. Theys and C. Aime (eds)
EAS Publications Series, 59 (2013) 5–23

HYPERTELESCOPES: THE CHALLENGE
OF DIRECT IMAGING AT HIGH RESOLUTION

A. Labeyrie1

Abstract. Sparse optical interferometric arrays of many apertures can
produce direct images in the densified-pupil mode, also called “hy-
pertelescope” mode. Pending the introduction of adaptive optics for
cophasing, indirect images can also be reconstructed with speckle imag-
ing techniques. But adaptive phasing is preferable, when a sufficiently
bright guide star is available. Several wave sensing techniques, by-
products of those used on monolithic telescopes for some of them, are
potentially usable. For cophased direct images of very faint sources
in the absence of a natural guide star, a modified form of the Laser
Guide Star techniques demonstrated on conventional and segmented
telescopes is described. Preliminary testing in laboratory suggests fur-
ther investigation. Recorded images, assumed co-phased, are also im-
provable post-detection with optical aperture-synthesis techniques such
as Earth rotation synthesis, where data from successive exposures are
combined incoherently. Nevertheless, the gain becomes modest if hun-
dreds of sub-apertures are used. Image deconvolution techniques are
also applicable, if suitably modified as demonstrated by Aime et al.
(2012), and Mary (2012). Their modified deconvolution algorithms
can extend the Direct Imaging Field (also called Clean Field) of hyper-
telescopes. More sub-apertures at given collecting area, implying that
their size is reduced, improve the direct-imaging performance. The pre-
dictable trend thus favors systems combining hundreds of sub-apertures
of modest size, if workable designs can be evolved. One such design, the
“Ubaye Hypertelescope” entering the initial testing phase in the south-
ern Alps, has a fixed spherical meta-mirror with a 57 m effective aper-
ture, expandable to 200 m. Preliminary results suggest that larger ver-
sions, whether spherical or active paraboloidal, can reach a kilometric
aperture size at terrestrial sites having a suitable concave topography.
In space, hypertelescope meta-apertures spanning up to 100 000 km
are in principle feasible in the form of a flotilla of mirrors, driven by
micro-thrusters or by the radiation pressure of the Sun or lasers.

1 Collège de France and Observatoire de la Côte d’Azur, 06460 Caussols, France

c© EAS, EDP Sciences 2013
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1 Introduction

In the way of improved astronomical observation, the time has come for many-
aperture optical interferometers providing direct high-resolution images. Most
efficient perhaps will be the “hypertelescope” approach, using a sparse array of
many sub-apertures and a densified pupil (Labeyrie 1996; Lardiere et al. 2007;
Aime et al. 2012). Various opto-mechanical architectures and design concepts
have been considered for versions on Earth and in space. Following the testing of
a 3-mirror prototype with 9 m spacings at Haute-Provence (Le Coroller 2012), a
larger instrument installed in the Ubaye range of the southern Alps has reached
the testing stage (Labeyrie 2012). I describe some of the challenges raised by
the direct and indirect production of hypertelescopic images, their phasing with
adaptive optics and the observability of faint sources with a modified Laser Guide
Star.

2 The basic optics of hypertelescopes

Among the various forms of optical interferometry which are considered for en-
hancing the resolution of astronomical observations, there had been some debate
on the respective merits of pupil-plane vs. image plane arrangements. And on uni-
axial vs. multi-axial devices. The hypertelescope concept involves a multi-axial
beam combiner and densifier which can work either in the pupil or image planes,
as well as through optical fibers where the notions of pupil and image vanish, as
illustrated by Mourard et al. (2012) and Tarmoul et al. (2009). Pupil densifica-
tion was already used by pioneer A.A. Michelson in his 20 feet interferometer at
Mt Wilson, and the resulting intensification of the two-aperture fringe pattern on
his retina, about 1600x at the full baseline setting, probably contributed to his
observing success.

Since described in Labeyrie 1996, the hypertelescope principle has been dis-
cussed by different authors (Tarmoul 2009; Lardiere et al. 2007; Bouyeron et al.
2012; Patru et al. 2011; Aime et al. 2012). Various optical architectures can
be adopted, one of which is a N-aperture Fizeau interferometer equipped with a
pupil densifier, typically a small or even micro-optical accessory which can fit near
the focal camera. Its effect is to shrink the diffractive envelope of the combined
image and thus concentrate light into the central part of the interference func-
tion, thereby intensifying the image without affecting its pixel sampling. This is
achieved at the expanse of the Direct Imaging Field of view, also called “Clean
Field”, which becomes shrunk down to λ/s, in terms of angular sky coverage, if s is
the minimal spacing of the sub-apertures. However, it now appears that suitably
modified deconvolution techniques can retrieve in part the missing field (Mary,
this volume).

At given collecting area, many small sub-pupils improve the imaging perfor-
mance, with respect to fewer larger ones, both for direct imaging and for im-
age reconstruction by aperture synthesis with a varying or rotating aperture pat-
tern. The simple way of producing direct images which uses a Fizeau-type beam
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combiner, without pupil densification, does not exploit efficiently the exposures
since much light is diffracted outside of the central interference peak in the spread
function. The recorded pattern can be intensified by densifying the pupil, and con-
siderably so if the aperture is highly diluted. In the absence of adaptive phasing,
and in the use of “speckle interferometry” or “speckle imaging” for reconstructing
the image as discussed in Section 2.2, such densification improves the signal/noise
ratio and therefore the limiting magnitude. With adaptive phasing, generating a
dominant peak in the N-aperture interference function, pupil densification is ob-
viously beneficial for thresholded detectors, such as Michelson’s retina and some
infra-red cameras, since it can bring the level of interference peaks above the
threshold.

Among the possible opto-mechanical design concepts for hypertelescopes, there
are: a) arrays of telescopes having coudé foci, whether mirror-based or fibered,
with optical delay lines feeding a beam-combiner; b) simplified designs resembling a
giant sparse telescope, i.e. similar to the Arecibo radio-telescope although utilizing
a sparse primary mirror, spherical and static, and not requiring delay lines since the
moving focal combiner maintains the balance of all optical path lengths; c) Active
versions of the latter ensuring a paraboloidal figure for the primary meta-mirror
(Arnold et al. 1996). Terrestrial versions of types b and c, called Carlina, require
a concave site for hosting the sparse mirror, and the absence of delay lines favors
the use of numerous apertures, hundreds to thousands, having the potential of
producing information-rich direct images. In space, versions as large as 100 000 km
are expected to become feasible in the form of a mirror flotilla. Laser-trapped
versions are proposed.

2.1 Imaging performance

At radio wavelengths, interferometric arrays of antennas have achieved increasing
success by using tens, hundreds, and thousands of elements. More than 10 000 are
now considered in some projects. A similar trend is also expected at optical wave-
lengths, following the science gains recently demonstrated with multi-telescope
interferometers combining up to 6 beams (VLTI, CHARA...). These begin to pro-
duce reconstructed images, using aperture synthesis techniques analogous to those
developed for radio interferometry. A basic difference, however, between the ra-
dio and optical versions of aperture synthesis currently utilized results from the
incoherence of the optical data recorded sequentially at different times, with dif-
ferent aperture patterns. These optical exposures cannot be combined coherently
for image reconstruction, since the phase distribution is missing. The incoherent
combination gives a reconstructed spread function which is distorted and has a
degraded dynamic range, compared to that provided by more sub-apertures, pro-
viding the same collecting area but simultaneously exploited for direct imaging. At
radio wavelengths instead, the heterodyne detection can provide exposures shorter
than the coherence time, and their complex amplitudes mapped at different times,
with different aperture patterns, can be added for a coherent form of aperture
synthesis providing a true synthetized aperture and the corresponding image.
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Conceivably, exposures as short as a pico- or femtosecond may become feasible
at the combined focus of an optical interferometer, with an heterodyne beat to
visualize the phase and thus obtain the complex amplitude map (Riaud 2012).
Indeed, any incoherent source becomes spatially coherent if suitably filtered and
observed with a sufficiently short exposure, shorter than the coherence time de-
fined by the filter’s bandwidth. Changing the aperture pattern and repeating the
procedure would then provide a summed map of complex amplitudes, identical
to that provided by the global aperture thus synthesized. And the intensity map
which can be calculated is the object’s image, convolved with the intensity spread
function.

Although typically achieved at radio to sub-mm wavelengths, this has not yet
been possible at wavelengths shorter than 10 microns. A reason is the very small
number of photons per spatio-temporal field mode, at visible and near-infrared
wavelengths, from usual astrophysical sources. If the collected starlight can be
dispersed into a large number of narrow wavelength channels, each receiving a
properly tuned heterodyne “clock” beam, and equipped with an ultra-fast detector,
it could be attempted to analyze the data statistically to overcome the low photon
count per mode. Whether this would theoretically improve the degraded form of
aperture-synthesis process heretofore used at optical wavelengths remains to be
explored. The practical implementation appears difficult.

It is therefore of interest to build efficient forms of many-aperture interferom-
eters, forming a sparse meta-aperture much larger than feasible with a monolithic
mirror or an “Extremely Large Telescope” (ELT) mosac mirror, the size of which
is limited by the pointable supporting mount. On Earth, the size of such meta-
apertures may likely reach 1000 or 1200 m if built somewhat like the Arecibo radio-
telescope within a natural depression. Larger versions, spanning perhaps 10 km,
can also be considered, but in the absence of sufficiently wide and deep depres-
sions, long delay lines would be needed and their high cost may constrain the
sub-aperture count. Also, the implementation of laser guide star systems, needed
for cophased direct imaging on faint sources, may be more difficult with such delay
lines and complex coudé trains.

In space, the technical challenge is very different, and baselines spanning
100 000 km appear feasible at some stage (Labeyrie 2009). First-generation pro-
posals for hypertelescope flotillas of mirrors have been submitted to the space
agencies NASA and ESA (Labeyrie 2009). A low-cost version involving thousands
of inch-sized mirrors, accurately controlled by a pair of laser beams forming a
“standing wave trap”, has also been conceived and subjected to laboratory tests
in high vacuum (Labeyrie et al. 2010).

2.2 Pending phasing: The speckle imaging mode of hypertelescopes

Pending adaptive phasing, early science can be performed with a hypertelescope
using speckle interferometry and speckle imaging with triple correlations (Lohmann
et al. 1983; Tcherniavski et al. 2011). This has been simulated for the hypertele-
scope case by Surya et al. (2012) who obtained encouraging results. In monolithic
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telescopes, higher limiting magnitudes, beyond mv = 18, have been achieved with
speckle interferometry than with adaptive optics using a natural guide star, the
magnitude of which rarely exceeds mv = 13. Pierre Riaud (private communica-
tion) suggests that the limiting magnitudes are in fact the same in both modes,
a point which deserves verification. If speckle imaging proves more sensitive in
hypertelescopes, it may remain of interest, even after adaptive cophasing becomes
installed, on rather faint and simple objects not located within the isoplanatic
patch of a brighter star. But Laser Guide Star systems, if they can be imple-
mented on hypertelescopes for cophasing on faint sources (section below), should
become preferable in all cases.

Does pupil densification improve the speckle interferometric signal/noise ra-
tio and limiting magnitude? In monolithic telescopes, the photon-limited signal-
to-noise ratio in speckle interferometry is classically known to be S/N = 1/2
(1 + k)−1NphsN

1/2
p N

1/2
s (Dainty 1974), if Nphs is the number of star photons per

speckle, k the number of photons from the sky background and Np the number of
recorded short exposures. Ns = (D/r0)2 is the number of speckles per exposure,
if D is the aperture diameter and r0 Fried’s radius describing the size of phase
cells. In a Fizeau interferometer having a meta-aperture of size Dm, containing
Na sub-apertures of size d, here assumed to be distributed non-redundantly and
to match the size r0 of seeing cells, the speckle count within the image’s diffractive
envelope is now Nsa = (Dm/r0)2 = (D/d)2 = Ns(Dm/D)2. The speckle count
thus increases quadratically with the array size Dm. Densifying the pupil by a fac-
tor γd shrinks the speckle envelope in the same ratio, and therefore also decreases
the number of speckles Ns as 1/γ2

d. Energy being conserved, the number of pho-
tons per speckle correspondingly increases, and eventually, at full densification,
reaches that of a monolithic aperture having the same collecting area. According
to Dainty’s expression, pupil densification thus increases the signal/noise ratio, and
matches that of a monolithic aperture having equivalent collecting area if also oper-
ated in the speckle interferometry mode. But it must be verified whether Dainty’s
expression remains applicable in the hypertelescope situation. In practice, pupil
densification also relaxes the monochromaticity requirement, down to the mono-
lithic value, thus also further enhancing the photon count per speckle Nphs and
therefore the S/N ratio, unless perhaps if many narrow wavelength channels can
be simultaneously exploited in parallel by a photon-counting camera. The effect
of densification on the signal/noise ratio of “speckle imaging” reconstructions with
triple correlations of recorded images also deserves to be explored.

2.3 Adaptive phasing

Adaptive phasing is highly desirable when a guide star, whether natural or artifi-
cial, is available near the observed source. Commercial deformable mirrors such as
Boston Micromachines’ MEMs with tip-tilt-piston facets appear suitable and may
be installed at the exit of the pupil densifier. The usual types of wave sensor, such
as the Shack-Hartmann or curvature sensor, serving in conventional telescopes,
however, are not suitable since the measurements of local slope or curvature errors
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in the wavefront assume its continuity to reconstruct it. Other methods which
appear suitable are:

a) Hierarchical phasing (Pedretti & Labeyrie 1999);
b) A modified version of the Shack-Hartmann method, with triplets of adjacent

sub-apertures feeding each lenslet, with overlap, to provide polychromatic
interference honeycombs from which phase maps can be derived (Cuevas
2007);

c) The dispersed-speckle method (Borkowski & Labeyrie 2004; Martinache
2004), specifically developed for hypertelescopes;

d) The chromatic phase diversity method (Mourard et al. 2012);
e) The modified phase diversity method of Bouyeron et al. (2012) using a

genetic algorithm.

Among these methods, b) is analogous to Shack-Hartmann and curvature sensing
in the sense that it reconstructs the global map of piston errors from local slopes
measured among clusters of adjacent sub- apertures. A difference, however, is that
the local slope signal is derived from the position of polychromatic honeycomb-like
interference patterns. The guide star should not be much resolved by the clusters
of subapertures, but can be resolved by the global aperture. Methods a, c, d and e
exploit interference speckles, which contain contributions from all baselines, short
and long. They are therefore affected if the star is resolved by the latter.

2.4 Principle of a “Hypertelescope Laser Guide Star” (H-LGS) system

For observing faint sources, providing less than a few photons per seeing cell and
spectral channel in exposures shorter than the turbulence lifetime, Laser Guide
Stars have been successfully used with adaptive optics on monolithic or mosaic
telescopes, and also provide the best hope of cophasing terrestrial hypertelescopes.
If somewhat modified, as briefly suggested in Labeyrie (2008), the Laser Guide
Star systems developed for monolithic apertures may also become suitable for the
sparse apertures of hypertelescopes. As shown in Figure 1, Young’s fringes can
be projected by a sodium laser toward the sodium layer at 92 km altitude, using
three or more apertures distributed like those of the hypertelescope, or actually
belonging to its mirror array. Back-scattered light returning through the same
apertures carries information on the cophasing errors.

The intensity spread functions of a multiple aperture for the up-going beam
reaching the sodium layer and the down-going light back-scattered through the
same multiple aperture are identical and similarly oriented if seen from below,
while the down-going geometrical imaging of the spatially incoherent apparent
Fizeau pattern in the sodium layer is inverted (Fig. 1). The double-pass pattern
recorded by the camera is therefore a convolution of the single-pass Fizeau intensity
pattern Ih(x, y), projected at altitude hs within the sodium layer, with an inverted
copy of itself Ih(−x,−y).

I(x, y) = Ih(x, y)⊗ Ih(−x−, y). (2.1)
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Fig. 1. Principle of H-LGS and coordinate symmetry. A sodium laser source S is pro-

jected by lens L, carrying a multi-aperture mask, toward the sodium layer Na, where

interference fringes are formed within the diffraction envelope. The resonantly scattered

light is made incoherent by the fast motion of sodium atoms, and part of it propa-

gates back through the sub-apertures toward S, where a camera (not shown) records the

double-pass interference pattern. Arrows indicate the coordinate symmetry, affected by

the inversion of the lens image.

Phase information can be extracted from the recorded fringe exposure by calcu-
lating its two-dimensional Fourier transform, which is the product of the pupil’s
complex autocorrelation with the inverted copy of it, which is also its complex
conjugate. The product is therefore a real function, and its modulus is the square
of the pupil’s single-pass autocorrelation function modulus:

I(u, v) = AC[Ph(u, v)]AC[Ph(−u,−v)] (2.2)
= AC[Ph(u, v)]AC[Ph(u, v)] (2.3)
= |AC[Ph(u, v)]|2 (2.4)

where Ph(u, v) describes the complex pupil carrying the single-pass phase error,
and AC is the auto-correlation. If there are redundant baselines in the cluster of
sub-apertures, each corresponding auto-correlation peak contains a sum of complex
terms, and their modulus is consequently sensitive to any phase difference among
these terms, thus allowing their measurement.

This method differs from those developed by Bonaccini (2004) and by Rabien
et al. (2006) for reducing the LGS cone effect in a large telescope. The H-LGS
principle is more related to the analysis of Mavroidis (1991), showing in a differ-
ent context that retro-propagation through the same cluster of sub-apertures and
seeing preserves phase information.

The typical fringe period in the sodium layer is of the order of 6 mm, within
a diffractive envelope spanning 500 mm if the emitting sub-apertures are 120 mm
wide, assumed smaller than Fried’s r0 value. If observed with temporal resolution
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longer than microseconds, the light resonantly backscattered by the sodium atoms
appears to be spatially incoherent, owing to the Doppler spread induced by their
fast Brownian motion. The pattern thus projected onto the sodium layer, fringed
and serving as the artificial guide star, jitters in response to atmospheric phase
shifts in the up-going beams. Nevertheless wave sensing in the returning beams
remains possible with methods such as a) and b) mentioned in Section 2.3. Indeed,
the incoherent fringed pattern, as seen in the sky through any cluster of adjacent
sub-apertures in the hypertelescope array, gives a convolved image which retains
appreciable fringe contrast, particularly if the aperture pattern is periodic or if
the same cluster serves for the up- and down-going laser light. Also, the cluster
should have more than three sub-apertures, so that at least one phase error can be
calculated. The smallest type of cluster meeting these conditions is a quadruplet of
sub-apertures, and they should preferably be adjacent to minimize anisoplanaticity
effects.

If both wavelengths of the sodium doublet are emitted by the laser, and if
the piston errors are pre-adjusted to be less than the doublet’s coherence length,
about 100 microns (instead of 100 mm for the Doppler-shifted back-scattered light
from a single line), then piston errors can be derived and mapped for adaptive
correction.

However, this is affected by the “cone effect”, i.e. the propagation mismatch of
light rays from the artificial star and the observed natural source, becoming par-
ticularly strong with a kilometric meta-aperture. To avoid it, each sub-aperture
should capture back-scattered laser light which includes rays co-propagating with
those from the observed source, thus crossing the same atmospheric turbules which
affect their phase. The condition can be met by using in parallel many such artifi-
cial guide stars, arrayed within the sodium layer as a projection of the hypertele-
scope’s aperture pattern toward the observed celestial source. If Fried’s radius r0

and the sub-aperture size d are such that r0 = d = 25 cm, then the size of the pro-
jected Airy spots in the sodium layer matches that of the sub-apertures. Starlight
crossing the sodium layer through these laser spots enters the corresponding sub-
apertures, together with some of the back-scattered laser rays which follow the
same path through the atmosphere and are thus affected by the same turbulence.
In addition, since each laser-illuminated spot in the sodium layer must contain
interference fringes, it must also receive coherent laser light from a few other sub-
apertures.

This is achievable if their common laser source is a point source located some
distance above the science camera, suspended in the focal plane of the meta-
mirror, so that it be imaged by it at the sodium layer. As sketched in Figure 2,
the arrangement is parallelized by installing an array of such laser sources, each
illuminating a cluster of sub-apertures which projects a separate laser spot into
the sodium layer.

For connecting the local phases thus obtained and deriving a global map of
the starlight phases at all sub-apertures, the clusters have to contain at least four
sub-apertures and to be partially overlapping. The map calculation has to assume
that the atmosphere’s isoplanatic angle i0 is larger than the apparent spacing s/hs
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Fig. 2. Example of Hypertelescope Laser Guide Star system: segment M1i of the meta-

mirror M1 is focusing onto the sodium layer (not shown, as it would be located far at left

on a scale drawing) the image S’i of a point source Si of laser light, located slightly above

F1, the focal image of the observed star. The exact transverse position of segment M1i

is such that the reflected laser ray is directed toward the observed star, thus following

in the opposite direction the propagation path of its ray reaching the segment. The

same laser source Si also illuminates at least three additional M1 segments, which focus

the corresponding beams at the same S’i position, thus generating interference fringes

within the diffractive envelope in the sodium layer. The arrangement is parallelized with

additional laser sources, projecting into the sodium layer an array of fringed spots. The

array pattern is identical to M1’s sub-aperture pattern, and the clusters of M1 elements

focusing each S’i spot are partially overlapping so that the measured fringe phases be

propagated for building a global map of phase errors affecting the observed source’s image.

The multiple laser source, where each laser illuminates a single cluster of M1 segments,

is here implemented with a single laser illuminating a concave micro-lens array, next to

a group of four or more adjacent lenses and facing wedges.

of the laser spots in the sodium layer, if s is the sub-aperture spacing, matching the
laser spot spacing, and hs the altitude of the sodium layer. The spacing matching
the condition is then s = hsi0, typically amounting to 10 m with 20′′ isoplanatism,
and then implying Na = 10 000 sub-apertures within a kilometric meta-aperture.
With such large numbers, the needed laser power may become a practical challenge
since a few tens of watts are needed per sub-aperture.

I made a simple laboratory experiment, sketched in Figure 3, to verify the
phase sensing scheme with a single cluster of sub-apertures. A laser source is fo-
cused toward a rotating reflective diffuser, simulating the sodium layer, through a
multiple aperture. The pattern of backscattered light returning through the same
multiple aperture and lens is recorded by a camera, virtually located in the plane of
the laser source, but separated by a beam splitter. Rotating the diffuser simulates
the motion of sodium atoms in the atmospheric sodium layer, thus smoothing the
speckled backscattered light reaching the aperture mask and causing the apparent
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Fig. 3. Laboratory simulator of the H-LGS scheme. Laser light is focused toward a

pinhole, itself relayed by a lens toward a reflective diffuser, which can be rotated to

simulate the motion of sodium atoms in the atmospheric sodium layer. A multi-aperture

mask inserted near the lens simulates an array of hypertelescope sub-apertures, and a

cluster such as the shown rhombus can be selected with a second mask. A bumpy glass

plate near the sub-apertures produces phase errors. The back-scattered light returning

from the diffuser and through the same mask is recorded by a camera, through a beam-

splitter.

fringe pattern on the rotating diffuser to become spatially incoherent, which re-
duces somewhat the fringe contrast in the recorded long exposures. Phase errors,
introduced on sub-apertures by a distorted glass plate, are measured by Fourier
analyzing the recorded fringe patterns.

Figure 4 shows the recorded exposures. Appreciable contrast is retained in the
fringe patterns when the diffuser is rotated. The patterns are seen to be influenced
by the phase error, as it is also apparent in their calculated Fourier transforms
by comparing the intensities of the four median peaks, each involving a pair of
redundant baselines.

2.5 Phase determination with overlapping clusters of four subapertures

The laboratory simulation has confirmed that the recorded fringe pattern is in-
fluenced by phase errors, using either a rhombus-shaped cluster of four adjacent
sub-apertures among a triangular array, or a centered-hexagon cluster of 6+1 sub-
apertures. Further testing in the laboratory is undertaken by Paul D. Nuñez for
a more realistic simulation and hardware development, toward some real testing
envisaged with the “Ubaye Hypertelescope” prototype and the development of
a working system. Its optical scheme, providing from a single laser source the
required multiplicity of laser beams, is sketched in (Fig. 2). The design can be
downsized for laboratory simulations.

The laboratory simulation is complemented by numerical simulations and data
analysis that will quantify the accuracy of the phase determination accross the ar-
ray in the presence of non-uniform illumination in the sub-apertures, photon noise,
etc. Paul D. Nuñez has used the formalism described in the preceeding section to
perform numerical simulations of similar data to that presented in Figure 4. An
example is presented for illustrative purposes in Figure 5. The top and bottom
set of images differ from each other by a phase difference introduced in one of the
four sub-apertures.
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Fig. 4. Exposures obtained with the rhombus cluster of four sub-apertures and different

phases errors. The top left exposure involves a static diffuser and no phase error. The

middle row involves the rotating diffuser and shows the effect of various phase errors

on the long-exposure pattern. The bottom row shows the corresponding Fourier trans-

forms, where the median peaks generated by each redundant pair of baselines have their

intensities influenced by the phase errors.

2.5.1 Deriving the phase errors

With a rhombus cluster of sub-apertures, three of the phase values are known or
can be taken as zero if image motion is accepted, and the fourth has the unknown
value φ4. In the complex autocorrelation of the pupil, the peak related to baselines
2-3 and 1-4, for example, has a value 1 + eiφ4 , and its square modulus I14 =
(1 + eiφ4)(1 + e−iφ4) = 2(1 + cos(φ4)) is the modulus of the corresponding peak
observed in the calculated Fourier transform of the camera image. Its value varies
from 0 to 4. The central peak’s modulus is I0 = 42 = 16. The unknown phase φ4

is thus determined as: φ4 = ± arccos(I14/2− 1) = ± arccos(8I14/I0 − 1).
The sign ambiguity is resolvable by trial and error, in one or two steps of piston

correction, or by a phase diversity method, using a second camera exposure with
a known amount of defocus, achieved by range-gating laser pulses to select back-
scattered light from a different sub-layer of the sodium layer. Pierre Riaud suggests
to record a second image separated with a beam splitter, and where a known phase
shift is added. For increased sensitivity, many such layers can be simultaneously
observed in separate temporal channels. More than four apertures can presumably
be used in a cluster, although the phase extraction is more elaborate with more
redundancy, i.e. if more than two baselines contribute to each Fourier peak, as it
is the case for a centered hexagon.
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Fig. 5. Numerical simulation, made by Paul D. Nuñez, of fringes (left) and their Fourier

transform (right, and in square root scale for better visibility) as would be obtained

with a laser guide star. These correspond to four sub-apertures arranged in a rhombus

pattern. The two sets of images differ by introducing a phase delay of PI/2 in one of the

sub-apertures.

2.6 Deconvolution of phased images

Image deconvolution has been fruitfully used in different situations of astronom-
ical imaging, particularly with radio-interferometers and other situations where
the spread function has numerous and strong sidelobes, as is the case with in-
terferometers containing few apertures, or when dealing with highly contrasted
sources, such as a star and its planets. Aime et al. (2012) and Mary (this vol-
ume) have began exploring the case of hypertelescope images. Because of the
pseudo-convolution which accounts for image formation in this case, they had to
modify the established deconvolution methods and obtained encouraging results.
An unexpected gain has been the retrieval of sources located outside of the “Direct
Imaging Field”, also called “Clean Field”. Further work toward characterizing the
potential of these methods will be beneficial for assessing the science program of
large hypertelescopes (section below). Like in the case of speckle imaging (section
above), the effect of the pupil densification factor on the signal/noise ratio, using
detectors which are photon-limited or not, should also be analyzed.

Another aspect that can be studied with deconvolution is the dynamic range.
The array configuration has an effect on the dynamic range of the direct image
(Lardiére et al. 2007), and some configurations may be better than others in
this respect. However, it is not known if this will remain true in the deconvolved
images. This is one of the issues that will start to be addressed in an upcoming
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paper that deconvolves simulated images of Betelgeuse (Patru et al. 2013 in prep.).
Paul D. Nuñez, in collaboration with David Mary, Fabien Patru and Claude Aime
are making a more systematic study of these questions.

3 Construction of the “Ubaye Hypertelescope” prototype

Following more than a decade of analysis and simulation by various authors, to-
gether with laboratory testing, the direct-imaging performance and sensitivity
gain foreseen for hypertelescopes has prompted our group to build two prototype
versions of a Carlina hypertelescope: 1) a first prototype at Haute-Provence obser-
vatory, utilizing a tethered balloon to carry the focal optics and camera 35 m above
a triplet of mirrors spaced 9 m apart (LeCoroller et al. 2012); 2) and then the
larger “Ubaye hypertelescope” prototype utilizing a suspending cable, stretched
across a deep valley in the Ubaye mountains of the southern Alps to carry a focal
gondola 100 m above a 57 m meta-aperture, expandable to 200 m with potentially
100 or more mirror elements (Labeyrie et al. 2012).

3.1 Opto-mechanical concept and design

Among the various possible architectures for Earth-based hypertelescopes, flat or
concave, the Arecibo-like concept involves a large fixed and spherical concave meta-
mirror focusing images toward one or more gondolas driven along the focal surface.
It does not require delay lines and thus favors the use of numerous sub-apertures, in
the form of mirror segments sparsely arrayed across the large “meta-mirror”. For a
given collecting area, a large number of small apertures are preferred to fewer large
ones, in accordance with the theoretical results indicating that the direct-imaging
performance improves markedly with the number of sub-apertures. Such opto-
mechanical designs are called “Carlina”, name of a large alpine thistle flower which
is stem-less and contains hundreds of smaller flowers within its “meta-flower”.

As previously described (Labeyrie et al. 2012), the optical train of the “Ubaye
hypertelescope” has a fixed, sparse and spherical M1 primary mirror. It also has
a suspended focal gondola, accurately driven by six oblique tethers to track the
star’s image. It contains a spherical M2 mirror at the best focus within the caustic
surface, a strongly aspheric M3 mirror located in the pupil plane, and additional
lenses for densifying the pupil. An optional flat coudé folding mirror addresses a
small collecting telescope located in the North-facing slope at the polar projection
of M1’s curvature center C1.

Following the optical design study by André Rondi, further developed by
Rijuparna Chakraborthy, the concept has been also analyzed by Enmark et al.
(2011) who included a detailed model of the gondola’s drive, including the ef-
fect of wind disturbances. A price to be paid for the optical simplification of the
Carlina design, with respect to hypertelescopes using delay lines, is the pupil drift
occurring within the gondola as it tracks the star, while keeping its optical axis
aligned with it. This can be accommodated by moving an optical element within
the gondola, whether passively with a pendulum drive such as adopted for the
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Haute-Provence prototype, or actively with for example a motorized version of
it. Another possibility is the use of a photo-activated pupil densifier driven by
laser beams received from each M1 mirror. The latter putative type of integrated
“pupil-tracking densifier” can use photo-active materials such as a thermoplas-
tic/photoconductive film stack (Crandall et al. 1985) where the incident array
of projected laser spots reversibly imprints micro-lenses, enabling thus to follow
the drifting motion of the laser spot array. Variants with photo-refractive films
may also be considered. Pupil densifier types using a single micro-lens array, as
described in Pedretti et al. (1999), are particularly suited for incorporating such
devices.

3.2 Experience gained with “Ubaye Hypertelescope”

As described in Labeyrie et al. (2012), the construction of the “Ubaye Hypertele-
scope” prototype since 2011 in the mountain valley at 2100–2300 m altitudes has
raised unusual challenges, in comparison with those experienced when building
interferometers of the previous generation. Both the optical and mechanical con-
cept were simplified, but unexpected issues were met, such as the manipulation of
long cables and their protection from avalanches and tree branches, the invasion
by sheep flocks tangling their legs in wires, and the colonization of mirror sup-
ports by nesting wasps. Also, part of the site being within the Parc National du
Mercantour, it has been important to protect birds from collisions with the cables
(particularly the Black Grouse Lyurus tetrix and the large endangered Bearded
Vulture Gypaetus barbatus). Some team members expressed fears of attacks by
wolves which are present at the site.

For an optimal insertion of the M1 locus in the terrain topography, its mapping
has been done with GPS/RTK techniques approaching decimetric accuracy by
Loic Evrard and Marion Gaudon (Institut Geographique National), and pursued
by Martine Roussel and Jerome Maillot, who also used a laser theodolite. Remi
Prudhomme has designed and assembled the driving electronics and the extended
wifi link between its elements, located together with the winches a few hundred
meters apart. Denis Mourard has tested the system and written the high-level
control code based on the spherical trigonometric model. He has been able to
observe the focal gondola’s stellar tracking motion with the coudé telescope and
verify its accuracy, expected to reach 1mm during typical good observing nights
where wind velocity is low.

We have installed a pair of mirrors on stiff tripods, 16 m aprart, for assessing
the system with fringes on a bright star. This has not yet been achieved, but no
major problem has been identified. We have developed techniques for the optical
alignment, including the acquisition of the coudé beam toward the 20 cm collecting
telescope and the gondola’s drifting attitude which must be controlled in addition
to its drifting position.

With the heavy snow and difficult accessibility in wintertime, it is expected
that remote observing will become possible at a later stage, without any human
attendance.
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3.3 Spherical or paraboloidal meta-mirror?

The LOVLI concept for a Moon-based interferometric array proposed by Arnold
et al. (1996) involved a sparse and active paraboloidal meta-mirror, the seg-
ments of which were controlled by actuators to keep the paraboloid axis pointed
toward the source being tracked. Also, a larger variant of the Arecibo radio-
telescope, the 500 m FAST radio-telescope becoming built in China, has an active
paraboloidal mirror. Its shape is dynamically adjusted by actuators so as to remain
paraboloidal while its axis direction tracks the observed source.

A paraboloidal design comparable to the LOVLI is now studied by Yves Bresson
as a possible future upgrade for Ubaye Hypertelescope. His initial ray-tracing
analysis with Zemax code indeed suggests that the spherical meta-mirror, once
equipped with a few actuators on each segment, can be re-shaped into a paraboloid
by computer commands in a matter of minutes and reversibly. The shifting also re-
quires removing the focal corrector of spherical aberration needed in the spherical
case.

The old controversy on the merits of paraboloidal and spherical telescopes,
correctible by Schmidt plates or smaller elements near the focal plane, suggests
that each mode has specific advantages and drawbacks. For example, the focal
optics is simpler in the paraboloidal case, especially if there is no coma corrector.
But, with a spherical M1, its static geometry and the multi-gondola option for
simultaneous observations in widely separated fields may impact the cost and sci-
ence output. Among the comparison elements deserving further study are: 1) the
cost of active M1 segments, vs. that of spherical aberration correctors in multiple
gondolas, and: 2) the field-of-view coverage achievable with coma correctors in
the single focal gondola of a parabolodal meta-mirror, vs. that achievable in each
gondola exploiting a spherical M1. In both cases, coma correction can be extended
with local correctors within each field channel covering the diffraction lobe of the
sub-aperture.

3.4 Science capabilities

In addition to stellar physics, with spatio-spectral direct imaging on resolved stars
and their environment, a challenging related possibility is the production of transit
images when an orbiting exo-planet crosses the star’s apparent disk. Such displays
should be reasonably contrasted if there are many apertures and if the planet is
resolved or nearly so. They are potentially easier to observe than the presence of
the same planets when not transiting. In the latter case, advanced coronagraphic
techniques are needed to evidence the comparatively faint planet surface. In the
limit case of a planet just entering transit, or emerging from it, bright refractive
arcs are also likely observable, such as seen during the recent Venus transit across
the Sun. This should provide valuable opportunities to probe spectroscopically
the exoplanet’s atmosphere thus sampled by the star’s light at grazing incidence,
as needed for searching bio-signature molecules (Leger et al. 2011).

But the large gain in limiting magnitude expected with hypertelescopes, es-
pecially when equipped with a Laser Guide Star, potentially brings a diversity of



20 New Concepts in Imaging: Optical and Statistical Models

galactic and extra-galactic sources within observing reach: Active Galactic Nuclei
and their fast-orbiting central stars giving information on the mass of a central
dark hole, jet structures of galaxies or QSOs, and gravitational lenses.

4 Feasibility of 1000–1200 m Carlina hypertelescopes on Earth

The preliminary experience gathered while building Ubaye Hypertelescope already
suggests that much larger versions can be built in larger and deeper Andean or
Himalayan valleys having a suitable topography. The feasibility and the design
options for a 1200 m “Extremely Large Hypertelescope” (ELHyT) have been dis-
cussed by Labeyrie et al. (2012). An H-LGS system such as discussed in Section 2.4
above is essential for fully exploiting the science potential of an ELHyT toward
the faintest limiting magnitudes for observing cosmological sources. These limiting
magnitudes can match in principle those accessible to an ELT of similar collecting
area, and similarly equipped with a Laser Guide Star (Boccaletti et al. 2000). To-
gether with the 100 microarc-second resolution attainable at visible wavelengths, a
30x gain with respect to a 40 m ELT, this announces major science inroads toward
cosmology on the faintest known galaxies at the edge of the observable Universe.

The prospect deserves a comparative study of ELT and ELHyT technologies
in terms of science, readiness and cost efficiency, which the funding institutions
should initiate as part of their decision-making process. In the ELHyT case, fea-
tures which may impact the compared cost are: 1) the absence of a pointable
mount; 2) absence of a dome; 3) the smaller mirror elements, preferable for im-
proved imaging performance at given collecting area, allowing a reduction of the
glass thickness; 4) the resulting use of lower-grade glass such as Pyrex, becom-
ing adequate for the smaller mirrors; 5) the high-yield mirror figuring techniques
then also becoming available; 6) the risk reduction achievable by deploying and
testing a few mirror elements with a focal gondola and its tracking system; 7) the
progressive construction and early science achievable, as demonstrated with the
ALMA; 8) the availability of the numerical model of gondola control and dynamic
behaviour, developed by Enmark et al. (2011); 9) the existence of an access road
at some of the mountain sites considered, such as Spiti valley (India, at 4000 m
altitude).

5 Hypertelescopes in space

Large flotillas of numerous small mirrors may become feasible in space, using
micro-thrusters for control, as demonstrated by the PRISMA test of the Swedish
National Space Board with a pair of agile micro- satellites, controlled with cen-
timeter accuracy. A version controlled by solar radiation pressure has been pro-
posed to the European Space Agency (Labeyrie et al. 2009), and mentioned in
the U.S. Decadal Survey as suitable for observing faint extra-galactic sources such
as AGNs (Kraemer et al. 2010). Another version using inch-sized mirrors, each
accurately controlled by radiation pressure within standing waves from a pair of
counter-propagating laser beams, is described by Labeyrie et al. (2010).
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Such hypertelescope flotillas have been studied in preliminary detail for versions
at the kilometer scale, the 100 km scale needed to resolve exo-planetary detail,
and the 100 000 km scale needed to resolve details of the Crab Pulsar. The latter
version appears workable in terms of orbit control at the Earth-Sun Lagrangian
L2 point, as analyzed by Infeld (2006), but needs rather large mirror elements,
typically 6 or 8 m, to efficiently collect their diffracted light at the combined focus.
Such large mirrors may themselves be feasible in “laser-trapped” form (Labeyrie
1979) with a thin membrane, possibly made of diamond or graphene.

The prospect for such large dilute astronomical instruments emitting many
laser beams raises the question of whether some advanced exo-civilizations, if they
exist, may have built them before being capable of building Dyson spheres (2011).
If so, the peculiar characteristics of their laser light emission, with periodically
swept wavelength and potentially detectable with ELTs or hypertelescopes, may
provide better signatures of extra-terrestrial intelligence than the infra-red excess
heretofore searched by SETI programs for detecting Dyson spheres on stars.

6 Conclusions and future work

In the way of higher angular resolution at optical wavelengths, the potential of
direct imaging with hypertelescopes, and induced sensitivity gain, has been con-
firmed by computer simulations, laboratory experiments and limited sky obser-
vations with miniature versions. The technical feasibility of large Earth-based
versions, currently tested at Haute Provence and in the Ubaye range, becomes
confirmed for hectometric aperture sizes, and kilometric sizes are now considered.
Although images can be reconstructed with speckle interferometry techniques, the
direct images obtainable with adaptive cophasing are a major goal.

The attainment of high limiting magnitudes appears feasible with modified
forms of Laser Guide Star systems under development, thus greatly extending the
scope of high angular resolution observing in astronomy. Also, image deconvolu-
tion techniques becoming developed for the hypertelescope case give encouraging
results. These prospects suggest that a major breakthrough is possible in the way
of high-resolution observing, extending to extra-galactic and cosmological sources.
It appears to justify efforts toward building progressively larger instruments, es-
pecially considering the feasibility of expandable arrays not requiring the kind of
major initial investment needed for the dome and mount of an ELT. In space, con-
siderably larger apertures should become feasible in the form of mirror flotillas,
eventually spanning up to perhaps 100 000 km. Such instruments would provide
enough resolution to resolve the central body, believed to be a 20 km neutron star,
of the Crab pulsar.

References

Aime, C., Lanteri, H., Diet, M., & Carlotti, A., 2012, A&A, 543A, 42A

Arnold, L., Labeyrie, A., Mourard, D., 1996, Adv. Space Res., 18, 49

Boccaletti, et al., 2000, Icarus, 145, 636



22 New Concepts in Imaging: Optical and Statistical Models

Bonaccini Calia, D., Myers, R.M., Zappa, F., et al., 2004, SPIE, 5490, 1315

Borkowski, V., & Labeyrie, A., 2004, EAS Publications Series, 12, 287

Buscher, D.F., Love, G.D., & Myers, R.M., 2002, Opt. Lett., 27, 149

Bouyeron, L., Delage, L., Grossard, L., & Reynaud, F., 2012, A&A, 545, A18

Chapa, O., Cuevas, S., Sánchez, B., et al., 2007, Rev. Mex. Astron. Astrofis. Conf. Ser.,
28, 82

Crandall, R.S., et al., 1985, “Reversible optical storage medium and a method for record-
ing information therein” US patent, http://www.google.com/patents/US4320489

Dainty, J.C., 1974, MNRAS, 169, 631

Dyson, F., 2011, see http://en.wikipedia.org/wiki/Dyson_sphere

Infeld, S.I., 2006, “Optimization of Mission Design for Constrained Libration Point Space
Missions” Ph.D. Stanford, http://www.stanford.edu/group/SOL/dissertations/

samantha-thesis.pdf

Kraemer, S., Windhorst, R., Carpenter, K.G., et al., 2010, in “Astro2010: The Astron-
omy and Astrophysics Decadal Survey, Science White Papers, 162”

Le Coroller, H., Dejonghe, J., Arpesella, C., Vernet, D., & Labeyrie, A., 2004, A&A, 426,
721

Enmark, A., Andersen, T., Owner-Petersen, M., Chakraborty, R., & Labeyrie, A., 2011,
Integrated model of the Carlina Telescope”, in “Integrated Modeling of Complex
Optomechanical Systems”, ed. Andersen, Torben, Enmark & Anita, Proceedings of
the SPIE, Vol. 8336, 83360J-83360J-14

Lardière, O., Martinache, F., & Patru, F., 2007, MNRAS, 375, 977

Labeyrie, A., 1996, A&A, 118, 517

Labeyrie, A., Le Coroller, H., & Dejonghe, J., 2008, SPIE, 7013

Labeyrie, A., 2008, Proceedings of the SPIE, Vol. 6986, 69860C-69860C-12

Labeyrie, A., et al., 2009, Exper. Astron. 23, 463

Labeyrie, A., et al., 2010, “Resolved Imaging of Extra-Solar Photosynthesis Patches with
a “Laser Driven Hypertelescope Flotilla”, in “Pathways Towards Habitable Plan-
ets”, proceedings of a workshop held 14 to 18 September 2009 in Barcelona, Spain,
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OPTICAL LONG BASELINE INTERFEROMETRY: EXAMPLES
FROM VEGA/CHARA

D. Mourard1

Abstract. In this paper I review some of the fundamental aspects of
optical long baseline interferometry. I present the principles of image
formation, the main difficulties and the ways that have been opened
for high angular resolution imaging. I also review some of the re-
cent aspects of the science program developed on the VEGA/CHARA
interferometer.

1 Introduction

Astrophysics is based on observations and physical analysis. From the point of view
of observations, this science has mainly been developed through the progresses in
the techniques of imaging, astrometry, photometry, spectroscopy and polarimetry.
However, through these techniques, objects are almost always considered as point-
like source and no information is obtained on their brightness distribution. This
is of course due to the diffraction principle, the limited size of the collecting optics
used in telescopes and the very small apparent angular sizes of these objects.

In 1974, A. Labeyrie succeeded for the first time to obtain interference fringes
on a stellar source with two separate telescopes. This achievement opened the road
for the modern development of optical interferometry and allowed to give access to
astrophysics at very high angular resolution. Today, the situation is dominated by
a few facilities: mainly the VLTI (Glindemann et al. 2004), KECK (Colavita et al.
2006) and the CHARA array (Ten Brummelaar et al. 2005), allowing combination
of 4 to 6 telescopes from the visible to the thermal infrared domain. With almost
50 scientific papers per year, the progression of the astrophysical impact of long
baseline optical interferometry is almost following, with a time shift of 30 years,
the development of radio interferometry.

The main scientific domains of modern optical long baseline interferometry are
the study of brightness distribution of compact objects such as stellar surfaces,
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Fig. 1. Recent examples of stellar surface images obtained by optical long baseline in-

terferometers. Left: Monnier et al. (2007). Middle: Lacour et al. (2008). Right: Haubois

et al. (2008).

cores of young stellar object environments or central regions of active galactic nu-
clei. These studies require high resolution in the space, time and spectral domains
for a correct understanding of the physical processes in action in these objects. As
an imaging technique, optical long baseline interferometry performance is highly
related to the properties of the field of view and of the transfer function. Recent
advances by different groups in the world have lead to the first images of stellar
surfaces (see Fig. 1).

Although these first images show remarkable progresses in that field, it is clear
however that more technical work is needed to improve the impact of long baseline
interferometry. The main issue is certainly the need for angular resolution that
requires long baseline (B > 100 m) and short wavelengths (λ < 1 μm) to reach
resolution lower than the millisecond of degree needed to resolve details on the
surface of stars. Also a much higher dynamic range in the images will be nec-
essary which corresponds in fact to a better sensitivity and an improved signal
to noise ratio in the raw measurements. This last point is of course related to
the improvement of the limiting magnitude of the technique which is absolutely
mandatory for large programs in the extragalactic domain.

In Section 2, I review some of the general principles of optical long baseline
interferometry. In Section 3, I will show that optical interferometry is mainly an
imaging technique and will detail the most important aspects of this point of view.
I present in Section 4, the main limitations encountered and the way optical long
baseline interferometry is currently implemented as an observing technique. After
a rapid presentation of the CHARA Array and the VEGA instrument in Section 5,
I will present recent results obtained by the VEGA group in Section 6.

2 Principles of optical interferometry

This section does not intend to present a complete and rigorous demonstration of
the principles of optical interferometry. This is of course out of the scope of this
paper and the reader could refer to the excellent book of Goodman (2000) as well
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as to many other reviews. The idea is to present by different point of views the
principle of the physical properties of long baseline interferometry.

2.1 Coherence of the stellar wave

If we consider a star located at infinity and presenting an angular diameter θ, this
object defines a solid angle Ω defined by:

Ω = π

(
θ

2

)2

. (2.1)

We consider a screen of radius r receiving the stellar wave. This screen has a
surface S = πr2. This defines a beam etendue ε that can be written as:

ε = SΩ = π2r2

(
θ

2

)2

. (2.2)

The principle of coherence, as defined by Goodman in his book, indicates that we
can consider the wave as coherent if ε < λ2. This defines a so-called radius of
coherence rc:

rc =
λ

π( θ
2 )
· (2.3)

One can note that in the case of a star with an angular diameter θ = 10 mas
and at a wavelength λ = 1 μm, this leads to a value of rc � 13 m. We thus
understand that it exists a relation between the coherence of the wave and the
angular diameter of the star. The coherence of the electromagnetic wave ψ could
be determined by the computation of the complex degree of mutual coherence
(Γ12) between two points of the collecting screen separated by a distance B.

Γ12 =
|ψ1ψ2

∗|√
|ψ1|2|ψ2|2

· (2.4)

By using the Van-Cittert Zernike theorem and the notation Õ for the Fourier
Transform of the star brightness distribution, we can write the following relation:

Γ12 =
Õ(B

λ )

Õ(0)
· (2.5)

Considering the star as a uniform disk, we finally obtain:

Γ12 =
∣∣∣∣2J1(πBθ/λ)

πBθ/λ)

∣∣∣∣ · (2.6)

The definition of coherence by Goodman corresponds to the case where Γ12 = 0.5
which corresponds to πBθ/λ = 2 and thus to B = rc = λ

π( θ
2 )

, which is an other

way of defining the coherence (ε < λ2).
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This simple calculation shows that the coherence of the electromagnetic wave
of stellar sources could be measured through a spatial sampling if one can access to
very long baselines (B larger than 100 m typically). In this paper we only consider
the case of direct interferometry in the optical domain, which means that we use
detectors sensitive to the intensity of the electromagnetic wave and that we record
the intensity resulting from the coherent addition of the complex waves. Coming
back to the simple case of an instrumental setup dedicated to the measurement
of the complex degree of mutual coherence, a practical implementation of this
experiment is thus to consider the coherent addition of the two complex waves
collected at point 1 and 2 with a phase shift on the second one dedicated to the
necessary adjustment of the optical path between the two wave collectors. Thus
we obtain the total intensity I as:

I = |ψ1 + ψ2e
iφ|, (2.7)

I = ψ1
2 + ψ2

2 + 2ψ1ψ2
∗cos(φ). (2.8)

Denoting Ii the intensity of the wave at point i, we finally obtain:

I = (I1 + I2)

⎛⎝1 +
2
√

I1I2

I1 + I2
∗ ψ1ψ2

∗√
|ψ1|2|ψ2|2

∗ cos(φ)

⎞⎠ . (2.9)

The term with the cosinus function represents, if one introduces variations of φ
either by temporal or spatial sampling, a modulation in the measured intensity,
which is also called interference fringes. The amplitude of the modulation is defined
by the factor in front of the cosinus. It contains two parts: the photometric

one
(

2
√

I1I2
I1+I2

)
and the coherence one

(
ψ1ψ2

∗√
|ψ1|2|ψ2|2

)
where we recognizes Γ12 the

complex degree of mutual coherence of the two collected waves.
As a conclusion of this section, we see that we have indeed a way to measure

complex degrees of mutual coherence of stellar waves allowing us to sample the
Fourier transform of brightness distributions at very high spatial frequencies. We
will see in Section 4 how this method is now implemented in reality but before
coming into the instrumental part of this technique an other point of view is also
very important for a correct understanding of this observing technique.

3 Interferometry and images

Astronomers have developed optical interferometry in order to improve the resolv-
ing power of the telescopes. Indeed image formation in a telescope is a standard
diffraction problem and it is known for a long time that an image is obtained as
the convolution of the brightness distribution of the source by the point spread
function of the optical device. When this convolution relation is translated into
the Fourier domain, it shows that the spatial frequency spectrum of an image is the
spatial frequency spectrum of the object filtered by the optical transfer function
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(OTF) of the optical device. Thanks to the diffraction principle, it could be easily
shown that the modulus of the optical transfer function, called the modulation
transfer function (MTF), is obtained as the autocorrelation of the pupil function,
defining the entrance plane of the optical device.

In the case of a monolithic telescope of diameter D, the OTF acts as a low pass
filter transmitting the spatial frequencies of the object brightness distribution up
to D/λ. This corresponds to what is usually called the diffraction limit λ/D of the
telescope. We do not consider here the perturbations induced by the atmosphere
and we just consider the ideal case of a perfect optical instrument.

In the case of an interferometer with two telescopes of diameter D and separated
by a vector

−→
B , the support of the OTF (also called the (u,v) plane), is made of a

low frequency peak of extent ±D/λ and two high frequency peaks of extent ±D/λ

and located at ±−→B/λ. The interferometer acts thus as a high frequency band pass
filter, allowing to reach information at a resolution of λ/|−→B |.

In the general case, the (u,v) plane (support of the OTF) is a function of
the input baselines, of the latitude of the observatory, of the target coordinates,
of the wavelength and of the time (because of the earth rotation). The (u,v)
plane coverage defines the sampling of Fourier transform of the object brightness
distribution.

The properties of the image obtained directly at the focus of an interferometer
clearly depend on the (u,v) plane coverage but it can also be shown (Labeyrie
1996) that the beam combination scheme plays also an important role in that
domain. I refer the reader to the important papers published in that domain (see
Labeyrie et al., these proceedings). As an illustration we present in Figure 2, some
examples of (u,v) plane coverage and point spread function for different kind of
optical interferometers.

Currently, no interferometer is working in a direct imaging scheme except
maybe the Large Binocular Telescope. The limitations of coherence for ground
based projects in the optical domain are clearly difficult to overcome. Progresses
are being made in that direction but for the moment, imaging at high angular
resolution, is not working directly at the focus of the interferometer. Instead,
astronomers are using the (u,v) plane coverage to sample the Fourier transform
of the brightness distribution and then to reconstruct images. This method has
made great progresses in the recent years as shown in Figure 1. The quality of
the reconstructed images highly depends of the (u,v) plane coverage and of the
a priori information (regularization constraints) introduced in the reconstruction
algorithm. I do not intend to describe this method in the present paper and I refer
the reader to the chapters written in these proceedings by E. Thiébaut, D. Mary,
C. Aime.

I will conclude this section by giving some general considerations about image
reconstruction with an interferometer. First of all, an interferometer made of N
telescopes produces N(N−1)/2 baselines and thus samples N(N−1)/2 frequencies
in the Fourier transform of the brightness distribution of the object. We thus have
a problem with N(N − 1) unknowns.
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Fig. 2. Examples of (u,v) plane coverage (middle column) and of the corresponding point

spread function (right column) for four different input pupil (left column) configurations.

We have already indicated that the limitations of ground based interferometers
are dominated by the phase effects introduced by the atmospheric turbulence. If
it is easy to measure the modulus of the Fourier transform over the N(N − 1)/2
points, the phase measurements are highly corrupted by the turbulence. As in
radio interferometry, astronomers overcome this difficulty by computing closure
phase measurements over triplets of apertures. It can be shown easily that the
atmospheric phase terms are removed in the sum of the phase of three interfer-
ence fringes over any triplet of telescopes. Thus closure phase measurements give
us access to (N − 1)(N − 2)/2 additional measurements. With this in hand, we
understand that the problem is not well constrained because the number of un-
knowns is always larger than the number of measurements. A representation of
these numbers is presented on Figure 3.

4 Reality of optical interferometry

The current implementation of optical interferometry involves a limited number of
apertures. The VLTI is able to recombine four telescopes at the same time with the
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Fig. 3. Number of unknowns, of modulus and closure phase measurements as a function

of the number of telescopes. The dark curve represents the percentage of information

measured as a function of the number of telescopes.

PIONIER instrument (Le Bouquin et al. 2011) whereas CHARA can recombine up
to 6 telescopes simultaneously with the MIRC instrument (Monnier et al. 2008).
While this clearly corresponds to a great advance, it appears that imaging with
optical interferometry is still very limited for the moment. Thus astronomers are
mainly using the interferometric raw measurements (visibility, closure phase, com-
plex differential visibility) to constrain the geometrical distribution of the emitting
sources. An important effort has been devoted in the last years in the development
of model fitting tools or of image reconstruction algorithms.

But before dealing with the calibrated products of the interferometer, many
actions have to been done for a correct operation of the interferometer. One of
the main difficulty concerns the overall reliability of the array. Indeed, an array is
made of an important number of subsystems and the observing efficiency highly
depends on the reliability of each element. This concerns the telescope (pointing,
tracking, tip/tilt corrections, adaptive optics efficiency), the beam transportation
and the optical path length equalization (vacuum pipes, optical fibers, optical
quality, delay line, laser metrology, dumping of vibrations) and finally the beam
combination and the signal sampling (spatial or temporal modulation, detection).

But on the ground and at optical wavelengths, the main difficulties for optical
interferometry are in the domain of the perturbations induced by the atmospheric
turbulence. The signal to noise ratio of a coherence measurement as described
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before depends of course on the coherence volume. This volume has in fact many
dimensions. Spatial firstly and here the atmospheric turbulence highly reduces this
dimension to the so-called Fried parameter (r0). Depending on the atmospheric
conditions, the value of r0 is in the range from 5 to 15–20 cm, well below the
diameter of the individual collectors. Temporal secondly and the reduction is
here drastic with coherence time t0 between 2 and 15 ms typically. Finally the
spectral dimension should also be considered because the atmospheric turbulence
has a spectral coherence characteristic that limit the useful spectral bandwidth to
about 20 to 30 nm at visible wavelengths (Berio et al. 1997). Important efforts
are devoted to improve this volume of coherence through the implementation of
dilute adaptive optics systems: first adaptive optics to correct each aperture and
then cophasing systems allowing to control the phase between the different sub
apertures. With these conditions, long exposures will be possible and thus fainter
magnitude and/or higher quality will be reached.

5 The CHARA array and the VEGA spectro-interferometer

The Center for High Angular resolution (CHARA) of the Georgia State University
operates an optical interferometric array located at the Mount Wilson Observatory
that consists of six one meter telescopes placed in pairs along the arms of a
Y-shaped array. It yields 15 baselines ranging from 34 to 331 m. Operating in
the near-infrared with the instruments CLASSIC (Ten Brummelaar et al. 2005),
CLIMB (Sturmann et al. 2010), FLUOR (Coude du Foresto et al. 2003), and
MIRC (Monnier et al. 2008), and in the visible with PAVO (Ireland et al. 2008)
and VEGA (Mourard et al. 2009, 2011), the CHARA array allows a maximum an-
gular resolution of 1.3 and 0.3 millisecond of arc in the K and V band, respectively.

The VEGA spectrograph is designed to sample the visible band from 0.45
to 0.85 μm. It is equipped with two photon counting detectors looking at two
different spectral bands. The main characteristics are summarized in Table 1.
The optical design allows simultaneous recording of data, in medium spectral
resolution, of the spectral region around Hα with the red detector and around
Hβ with the blue detector. Observing in the blue requires good seeing conditions
but increases by 30% the limit of spatial resolution of the instrument with respect
to its operation around 700 nm.

Table 1. Spectral resolution (R) and bandwidth (Δλ) of the VEGA spectrograph, as

well as the spectral separation between the two detectors.

Grating R Δλ (Blue) Δλ (Red) λR − λB

R1: 1800gr/mm 30 000 5 nm 8 nm 25 nm
R2: 300gr/mm 5000 30 nm 45 nm 170 nm

The limiting magnitudes of VEGA/CHARA are presented in Table 2. They of
course highly depend on the actual seeing conditions and on the intrinsic target
visibility.
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Table 2. Estimation of typical limiting magnitude as a function of the different spectral

resolution modes. These values are presented for the median value of the Fried parameter

r0 at Mount Wilson i.e. 8 cm. We also indicate the best performances assuming an r0

of 15 cm.

Resolution R Typical Lim. Magnitude Best perf.
Medium 6000 6.5 7.5

High 30 000 4.2 5.5

VEGA is in routine operation at Mount Wilson and benefits from about
60 nights per year. Many observations are now done remotely from Nice
Observatory. Our group has recently improved the photon counting detectors.
A new image intensifier has been installed with better quantum efficiency (ap-
proximately a factor 1.5 better) in the red part of the spectrum and the Dalsa
sensor (Blazit et al. 2008) behind the two image intensifiers has been replaced by
a Gazelle sensor from the Point Grey company. This new sensor allows a faster
frame rate (10 ms) and a much lower dead time during two frames (1 ms instead
of 2 ms). The duty cycle of the sensor is now of the order of 90% instead of 60%
with the old camera. An improvement of 1.5 magnitude has thus been recently
demonstrated as well as a much better detector cosmetics important for spectrum
measurements.

We are also considering a future evolution of VEGA in order to correctly benefit
from the future installation of adaptive optics on the CHARA telescopes. The
high Strehl ratio that will be allowed thanks to these new devices will highly
increase the signal to noise of our measurements. However it will also concentrate
the flux in a small part of the detector and thus will lead to an increase of the
saturation effect with the current generation of photon counting detector. We are
thus considering using analogical detector such as EMCCD or OCAM2 (Feautrier
et al. 2011) that allows a very high frame rate (up to 1500 fps) and a very low
readout noise (0.13e−/pix/frame). Coupling this kind of detector with a beam
combiner using spatial filtering and high efficiency optical devices (P. Bério, in
preparation) will permit to enhance the scientific domain of VEGA/CHARA in
the future.

6 Recent results from VEGA/CHARA

The most remarkable properties of VEGA/CHARA are first the access to un-
precedented angular resolution thanks to the 300 meters baseline and the short
wavelengths and second the access to high angular resolution measurements at
very high spectral resolution (up to 30 000).

The medium (6000) and high (30 000) spectral resolutions are well suited to
perform kinematic analysis of the interferometric signal, providing resolution of 60
and 10 km s−1 respectively. These spectral resolutions are best dedicated to the
extraction of differential spectral information. Radiative winds and fast rotating
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photospheres of hot stars can be probed efficiently with the medium spectral reso-
lution. Some recent examples of such studies could be found for the Be stars 48 Per
and φ Per (Delaa et al. 2011) where the authors characterize the rotating disks in
term of extension, ellipticity and kinematical field. In Meilland et al. (2011), the
authors use the combination of VEGA and VLTI/AMBER (Petrov et al. 2007)
data to constrain both the orbital elements of the famous Be binary δ Sco and
the disk’s parameters. The interactive binaries β Lyrae and υ Sagitarri (Bonneau
et al. 2011) have also been studied in the same way. Perraut et al. (2010) suc-
ceeded also for the first time to spectrally and spatially resolve the Hα emitting
region of the prototype of the young stellar objects AB Aurigae. High spectral and
angular resolutions bring also complementary views on old and famous problems
such as the mysterious eclipsing system ε Aurigae (Mourard et al. 2012) or on the
chromosphere of K giants (Berio et al. 2011).

The medium resolution is also well suited to absolute visibility studies and
are also well adapted for the study of binaries or multiple systems. In that field
the main goal is the study of fundamental stellar parameters through angular
diameters measurements and analysis through classical stellar modeling and/or
confrontation with other observing techniques such as spectroscopy and astero-
seismology. Recent results of such programs concern the study of the ro Ap star γ
Equulei (Perraut et al. 2011) or the famous CoRoT targets HD49933 (Bigot et al.
2011) and more recently the study of four exoplanet hosts stars (Ligi et al. 2012).
These exploratory programs are now coordinated as large programs where many
tens of objects are being studied in order to have a good analysis of the stellar
properties in different part of the Herztsprung-Russel diagram.

Another interesting possibility is the presence of a polarimeter that could be
inserted into the beam. This gives new insight into many physical processes. Many
science sources are linearly polarized, in particular at a small angular scale, and
the interferometric polarized signal is a powerful probe of circumstellar scattering
environments that contain ionized gas or dust (Chesneau et al. 2003; Elias et al.
2008; Ireland et al. 2005) and of magnetic properties (Rousselet-Perraut et al. 2000,
2004). This possibility has not yet been really exploited on the VEGA/CHARA
interferometer but it could bring interesting new programs.

7 Conclusion

With this lecture and this paper, my intention has been first to describe the
way optical interferometry should be understood from a physical point of view
and second to show the recent advances in that field in terms of astrophysical
programs and in terms of observing possibilities. The dream of the groups working
in optical interferometry is clearly to push towards a large facility with remarkable
capabilities highly complementary to what will bring, in the future, the Extremely
Large Telescopes or the large radio arrays.

In complement to the science addressed by the large radio arrays and the
Extremely Large telescopes, we consider that optical interferometry can bring im-
portant answers, firstly on the possibility of fighting off the expected confusion
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limit of ELT and secondly for the direct imaging with spatial, temporal and spec-
tral resolution of compact sources such as the inner part of young stellar objects
where planets are formed or the inner parsec around active galactic nuclei. In all
cases, the quality of the synthetic point spread function will be fundamental both
for the sensitivity and for the resolving power. The control of such imaging ma-
chines for nulling or phase-controlled coronagraphy is also of utmost importance
for the detection and characterization of planets in the habitable zone. In this
latter case, the effort is more in the control of the dynamic in the image than in
the angular resolution. Debates around the future concepts have almost concluded
around three main classes of future optical arrays: 1) a VLTI-like interferometer
with a very small number of ELT-like telescopes on a compact array, 2) kilomet-
ric baselines with a small number of 8-m class telescopes and 3) a dense array
of a large number of small telescopes over possibly kilometric baselines. If the
conceptual design of the two first classes of array could certainly rest on the cur-
rent concepts of classical telescopes + delay lines, it is clear that expanding the
number of apertures to 50, 100 or even more individual apertures encounters a
real limitation for the implementation. This represents a major difference to the
situation of radio interferometry and many conceptual and prototyping efforts are
now engaged in that direction.
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THE FRESNEL DIFFRACTION:
A STORY OF LIGHT AND DARKNESS

C. Aime1, É. Aristidi1 and Y. Rabbia1

Abstract. In a first part of the paper we give a simple introduction
to the free space propagation of light at the level of a Master degree
in Physics. The presentation promotes linear filtering aspects at the
expense of fundamental physics. Following the Huygens-Fresnel ap-
proach, the propagation of the wave writes as a convolution relation-
ship, the impulse response being a quadratic phase factor. We give
the corresponding filter in the Fourier plane. As an illustration, we
describe the propagation of wave with a spatial sinusoidal amplitude,
introduce lenses as quadratic phase transmissions, discuss their Fourier
transform properties and give some properties of Soret screens. Clas-
sical diffractions of rectangular diaphragms are also given here. In a
second part of the paper, the presentation turns into the use of exter-
nal occulters in coronagraphy for the detection of exoplanets and the
study of the solar corona. Making use of Lommel series expansions, we
obtain the analytical expression for the diffraction of a circular opaque
screen, giving thereby the complete formalism for the Arago-Poisson
spot. We include there shaped occulters. The paper ends up with a
brief application to incoherent imaging in astronomy.

1 Historical introduction

The question whether the light is a wave or a particle goes back to the seven-
teenth century during which the mechanical corpuscular theory of Newton took
precedence over the wave theory of Huygens. Newton’s particle theory, which ex-
plained most of the observations at that time, stood as the undisputed model for
more than a century. This is not surprising since it was not easy to observe natu-
ral phenomena resulting from the wave nature of light. At that time light sources
like the Sun or a candle light were used. They are incoherent extended sources
while a coherent source is needed to see interference phenomenas, unquestionable
signatures of the wave nature of light.
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The starting point of the wave theory is undoubtedly the historical double-
slits experiment of Young in 1801. The two slits were illuminated by a single slit
exposed to sunlight, thin enough to produce the necessary spatially coherent light.
Young could observe for the first time the interference fringes in the overlap of
the light beams diffracted by the double slits, demonstrating thereby the wave
nature of light against Newton’s particle theory. Indeed, the darkness in the
fringes cannot be explained by the sum of two particles but easily interpreted by
vibrations out of phase. This argument was very strong. Nevertheless Einstein
had to struggle in his turn to have the concept of photons accepted by the scientific
community a century later. In astronomy, we can use the simplified semiclassical
theory of photodetection, in which the light propagates as a wave and is detected
as a particle (Goodman 1985).

In Young ’s time, Newton’s prestige was so important that the wave nature
of light was not at all widely accepted by the scientific community. About fifteen
years later, Fresnel worked on the same problematics, at the beginning without be-
ing aware of Young’s work. Starting from the Huygens approach, Fresnel proposed
a mathematical model for the propagation of light. He competed in a contest pro-
posed by the Academy of Sciences. The subject was of a quest for a mathematical
description of diffraction phenomena appearing in the shade of opaque screens.
Poisson, a jury’s member, argued that according to Fresnel’s theory, a bright spot
should appear at the center of a circular object’s shadow, the intensity of the spot
being equal to that of the undisturbed wavefront. The experiment was soon real-
ized by Arago, another jury’s member, who indeed brilliantly confirmed Fresnel’s
theory. This bright spot is now called after Poisson, Arago or Fresnel.

Arago’s milestone experience was reproduced during the CNRS school of June
2012, using learning material for students in Physics at the University of Nice
Sophia – Antipolis. The results are given in Figure 1. A laser and a beam expander
were used to produce a coherent plane wave. The occulter was a transparent slide
with an opaque disk of diameter 1.5 mm, while Arago used a metallic disk of
diameter 2 mm glued on a glass plate. Images obtained in planes at a distance of
z = 150, 280 and 320 mm away from the screen of observation are given in the
figure. The Arago bright spot clearly appears and remains present whatever the
distance z is. The concentric circular rings are not as neat as expected, because of
the poor quality of the plate and of the occulting disk, a difficulty already noted by
Fresnel (see for example in de Senarmont et al. 1866). We give the mathematical
expression for the Fresnel diffraction in the last section of this paper.

The presentation we propose here is a short introduction to the relations of
free space propagation of light, or Fresnel diffraction. It does not aim to be a
formal course or a tutorial in optics, and remains in the theme of the school, for
an interdisciplinary audience of astronomers and signal processing scientists. We
restrict our presentation to the scalar theory of diffraction in the case of paraxial
optics, thus leaving aside much of the work of Fresnel on polarization. We show
that the propagation of light can be simply presented with the formalism of linear
filtering. The reader who wishes a more academic presentation can refer to books
of Goodman (2005) and Born & Wolf (2006).
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Fig. 1. Reproduction of Arago’s experience performed during the CNRS school. Top

left: the occulter (diameter: 1.5 mm), and its Fresnel diffraction figures at the distances

of 150 mm (top right), 280 mm (bottom left) and 320 mm (bottom right) from the screen

of observation.

The paper is organized as follows. We establish the basic relations for the free
space propagation in Section 2. An illustration for the propagation of a sinusoidal
pattern is given in Section 3. Fourier properties of lenses are described in Section 4.
Section 5 is devoted to the study of shadows produced by external occulters with
application to coronagraphy. Section 6 gives a brief application to incoherent
imaging in astronomy.

2 Basic relations for free space propagation, a simplified approach

We consider a point source S emitting a monochromatic wave of period T , and
denote AS(t) = A exp(−2iπt/T ) its complex amplitude. In a very simplified model
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where the light propagates along a ray at the velocity v = c/n (n is the refractive
index), the vibration at a point P located at a distance s from the source is:

AP (s, t) = A exp
(
−2iπ

(t− s/v)
T

)
= A exp

(
−2iπ

t

T

)
exp

(
2iπ

ns

λ

)
(2.1)

where λ = cT is the wavelength of the light, the quantity ns is the optical path
length introduced by Fermat, a contemporary of Huygens. The time dependent
factor exp(−2iπt/T ), common to all amplitudes, is omitted later on in the pre-
sentation. For the sake of simplicity, we moreover assume a propagation in the
vacuum with n = 1.

In the Huygens-Fresnel model, the propagation occurs in a different way. First
of all, instead of rays, wavelets and wavefronts are considered. A simple model for
a wavefront is the locus of points having the same phase, i.e. where all rays origi-
nating from a coherent source have arrived at a given time. A spherical wavefront
becomes a plane wavefront for a far away point source. According to Malus the-
orem, wavefronts and rays are orthogonal. The Huygens-Fresnel principle states
that each point of any wavefront irradiates an elementary spherical wavelet, and
that these secondary waves combine together to form the wavefront at any subse-
quent time.

We assume that all waves propagate in the z positive direction in a {x, y, z}
coordinate system. Their complex amplitudes are described in parallel transverse
planes {x, y}, for different z values. If we denote A0(x, y) the complex amplitude
of a wave in the plane z = 0, its expression Az(x, y) at the distance z may be
obtained by one of the following equivalent equations:

Az(x, y) = A0(x, y) ∗ 1
iλz

exp
iπ(x2 + y2)

λz

Az(x, y) = �−1
[
Â0(u, v) exp(−iπλz(u2 + v2))

]
(2.2)

where λ is the wavelength of the light, the symbol ∗ stands for the 2D convolution.
Â0(u, v) is the 2D Fourier transform of A0(x, y) for the conjugate variables (u, v)
(spatial frequencies), defined as

Â0(u, v) =
∫∫

A0(x, y) exp(−2iπ(ux + vy))dxdy. (2.3)

The symbol �−1 denotes the two dimensional inverse Fourier transform. It is inter-
esting to note the quantity

√
λz, playing the role of a size factor in Equation (2.2),

as we explain in the next section in which these relationships are established and
their consequences analyzed.

2.1 The fundamental relation of convolution for complex amplitudes

The model proposed by Huygens appears as a forerunner of the convolution in
Physics. In the plane z, the amplitude Az(x, y) is the result of the addition of
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Fig. 2. Notations for the free space propagation between the plane at z = 0 of transverse

coordinates ξ and η and the plane at the distance z of transverse coordinates x and y.

the elementary wavelets coming from all points of the plane located at z = 0. To
build the relations between the two waves in the planes z = 0 and z, we will have
to consider the coordinates of the points of these planes. To make the notations
simpler, we substitute ξ and η to x and y in the plane z = 0.

Let us first consider the point-like source at the origin O of coordinates ξ =
η = 0, and the surrounding elementary wavefront of surface σ = dξ dη. The
wavelet emitted by O is an elementary spherical wave. After a propagation over the
distance s, the amplitude of this spherical wave can be written as (α/s) σA0(0, 0)×
exp(2iπs/λ), where α is a coefficient to be determined. The factor 1/s is required
to conserve the energy.

Now we start deriving the usual simplified expression for this elementary wavelet
in the plane {x, y} at the distance z from O. Under the assumption of paraxial
optics, i.e. x and y � z, the distance s is approximated by

s = (x2 + y2 + z2)1/2 � z + (x2 + y2)/2z. (2.4)

The elementary wavelet emitted from a small region σ = dξdη around O (see
Fig. 2) and received in the plane z can be written:

A0(0, 0)σ × α

s
exp

(
2iπ

s

λ

)
� A0(0, 0) dξdη × exp

(
2iπ

z

λ

) α

z
exp

(
iπ

x2 + y2

λz

)
·

(2.5)
The approximation 1/s � 1/z can be used, when s works as a factor for the
whole amplitude, since this latter is not sensitive to a small variation of s. On
the contrary the two terms in the Taylor expansion of Equation (2.4) must be
kept in the argument of the complex exponential, since it expresses a phase and is
very sensitive to a small variation of s. For example a variation of s as faint as λ
induces a phase variation of 2π.
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For a point source P at the position (ξ, η), the response is:

dAz(x, y) = A0(ξ, η) exp
(
2iπ

z

λ

) α

z
exp

(
iπ

(x− ξ)2 + (y − η)2

λz

)
dξdη. (2.6)

According to the Huygens-Fresnel principle, we sum the wave amplitudes for all
point like sources coming from the plane at z = 0 to obtain the amplitude in z:

Az(x, y) = exp
(
2iπ

z

λ

) ∫∫
A0(ξ, η)

α

z
exp

(
iπ

(x− ξ)2 + (y − η)2

λz

)
dξdη

=exp
(
2iπ

z

λ

)
A0(x, y) ∗ α

z
exp

(
iπ

x2 + y2

λz

)
· (2.7)

Equation (2.7) results in the convolution of the amplitude at z = 0 with the
amplitude of a spherical wave. The factor exp(2iπz/λ) corresponds to the phase
shift induced by the propagation over the distance z, and will be in general omitted
as not being a function of x and y. The coefficient α is given by the complete theory
of diffraction. We can derive it considering the propagation of a plane wave of unit
amplitude A = 1. Whatever the distance z we must recover a plane wave. So we
have:

1 ∗ α

z
exp

(
iπ

x2 + y2

λz

)
= 1 (2.8)

which leads to the value α = (iλ)−1, as the result of the Fresnel integral. The final
expression is then:

Az(x, y) = A0(x, y) ∗ 1
iλz

exp
(

iπ
x2 + y2

λz

)
= A0(x, y) ∗Dz(x, y). (2.9)

The function Dz(x, y) behaves as the point-spread function (PSF) for the ampli-
tudes. It is separable in x and y:

Dz(x, y) = D0
z(x)D0

z(y) =
1√
iλz

exp iπ
x2

λz
· 1√

iλz
exp iπ

y2

λz
(2.10)

where D0
z(x) is normalized in the sense that

∫
D0

z(x)dx = 1. It is important to
note that Dz(x, y) is a complex function, essentially a quadratic phase factor, but
for the normalizing value iλz.

2.1.1 The Fresnel transform

Another form for the equation of free space propagation of the light can be obtained
by developing Equation (2.9) as follows

Az(x, y) =
1

iλz
exp

(
iπ

x2 + y2

λz

)
×∫∫ {

A0(ξ, η) exp
(

iπ
ξ2 + η2

λz

)}
exp

(
−2iπ

(
ξ

x

λz
+ η

y

λz

))
dξ dη.

(2.11)
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The integral clearly describes the Fourier transform of the function between brack-
ets for the spatial frequencies x/λz and y/λz. It is usually noted as:

Az(x, y) =
1

iλz
exp

(
iπ

x2 + y2

λz

)
Fz

[
A0(x, y) exp

(
iπ

x2 + y2

λz

)]
· (2.12)

Following Nazarathy & Shamir (1980), it is worth noting that the symbolFz can be
interpreted as an operator that applies on the function itself, keeping the original
variables x and y, followed by a scaling that transform x and y into x/λz and y/λz.
Although it may be of interest, the operator approach implies the establishment
of a complete algebra, and does not present, at least for the authors of this note,
a decisive advantage for most problems encountered in optics.

The Fresnel transform and the convolution relationship are strictly equivalent,
but when multiple propagations are considered, it is often advisable to write the
convolution first, and then apply the Fresnel transform to put in evidence the
Fourier transform of a product of convolution.

2.2 Filtering in the Fourier space

The convolution relationship in the direct plane corresponds to a linear filtering
in the Fourier plane. If we denote u and v the spatial frequencies associated with
x and y, the Fourier transform of Equation (2.9) becomes

Âz(u, v) = Â0(u, v).D̂z(u, v) (2.13)

where:
D̂z(u, v) = exp(−iπλz(u2 + v2)) (2.14)

is the amplitude transfer function for the free space propagation over the
distance z. Each spatial frequency is affected by a phase factor proportional to the
square modulus of the frequency. For the sake of simplicity, we will still denote
this function a modulation transfer function (MTF), although it is quite different
from the usual Hermitian MTFs encountered in incoherent imagery.

The use of the spatial filtering is particularly useful for a numerical computation
of the Fresnel diffraction. Starting with a discrete version of A0(x, y), we compute
its 2D Fast Fourier Transform (FFT) Â0(u, v), multiply it by D̂z(u, v) and take the
inverse 2D FFT to recover Az(x, y). We used this approach to derive the Fresnel
diffraction of the petaled occulter given in the last section of this paper.

Before ending this section, we can check that the approximations used there
do not alter basic physical properties of the wave propagation. To obtain the
coefficient α, we have used the fact that a plane wave remains a plane wave along
the propagation. The reader will also verify that a spherical wave remains also a
spherical wave along the propagation. This is easily done using the filtering in the
Fourier space. A last verification is the conservation of energy, i.e. the fact that
the flux of the intensity does not depend on z. That derives from the fact that the
MTF is a pure phase filter and is easily verified making use of Parseval theorem.
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Sinusoidal pattern

Fig. 3. Left: image of a two-dimensional sinusoidal pattern (Eq. (3.1)). The spatial

period is 1/m = 0.52 mm. Top right: optical Fourier tranform of the sinusoidal pattern

in the (u, v) plane. Bottom right: plot of the intensity of the optical Fourier transform

as a function of the spatial frequency u for v = 0.

3 Fresnel diffraction from a sinusoidal transmission

The particular spatial filtering properties of the Fresnel diffraction can be illus-
trated observing how a spatial frequency is modified in the free space propagation.
The experiment was presented at the CNRS school observing the diffraction of a
plate of transmission in amplitude of the form:

f1(x, y) = (1− ε) + ε cos(2π(mxx + myy)). (3.1)

The plate is a slide of a set of fringes. This transmission in fact bears three
elementary spatial frequencies at the positions {u, v} respectively equal to {0, 0},
{mx, my} and {−mx,−my}. For the simplicity of notations we assume in the
following that the fringes are rotated so as to make my = 0 and mx = m, and we
assume (1− ε) ∼ 1. The fringes and their optical Fourier transform are shown in
Figure 3. We describes further in the paper how the operation of Fourier transform
can be made optically.

As one increases the distance z, the fringes in the images almost disappear
and appear again periodically with the same original contrast. A careful obser-
vation makes it possible to observe an inversion of the fringes in two successive
appearances. This phenomenon is a consequence of the filtering by D̂z(u, v). The
frequencies at u = ± m are affected by the same phase factor exp−(iπλzm2),
while the zero frequency is unchanged. At a distance z behind the screen the
complex amplitude therefore expresses as

Uz(x, y) ∼ 1 + ε cos(2πmx) exp(−iπλzm2). (3.2)
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When λzm2 is equal to an integer number k, the amplitude is purely real and
equal to 1 ± ε cos(2πmx). When λzm2 = 1/2 + k, the amplitude modulation is
an imaginary term, and Uz � 1 ± iε cos(2πmx). For ε very small, the wavefront
is then almost a pure phase factor of uniform amplitude. It can be represented as
an undulated wavefront, with advances and delays of the optical path compared
to the plane wave. The wave propagates towards the z direction, continuously
transforming itself from amplitude to phase modulations, as illustrated in Figure 4.

The observed intensity is

Iz(x, y) ∼ 1 + 2ε cos(2πmx) cos(πλzm2). (3.3)

The fringes almost disappear for z = (k + 1/2)/(λm2), with k integer. They
are visible with a contrast maximum for z = k/(λm2), and the image is inverted
between two successive values of k.

At the CNRS school we have also shown the Fresnel diffraction of a Ronchi
pattern, a two dimensional square wave fR(x, y) made of alternate opaque and
transparent parallel stripes of equal width, as illustrated in Figure 5. Making use
of the Fourier series decomposition, we can write the square wave as a simple
addition of sinusoidal terms of the form:

fR(x, y) =
1
2

+
2
π

∞∑
n=0

1
2n + 1

sin(2π(2n + 1)mx). (3.4)

The complex amplitude Uz(x, y) at a distance z behind the Ronchi pattern is
simply obtained by the sum of the sine terms modified by the transfer function.
We have:

Uz(x, y) =
1
2

+
2
π

∞∑
n=0

1
2n + 1

sin(2π(2n + 1)mx) exp(−iπλz(2n + 1)2m2). (3.5)

As the wave propagates, each sinusoidal component experiences a phase modu-
lation depending on its spatial frequency. One obtains an image identical to the
Ronchi pattern when all the spatial frequencies in Uz(x, y) are phase-shifted by a
multiple of 2π. The occurrences of identical images are obtained for λzm2 = 2k,
as for the single sine term. This property is known as the Talbot effect.

4 Focusing screens and Fourier transform properties of lenses

The Fresnel transform makes easy to introduce the converging lens and its proper-
ties relative to the Fourier transform. To make the notations simpler, we assume
that the wavefront A0(x, y) is simply of the form A× f(x, y), where A stands for
an incident plane wave and f(x, y) is the transmission of a screen. Let us consider
that we can manufacture a phase screen with the following transmission:

Lφ(x, y) = exp
(
−i

π(x2 + y2)
λφ

)
(4.1)



46 New Concepts in Imaging: Optical and Statistical Models

1 

!ax
e 

im
ag

in
ai

re

axe reel

         exp -i zm2 

(a) 

(b) 

(c) 

(d) 

(e) 

z (c) (a) (b) (d) (e) 

(a, c, e) : 

(b, d) : 
Modul. Amplitude 

Modul. Phase 

U  (x,y)z

phase modul.

real axis

im
ag

in
ar

y 
ax

is

aamplitude modul.

Fig. 4. Illustration of the Fresnel diffraction of the sinusoidal mask (Eq. (3.1)) using

Equation (3.2). Top left: z positions (a), (c), (e) where the amplitudes become again

identical to the mask. Corresponding values for the distances are za = k
λm2 , zc = k+1

λm2 ,

ze = k+2
λm2 (k integer). Positions (b) and (d) correspond to almost pure phase modulation

(uniform intensity): zb = k+1/2

λm2 , zd = k+3/2

λm2 . Top right: illustration of Equation (3.2)

in the complex plane. Middle row: simulated images as seen at distances z = za, z =
1/4

λm2 , z = zb, z = zc and z = zd. Notice the contrast inversion between positions za

and zc. Bottom row: experimental images obtained with a sinusöıdal grid of frequency

m = 1/0.52 mm−1. From left to right: positions z = 0, z = 1/4

λm2 , z = zb and z = 3/4

λm2 .

Here again, the contrast inversion between the first and last images is visible.

that we affix to f(x, y). At the distance z = φ, Equation (2.12) shows that the
amplitude becomes exp(iπ x2+y2

λφ )f̂( x
λφ , y

λφ ), and the intensity appears here as a
scaled Fourier transform of f(x, y).

In the absence of screen (or f(x, y) = 1), the diffracted amplitude is propor-
tional to a Dirac function δ(x, y), which explicits the focusing effect of a perfect
lens on the axis. Such a phase screen is a converging lens (a thin piece of glass
formed between a plane and a sphere gives the desired transmission), or a parabolic
mirror of focal length φ.
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Ronchi pattern

Fig. 5. Left: image of a Ronchi pattern. The period if 1/m = 0.86 mm (see Eq. (3.4)).

Top right: optical Fourier tranform of the sinusoidal pattern in the (u, v) plane. Bottom

right: intensity of the optical Fourier transform as a function of the spatial frequency

u for v = 0. Note that the even harmonics of the frequency m are present, while they

should not with a perfect Ronchi pattern with identical widths of white and black strips.

The phase factor exp(iπ x2+y2

λφ ) which remains in this focal plane corresponds
to a diverging lens L−φ(x, y). It can be cancelled adding here a converging lens of
focal length φ. So, a system made of two identical converging lenses of focal length
φ separated by a distance φ optically performs the exact Fourier transform of the
transmission in amplitude of a screen. Such a device is called an optical Fourier
transform system. This property becomes obvious if we re-write the Fresnel trans-
form of Equation (2.12) making explicit the expression corresponding to diverging
lenses:

Az(x, y) =
1

iλz
L−z(x, y) Fz[A0(x, y)L−z(x, y)]. (4.2)

It is clear here that for the optical Fourier transform system the two converging
lenses cancel the diverging terms of propagation. Another similar Fourier trans-
form device can be obtained with a single converging lens of focal length φ, setting
the transmission f(x, y) in front of it at the distance φ and observing in its focal
plane. Such systems have been used to perform image processing, as described by
Françon (1979).

It is important to note that phase factors disappear also when the quantity of
interest is the intensity, as for example in incoherent imagery (see Sect. 6). Optical
Fourier transforms were actually used in the past to analyse speckle patterns at
the focus of large telescopes (Labeyrie 1970).
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4.1 Focusing screens with a real transmission

It is possible to make screens of real transmission (between 0 and 1) acting as
converging lenses. For that, the transmission of the screen must contain a term
similar to Lφ(x, y). To make its transmission real, we can add the transmission of
a diverging lens L−φ(x, y). Doing so we get a cosine term. It is then necessary to
add a constant term and use the right coefficients to make the transmission of the
screen between 0 and 1. We result in:

sφ(x, y) =
1
2

+
1
4
{Lφ(x, y) + L−φ(x, y)} =

1
2

+
1
2

cos
(

π(x2 + y2)
λφ

)
· (4.3)

Such a screen acts as a converging lens of focal length φ, but with a poor trans-
mission (1/4 in amplitude, 1/16 in intensity). It will also act as a diverging lens
and as a simple screen of uniform transmission. A different combination of lenses
leads to a transmission with a sine term.

The variable transmission of such screens is very difficult to manufacture with
precision. It is easier to make a screen of binary transmission (1 or 0). This can
be done for example by the following transmission:

Sφ(x, y) =
1
2

+
2
π

∞∑
n=0

1
2n + 1

sin
(

π(2n + 1)
x2 + y2

λφ

)
=

1
2
+

1
iπ

∞∑
n=0

1
2n + 1

{
exp

(
iπ(2n + 1)

x2 + y2

λφ

)
− exp

(
−iπ(2n + 1)

x2 + y2

λφ

)}

=
1
2

+
i

π

∞∑
n=0

1
2n + 1

{Lφ/(2n+1)(x, y)− (L−φ/(2n+1)(x, y)}.

(4.4)

The transmission of such a screen is given in Figure 6 (top left). Its efficiency to
focus in the plane z = φ is slightly improved (from 1/4 to 1/π) at the expense of
an infinite number of converging and diverging lenses (of focal lengths φ/(2n+1)).
A few of these ghost focal planes are shown in Figure 6 (experimental results).

These systems may found interesting applications at wavelengths for which
it is difficult to manufacture classical lenses or mirrors. It is interesting to note
that screens based on this principle have been proposed also for astronomical
applications in the visible domain by Koechlin et al. (2009).

5 Fresnel diffraction and shadowing in astronomy: Application
to coronagraphy

5.1 Fresnel diffraction with complementary screens

Let us consider two complementary screens of the form t(x, y) and 1 − t(x, y).
The amplitude diffracted by the complementary screen is 1 minus the diffracted
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Fig. 6. Top row, from left to right: image of a Soret screen, intensity distribution in

the plane z = φ and z = φ/3 (corresponding to the focal planes of the lenses Lφ/(2n+1)

for n=0,1 in Eq. (4.4)). Bottom row: intensity distribution at z = φ/5, z = φ/7 and

z = φ/9 (terms n=2,3,4 of the sum). The intensity of the central spot decreases with n

as predicted.

amplitude from t(x, y). Indeed, at a distance z, we have for an incident plane wave
of unit amplitude:

(1− t(x, y)) ∗Dz(x, y) = 1− t(x, y) ∗Dz(x, y) (5.1)

a property which is sometimes confused with Babinet’s principle in the literature
(see Cash 2011, for example).

5.2 Diffraction with rectangular apertures

The diffraction of rectangular diaphragms (infinite edge, slit, square or rectangle)
can be easily computed making use of the separability in x and y of these functions
and the corresponding properties of the convolution. Indeed, if the transmission
t(x, y) can be written as tx(x)× ty(y), then:

Dz(x, y) ∗ t(x, y) = D0
z(x) ∗ tx(x) ×D0

z(y) ∗ ty(y). (5.2)

In these cases, many problems find a solution using the Fresnel integrals C(x) and
S(x), that can be defined as:

F (x) = C(x) + iS(x) =
∫ x

0

exp
(

i
t2

2

)
dt. (5.3)
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Fig. 7. Left: normalized intensity and right: phase (unwrapped) of the Fresnel diffraction

of an infinite edge H(x), outlined in the left figure. The observing plane is at 1 m from

the screen, the wavelength is 0.6 μm. The x-axis is in mm.

The complex amplitude diffracted by an edge is obtained computing the convolu-
tion of Dz(x, y) with the Heaviside function H(x) for all x and y (we may denote
its transmission as t(x, y) = H(x)× 1(y) for clarity). We have:

AH(x, y) = Dz(x, y) ∗H(x) = D0
z(x) ∗H(x) =

1
2

+
1√
2i

F

(
x

√
2
zλ

)
· (5.4)

The intensity and the phase of the wave are given in Figure 7. The intensity is
very often represented in Fresnel diffraction, but this is not the case for the phase.
The rapid increase of phase in the geometrical dark zone may be heuristically
interpreted as a tilted wavefront, the light coming there originating from the bright
zone.

Similarly, the free space propagation of the light for a slit of width L can
be directly derived from the above relation assuming that the transmission is
t(x, y) = H(x + L/2)−H(x− L/2). We have:

AL+(x, y) =
1√
2i

{
F (

2x + L√
2λz

)− F (
2x− L√

2λz
)
}

(5.5)

where the subscript L+ stands for a clear slit of width L. Graphical representations
of the corresponding intensity and phase are displayed in Figure 8.

As already written, the Fresnel diffracted amplitude from the complementary
screen can be obtained as 1 minus the diffracted amplitude from the slit. It can
be also be written as the sum of the diffraction of two bright edges H(x − L/2)
and H(−x − L/2). Then it is clear that ripples visible in the shadow of the slit
are due to phase terms produced by the edges. We have:

AL−(x, y) = 1− 1√
2i

{
F

(
2x + L√

2λz

)
+ F

(
2x− L√

2λz

)}
=

1√
2i

F

(−2x− L√
2λz

)
+

1√
2i

F

(
2x− L√

2λz

)
(5.6)

where L− stands for an opaque strip of width L.
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Fig. 8. Fresnel diffractions (in intensity) of a transmitting slit (left) and an opaque slit

(right) of width 1 mm (slits are outlined in the figures). Observing planes are at 0.3 m

(red), 1 m (blue) and 3 m (dashed) from the screen, the wavelength is 0.6 μm.

Fig. 9. Fresnel diffraction (left: amplitude, right: phase) of a square occulter of side 50 m

at 80 000 km, with λ = 0.6 μm. The region represented in the figures is 100 m × 100 m.

The color scale for the amplitude (black, white, blue, red) is chosen so as to highlight the

structures in the dark zone of the screen. The color scale for the phase is blue for −π,

black for 0 and red for +π (the phase is not unwrapped here).

A transmitting square (or rectangle) aperture can be written as the prod-
uct of two orthogonal slits. Therefore the Fresnel diffraction of the open square
AL2+(x, y) is the combination of two Fresnel diffractions in x and y. This prop-
erty of separability is no longer verified for the diffraction of the opaque square
AL2−(x, y), which transmission must be written as 1 minus the transmission of
the open square. We have:

AL2+(x, y) =ALx+(x, y)×ALy+(x, y)
AL2−(x, y) =1−AL2+(x, y). (5.7)

We give in Figure 9 an example of the amplitude and phase of the wave in the
shadow of a square occulter of 50×50 meters at a distance of 80 000 km, and that
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could possibly be used for exoplanet detection. These parameters are compatible
with the observation of a planet at about 0.1 arcsec from the star (a Solar – Earth
system at 10 parsec) with a 4-m telescope. It is however interesting to note the
strong phase perturbation in the center of the shadow, while it is almost zero
outside. In such an experiment, the telescope is set in the center of the pattern to
block the direct starlight, and the planet is observable beyond the angular dark
zone of the occulter. The level of intensity in the central zone is of the order of
10−4 of that of the direct light. This is still too bright to perform direct detection
of exoplanets: the required value is 10−6 or less. To make the shadow darker it
would be necessary to increase the size of the occulter and the distance between
the occulter and the telescope.

5.3 Fresnel diffraction with a circular occulter: The Arago-Poisson spot

The transmission of a circular occulter of diameter D can be written as 1−Π(r/D),
where r =

√
x2 + y2, and Π(r) is the rectangle function of transmission 1 for

|r| < 1/2 and 0 elsewhere. Since the occulter is a radial function, its Fresnel
diffraction is also a radial function that can be written as:

AD(r) = 1− 1
iλz

exp
(

iπ
r2

λz

)∫ D/2

0

2πξ exp
(

iπ
ξ2

λz

)
J0

(
2π

ξr

λz

)
dξ (5.8)

where J0(r) is the Bessel function of the first kind. Here again, the Fresnel diffrac-
tion from the occulter writes as 1 minus the Fresnel diffraction of the hole. At the
center of the shadow we have AD(0) = exp[iπD2/(4λz)] and we recover the value
of 1 for the intensity.

Obtaining the complete expression of the wave for any r value is somewhat
tricky. The integral of Equation (5.8) is a Hankel transform that does not have a
simple analytic solution. A similar problem (the wave amplitude near the focus
of a lens) has been solved by Lommel, as described by Born & Wolf (2006). It
is possible to transpose their approach to obtain the Fresnel diffraction from a
circular occulter.

After a lot of calculations, we obtain the result in the form of alternating
Lommel series for the real and imaginary parts of the amplitude. The result can
be represented in a concise form as:

Ψ(r) =

r < D/2 : A exp
(

i
πr2

λz

)
exp

(
i
πD2

4λz

)
×

∞∑
k=0

(−i)k

(
2r

D

)k

Jk

(
πDr

λz

)
r = D/2 :

A

2

[
1 + exp

(
i
πD2

2λz

)
J0

(
πD2

2λz

)]
r > D/2 : A−A exp

(
i
πr2

λz

)
exp

(
i
πD2

4λz

)
×

∞∑
k=1

(−i)k

(
D

2r

)k

Jk

(
πDr

λz

)
·

(5.9)
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Two expressions are needed to ensure the convergence of the sum depending on
the value of 2r/D compared to 1. The convergence is fast except for the transition
zone around r ∼ D/2, and luckily there is a simple analytical form there. An
upper bound of the series limited to n terms is given by the absolute value of the
n + 1 term, according to Leibniz’ estimate.

An illustration of this formula is given in Figure 10 for an occulter of diameter
50 m, observed at a distance of 80 000 km, at λ = 0.55 μm, which corresponds to
data for the exoplanet case. For this figure, we computed the series for 100 terms,
which can be rapidly done using Mathematica (Wolfram 2012) and gives a suffi-
cient precision everywhere. The Arago spot is clearly visible at the center of the
diffraction zone. For r � D, the amplitude is fairly described by the only non-zero
term of the Lommel series that is the Bessel function J0(πrD/(λz)). Its diameter
is approximately 1.53λz/D.

As mentioned in the introduction, Arago’s experience was reproduced during
the CNRS school of June 2012. Fresnel diffraction patterns (intensity) of a small
occulter, reproduced in Figure 1 show the Arago spot at their center.

Thus a circular screen is not a good occulter.
For the detection of exoplanets, several projects envisage petaled occulters

(Arenberg et al. 2007; Cash 2011) and we give an illustration of the performances
in Figure 11. The analytic study of circular occulters remains however of interest
for solar applications. Indeed, because of the extended nature of the solar disk, it
seems difficult to use shaped occulters there, even if serrated edge occulters have
been envisaged for that application (Koutchmy 1988).
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Fig. 10. Fresnel diffraction of an occulter of diameter 50 m, observed at a distance of

80 000 km, at λ = 0.55 μm. Left: 2D intensity, top right: central cut of the intensity,

bottom right: central cut of the unwrapped phase. Notice the strong Arago spot at the

center of the shadow and the important phase variation.
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Fig. 11. Fresnel diffraction of an occulter with a petal shape. From left to right: the

occulter, the intensity (×10) in the shadow and the phase. The parameters are the same

as in Figure 10 D = 50 m, z = 80 000 km, λ = 0.55 μm. The shadow at the center of the

screen is much darker (no Arago spot) and the phase variation is weak there.

Fig. 12. Numerical 3D representation of the PSF (left), here an Airy function, and the

corresponding OTF (right) of a perfect telescope with a circular entrance aperture.

6 Application to incoherent imaging in astronomy

The formation of an image at the focus of a telescope in astronomy can be di-
vided into two steps, one corresponding to a coherent process leading to the point
spread function (PSF) and the other corresponding to a sum of intensities, e.g. an
incoherent process. Equation (4.2) makes it possible to write the PSF observed
in the focal plane of the telescope as a function of the spatial (x, y) or angular
(α = x/φ, β = y/φ) coordinates. For an on-axis point-source of unit intensity, we
have:

Rφ(x, y) =
1

Sλ2φ2

∣∣∣∣P̂ (
x

λφ
,

y

λφ

)∣∣∣∣2
R(α, β) =

1
Sλ2

∣∣∣∣P̂ (
α

λ
,
β

λ

)∣∣∣∣2 (6.1)

where φ is the telescope focal length and P (x, y) is the function that defines the
telescope transmission. Aberrations or other phase defaults due to atmospheric
turbulence can be included in the term P (x, y). The division by the surface area
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Fig. 13. Example of PSFs shown during the CNRS school using a simple optical setup.

Top, circular apertures, bottom, corresponding PSFs. Note the inverse relationship be-

tween the size of the PSF and the aperture diameter.

S of the telescope allows the calculation of a normalized PSF. The normalizing
coefficients ensure the energy conservation of the form:∫∫

Rφ(x, y) dxdy =
∫∫

R(α, β) dαdβ =
1
S

∫∫
|P (ξ, η)|2 dξdη = 1. (6.2)

We have made use of Parseval theorem to write the last equality. For a telescope
of variable transmission, see Aime (2005).

It is convenient to consider angular coordinates independent of the focal length
of the instrument. Each point of the object forms its own response in intensity
shifted at the position corresponding to its angular location. This leads to a
convolution relationship. The focal plane image is reversed compared to the object
sense. By orienting the axes in the focal plane in the same direction as in the sky,
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Fig. 14. From left to right: aperture, PSF and MTF. For the sake of clarity, the MTF

corresponding to the 18-aperture interferometer is drawn for smaller elementary apertures

than those of the left figure.

we obtain:

I(α, β) = O(α, β) ∗R(−α,−β) (6.3)
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where O(α, β) is the irradiance of the astronomical object. The Fourier transform
of R(−α,−β) gives the optical transfer function (OTF) T (u, v):

T (u, v) = F [R(−α,−β)] =
1
S

∫ ∫
P (x, y)P ∗(x− λu, y − λv)dxdy (6.4)

where u and v are the angular spatial frequencies.
For a perfect circular aperture of diameter D operated at the wavelength λ,

the PSF becomes the following radial function of γ:

R(α, β) = R(γ) =
(

2
J1(πγD/λ)

πγD/λ

)2
S2

λ2
(6.5)

where γ =
√

α2 + β2, and the OTF is the radial function of w =
√

u2 + v2:

T (u, v) = T(w) =
2
π

⎛⎝arccos
(

λw

D

)
− λw

D

√
1−

(
λw

D

)2
⎞⎠ · (6.6)

This expression is obtained computing the surface common to two shifted discs.
The OTF looks like a Chinese-hat, with a high frequency cutoff wc = D/λ.

Examples of PSFs for various apertures presented during the CNRS school
are given in Figure 14. The corresponding MTFs shown in the same figure are
computed numerically.

7 Conclusion

This presentation aimed at introducing the formalism for Fresnel’s diffraction the-
ory, widely used in optics and astronomy.

Besides analytical derivation of basic relationships involving instrumental pa-
rameters, visual illustrations using laboratory demonstrations are given, as was
presented during the CNRS school. Most of these are basic in the field of image
formation and are frequently met in astronomy. A few of them concerning the
shadows produced by the screens are seldomly addressed in the astronomical lit-
erature up to now, though they presently are emerging topics. Demonstrations
are made using laboratory material for students in Physics: a laser and a beam
expander, various transmitting or opaque screens and a detector.

The paper begins with a historical background leading to the current context.
Then analytical derivations, based on the Huyghens-Fresnel principle, using wave-
fronts and complex amplitudes are presented, providing expressions for the free
space propagation of light. Plenty use is made of convolution relationships and
filtering aspects.

Fresnel’s diffraction is illustrated through some situations, such as the propa-
gation after a screen with sinusoidal transmission function, or such as shadowing
produced by occulters set on the pointing direction of a telescope for coronagra-
phy. Here are met such effects as the so-called Poisson-Arago spot, and diffraction
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by sharp edges (rectangular or circular screens). The use of focusing screens have
been considered as well. Along that way, expressions of diffracted amplitudes are
given for various shapes of apertures. Then, the Fourier transform properties of
lenses and binary screens (made of transparent and opaque zones, i.e. transmission
function being 0 or 1 accordingly) are presented.

The paper ends with a section describing incoherent imaging in astronomy and
dealing with PSFs (intensity response of the instrument to a point-like source)
and MTFs (a link with linear filtering). Images of PSFs obtained with the demon-
stration set-up, are presented for various shapes and configurations of collecting
apertures: from single disk to diluted apertures (several sub-pupils) as used in
aperture synthesis with several telescopes. Besides, illustrations for associated
MTFs are obtained by computation.

The paper could hopefully be used either as a reminder or as an introduction
to the basics of the image formation process in the context of diffraction theory.

The authors wish to thank Dr S. Robbe-Dubois for her critical reading of the manuscript.
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ASTRONOMICAL IMAGING... ATMOSPHERIC
TURBULENCE? ADAPTIVE OPTICS!

M. Carbillet1

Abstract. This course/paper deals with adaptive optics in the frame-
work of astronomical imaging. It does not pretend to be an exhaustive
course of astronomical adaptive optics. It is rather intended to give an
introductory overview of it, from my very partial point-of-view.

1 Preamble: Images & turbulence

The image formed at the focus of ground-based telescopes is perturbed mainly by
the last 10–20 km traveled by the light from the observed astronomical object,
when propagating through the turbulent atmosphere. One has for the resulting
image, and at the same time: scintillation, agitation, and spreading.

Scintillation is due to fluctuations of the global intensity of the image, this
is the easily observed twinkling of stars. Agitation is the global variation of the
photocenter of the formed image, which is due to tip and tilt of the incoming
wavefront. Finally, spreading is due to the loss of spatial coherence of the incoming
wavefront.

1.1 Object-image relationship

The object-image relationship which links the illumination I(α), in the focal plane
of the telescope, where α is a bidimensional angular vector describing the line of
sight, to the luminance O(α) of the object in the sky is a convolution implying
the point-spread function (PSF) S(α) of the ensemble telescope⊕atmosphere:

I(α) = O(α) ∗ S(α). (1.1)

This relationship is valid notably at the condition that the system is invariant by
translation, i.e. everything happens within the isoplanatic domain...
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Fig. 1. Example of atmospherically-perturbed PSFs observed at the focus of a large

ground-based telescope. From left to right: “ideal” Airy disc, long-exposure actually-

observed PSF, and short-exposure actually-observed PSF. (From Carbillet 1996.)

Figure 1 shows an example of atmospherically-perturbed PSFs that can be
observed at the focus of a ground-based telescope. The difference between the
expected “ideal” Airy disc, the long-exposure actually-observed PSF (i.e. the
image of an unresolved object), and the short-exposure actually-observed PSF
(a speckle image) is dramatic. The Airy disc is showing a core of full-width at
half-maximum (FWHM) λ/D, where λ is the observing wavelength and D the
telescope diameter. The long-exposure actually-observed PSF is showing a core
of FWHM λ/r0, where r0 is the typical size of the spatial coherence cells at the
entrance of the telescope pupil (also called Fried parameter and detailed latter on
– see next subsection). And the short-exposure actually-observed PSF is showing
a speckle pattern which is changing very rapidly due to the time behavior of the
turbulence.

1.2 Some basic numbers

Some basic numbers concerning the physical parameters driving the spatial and
temporal behaviors of the atmospheric turbulence have to be remembered, in par-
ticular with respect to the observing wavelength λ.

Concerning spatial coherence, the basic factor over which everything is then
built is the well-known Fried parameter r0. This fundamental parameter directly
gives the resulting angular resolution at the focal plane of the telescope: λ/r0,
quantity which is clearly independent of the telescope diameter D (as far as D
is greater than r0). In addition, r0 being weakly dependent on the observing
wavelength λ (in fact r0 is proportional to λ6/5), this angular resolution (i.e. the
FWHM of the resulting PSF) is roughly independent of λ too. Writing down
numbers, a typical r0 of 10 cm in the visible (at 500 nm) would correspond to
60 cm in the K band (2.2 μm) and both would roughly correspond to a FWHM
of the PSF of ∼1 arcsec.

Concerning temporal coherence, the basic physical limitation comes this time
from atmospheric turbulence layers velocity v, leading to an evolution time τ0 �
r0/v. As it can be seen, τ0 is independent of D but strongly dependent on λ.
Typically τ0 � 3 ms at a wavelength of 500 nm and 18 ms at 2.2 μm.
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Fig. 2. Atmospheric turbulence. Left: typical atmospherical turbulent profile from a

Mount Paranal site testing campaign (Sarrazin 1996). Top right: two 24 m × 24 m

modeled Kolmogorov/von Kármán turbulent layers, in terms of optical path difference.

Bottom right: resulting wavefront propagated through these turbulent layers and to an

8-m telescope pupil. (From Carbillet 2006.)

Figure 2 shows a typical atmospherical turbulence profile, where layers are
clearly identifiable, together with the representation of two modeled
Kolmogorov/von Kármán turbulent layers and the resulting wavefront propagated
through these turbulent layers and to the telescope pupil.

1.3 Some basic equations

The wavefront (measured in meters) is, by definition, proportional to the phase
Φ(r) (measured in radians) by a factor λ

2π . And Φ(r) is itself linked to the wave
Ψ(r), which traveled through the turbulent atmosphere, by the relation:

Ψ(r) = A(r) exp ıΦ(r), (1.2)

where A is the amplitude of the wave and r the bidimensional coordinate. More-
over, the phase Φ(r) can be decomposed on a polynomial basis, like for example
the Zernike one, such as:

Φ(r) =
∑

i

aiZi(r), (1.3)

where Zi(r) represents the i-th Zernike polynomial and ai its related coefficient.
In addition to this general definition of wavefront and phase, one has to consider

at least the principal equations which are ruling the atmospheric turbulence. The
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first one concerns the Fried parameter r0, which is defined as (Roddier 1981):

r0 = 0.185 λ
6
5 cos γ

3
5

[∫ ∞

0

C2
n(z)dz

]− 3
5

, (1.4)

where γ is the zenith angle and C2
n(z) is the structure constant of the fluctuations

of the air refraction index n, which characterizes the optical energy of turbulence
in function of the altitude z.

A number of typical parameters characterizing the resulting speckle pattern
can be then deduced from it, such as the typical coherence time τ , defined as
(Roddier 1981):

τ0 = 0.36
r0

v
, (1.5)

or alternatively (Aime et al. 1986):

τ0 = 0.47
r0

v
, (1.6)

where v is the mean velocity of the turbulent layers forming the turbulent atmo-
sphere (weighted by the turbulence profile C2

n(z)); but also the resulting “seeing”:

ε = 0.98
λ

r0
; (1.7)

and the typical isoplanatic patch:

θ0 = 0.36
r0

h
, (1.8)

where h is the mean height of the turbulent layers (weighted as well by the turbu-
lence profile C2

n(z)).
Finally, the wavefront perturbed by the turbulent atmosphere has a power spec-

tral density which is classically modeled by (within the Kolmogorov/von Kármán
model):

Φφ(ν) = 0.0228 r
− 5

3
0

(
ν2 +

1
L2

0

)− 11
6

, (1.9)

where ν is the spatial frequency and L0 is the outer scale of turbulence (with a
typical median value of 20-30m for mid-latitude sites).

1.4 The craftiness of speckle imaging and Lucky Imaging

Before that the use of adaptive optics (AO) became a common thing for astronomy
(since the first very convincing results of the mid-90’s of last century), speckle
imaging techniques were used in order to obtain high-angular resolution (HAR)
images on large ground-based telescopes in the visible and near-infrared domains.
A number of results were obtained, using first the pioneering visibility technique
proposed by Labeyrie (Labeyrie 1970) and various others in the following – from
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the somehow raw shift-and-add technique (Worden et al. 1976) to more refined
ones offered by bispectral imaging (Weigelt 1977), probability imaging (Aime 1987;
Carbillet et al. 1998), cross-correlation (Aristidi et al. 1997) and others. The main
idea under these techniques is that atmospheric perturbations can be frozen if the
time exposure is less than τ0, and then some statistical invariant can be computed
on a series of such short-exposure images in order to retrieve informations about
the observed object.

Note that a selection of images can be done in order to select the best ones from
a series of observations. Such observations were usually made of some thousands of
images of a few milliseconds exposure, as many of the object that of an unresolved
reference star, in order to obtain an estimate of the quantity which is computed
also for the object images – e.g. spectrum, bispectrum, high-order probability
density function, etc.. This idea is also basically the one under the Lucky Imaging
(LI) technique (Baldwin et al. 2001) wich is commonly used since the advent
of almost-readout-noise-free Electron-Multiplying CCD (EMCCD) detectors, and
that is considered also for post-AO images (Mackay et al. 2012) for short (visible)
wavelengths (were the AO correction is, at least for now, very partial).

2 Adaptive optics

The main problem of the previously described techniques is that the exposure
time is limited, especially when considering classical CCD readout-noise-limited
detectors, limiting hence sensitivity, signal-to-noise ratio, limiting magnitudes, and
the like. Unlike AO, which in principle permits long exposure images (or spectra,
or any other kind of data).

2.1 Some basic numbers

AO being designed to compensate atmospheric turbulence, the numbers evoked
before (in terms of r0 and τ0) are directly the first bricks of any AO instrument
study. The typical size d of each correcting element of a deformable mirror (DM)
aimed to compensate the turbulence effects on the propagated wavefront, it hence
follows that d � r0. As a consequence the total number of correcting elements
becomes roughly (D/r0)2 which, with D � 10 cm, is translated into approximately
7500 elements for a correction in the visible band, and 200 elements in K band.
The same typical numbers are valid not only for correction (i.e. for the DM) but
also, indeed, for what concerns the sensing of the incoming wavefront, through a
given device (a wavefront sensor – WFS).

Temporal aspects are also very critical, since one would need to sample atmo-
spheric turbulence at, let me say, a tenth of τ0. This leads to typical temporal
frequencies for the whole AO system of 1 kHz at 500 nm and 200 Hz at 2.2 μm.

Figure 3 schematizes the operation of a typical AO system: a perturbed wave-
front enters the telescope, is reflected on a DM, sent to a beamsplitter dividing
the light dedicated to the scientific device (a CCD, a spectrometer, whatever) and
a WFS from which the collected information (e.g. spot centroids for computing
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Fig. 3. AO system concept. Left: the incoming wavefront. Center: the DM shape,

resulting from the commands sent from the wavefront reconstructor after analysis of the

information collected from the WFS. Right: the resulting wavefront, after reflection of

the input wavefront on the DM. (From Carbillet 2006.)

local wavefront slopes) is sent to a wavefront reconstructor that will elaborate DM
commands from.

2.2 The great variety of AO “concepts” and their observational reasons

We easily understand from the previous section that observing at HAR, at least
with a monolithic telescope and not considering speckle techniques, needs an AO
system, and that this AO system has to be dimensioned in function of the observing
wavelength considered.

This is true but makes abstraction of a number of problems. The first of all is
the number of photons necessary for wavefront analysis, or sensing. The analysis
temporal frequency being necessarily very high (between 200 Hz and 1 kHz in the
illustration numbers given before), very bright stars are mandatory, dramatically
reducing the portion of sky available for astrophysical observations (sky coverage).

One goal would then be to overcome this limitation in some way and have a
100% sky coverage. This is the goal of laser-guide-star (LGS) AO systems, which
aim is to provide a sufficiently bright star in any direction of the sky, the closer
possible to the observed object (Labeyrie & Foy 1985). These artificial AO guide
stars, are usually formed either from backscattering of the atmospheric sodium
layer (situated at an altitude of 90–100 km) or from Rayleigh scattering of the
lower atmosphere (up to �40 km). This technique rises a number of additional
problems, from the huge necessary power of the employed laser itself, to effects
linked to the fact that the star is formed at a finite distance from the telescope,
that it is clearly extended, and that tip-tilt is hardly sensed (the same tip-tilt
being encountered in the upwards and subsequent downwards propagation).

A second problem which had been darkened till here is the problem of anisopla-
natism, and hence very limited field of correction in which observing astrophysical
objects around a suitable AO guide star. In order to limit this error and permit to
decently observe faint objects a solution is to take advantage from a given number
of possible surrounding guide stars nearby the interesting astrophysical object,
hence considering multiple-reference AO systems. Such systems can be declined
into at least three categories: multi-conjugate AO (MCAO) systems, ground-layer
AO (GLAO) systems, and multiple-objects AO (MOAO) systems.
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MCAO systems aim at (partially) correct various layers of the turbulent at-
mosphere via DMs conjugated at different altitudes. At the opposite, GLAO is
mono-conjugate and, in a simpler manner, aims at giving images (or spectra)
corrected from the ground-layer turbulence only, since a great part of turbulence
usually takes place within this layer. More peculiar, MOAO aims at correcting
small fields in some directions of interest, within a much larger sensed field, through
dedicated mirrors (one per direction of interest) and a global multiple-reference
wavefront sensing.

Finally, the need to observe at very high-contrast levels in addition to HAR
leads to the so-called “eXtreme” AO (XAO) systems, in which the basic concept
is identical to a standard AO system, but each single component is pushed to its
ultimate capacities and the whole system needs to break a number of conceptual
and technological barriers.

2.2.1 Importance of the observational goal

A given class of astrophysical objects has its own observational priorities, such as
the need to be directly detected and possibly spectrally characterized even at very
low spectral resolution in the case of exoplanets, or for faint galaxies to obtain its
precise morphology. As a consequence, this leads to consider the correspond-
ing dominant AO errors (anisoplanatism in the faint-galaxies case, everything
but anisoplanatism in the exoplanets case), and hence implies to consider ad hoc
AO system concepts... for the present two examples: clearly MCAO, GLAO, or
MOAO, possibly LGS-based, for the faint galaxies, and XAO for the exoplanets.

2.3 The post-adaptive-optics error budget

The post-AO error budget, in terms of variance integrated over the whole wave-
front, is easily modeled by the following equation:

σ2
post−AO = σ2

atmosphere + σ2
AO system + σ2

others, (2.1)

where three basic quantities are present: the atmospheric error not considered
by the AO system (σ2

atmosphere), the residual error from the AO system itself
(σ2

AO system), and finally other types of error neither due to the atmosphere nor to
the AO system (σ2

others). Let me now have a detailed look into these three error
terms.

2.3.1 Errors not due to the (limited) adaptive optics correction

Independently from the AO system considered, a number of errors, from both the
physics of the (turbulent) atmosphere and the telescope/instrument are present.
For what concerns the instrumental part the remaining error can be detailed as
follows:

σ2
others = σ2

calibration + σ2
aberrations + . . . (2.2)
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where we see that this error is mainly coming from aberrations within the light
path not seen by the AO system (σ2

aberrations), but also from possible calibration
errors (σ2

calibration).
For what concerns the atmospheric effects, a number of them are not corrected

at all by a standard AO system, as it is the case simply for scintillation, diffraction
effects, chromatic effects, and indeed anisoplanatism, leading to:

σ2
atmosphere = σ2

scintillation + σ2
diffraction + σ2

chromatism + σ2
anisoplanatism. (2.3)

Note that, in another hand, anisoplanatism is the main enemy when looking for
wide-filed images, or simply faint objects far from a bright guide star.

2.3.2 Errors due to the (limited) adaptive optics correction

Within the AO-system error budget, a number of error sources can be identified,
leading to the following formulation:

σ2
AO system = σ2

fitting + σ2
aliasing + σ2

measure + σ2
temporal

+ σ2
LGS + σ2

MCAO. (2.4)

We will not detail here the last two terms which are strictly relevant to a LGS-based
AO system (σ2

LGS) and an MCAO system (σ2
MCAO), respectively. Other specific

errors can be defined if a specific AO system is considered.

Fitting Error. The first term of Equation (2.4) concerns the correction itself:
σ2

fitting. It translates the fact that a limited range of spatial frequencies, and hence
atmospheric turbulence modes, can be physically corrected by the mirror, and then
the possible mirror modes. The reason is obvious and is simply linked to the total
number of actuators building up the considered mirror. This error is consequently
expressed in function of the ratio between the inter-actuators mean distance dDM

and the Fried parameter r0 (in the imaging band considered):

σ2
fitting ∝

(
dDM

r0

) 5
3

, (2.5)

the exact coefficient of proportionality depending on the mirror construction itself
and its ability to mimic atmospheric deformations.

Note that it is worthwhile to look at this error not only in terms of global
average over the DM, but also in terms of spatial distribution, especially for seg-
mented DMs. Figure 4 shows an example of the computed fitting error for the
adaptive mirror M4 studied for the European Extremely Large Telescope (EELT),
for median turbulence conditions (i.e., roughly speaking, the median value of r0)
for the EELT site.
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Fig. 4. Mean map of the residual rms wavefront, from which the fitting error can be

deduced, for the adaptive mirror M4 of the EELT. (From Carbillet et al. 2012.)

Aliasing Error. The second error term of Equation (2.4) regards aliasing and is
due to the WFS. Like the DM is limited by its finite number of actuators, the WFS
is limited by its finite number of wavefront analysis elements (either the number
of lenslets in the case of a Shack-Hartmann Sensor (SHS) or the number of pixels
analyzing each of the 4 pupil images in the Pyramid Sensor (PS) case). Hence
a problem of aliasing clearly appears because of the unseen spatial frequencies.
Supposing that the physical size of the analysis elements of the WFS is dWFS, one
has here also:

σ2
aliasing ∝

(
dWFS

r0

) 5
3

. (2.6)

Let me note that very often dWFS � dDM, but also that the geometry can still be
completely different (e.g. circular for the DM and square for the WFS).

Measurement Error. The third term of Equation (2.4) is also related to the
WFS, and more precisely to the measurement itself done by the WFS. This is
a classical problem of light detection by a CCD device, where σ2

measure can be
written:

σ2
measure = σ2

photonization + σ2
read−out + σ2

dark−current + . . . (2.7)

where the classical σ2
photonization error is clearly inversely proportional to the num-

ber of photons available Nphotons:

σ2
photonization ∝

(
1

Nphotons

)
, (2.8)
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and where the read-out noise (RON) error expresses in function of Nphotons and
the associated variance σ2

e in terms of electrons/frame/second as:

σ2
read−out ∝

(
σ2

e

N2
photons

)
. (2.9)

Note that other minor errors such as the dark-current one can be considered
too, and that almost-RON-free detectors such as EMCCDs (Electron-Multiplying
CCDs) present in counterpart an “exotic” noise characterized by a Gamma distri-
bution (instead of a Poisson distribution for the photon noise or a Gaussian one
for the RON, see Carbillet & Riccardi 2010).

Temporal Error. Last term evoked in Equation (2.4) is the one related to the
global AO system temporal error, due to the simple fact that between the instant
in which a given wavefront reflects on the DM and the instant in which it can be
corrected by it (after measuring by the WFS, computing of the commands by the
reconstructor and application of those commands by the DM), some milliseconds
are usually gone. This error is indeed dependent on the turbulence coherence
time τ0 and the total AO system “integration ⊕ delay” time ΔtAO, and can be
modeled as:

σ2
temporal ∝

(
ΔtAO

τ0

) 5
3

. (2.10)

Balancing the Errors. It is clear from this list of errors that the main error
sources for which a technological effort has to be done are, at least:

➀ σ2
fitting when designing the DM,

➁ σ2
aliasing and σ2

measure when choosing which WFS with which specific options
has to be realized,

➂ and σ2
temporal when designing the whole AO loop.

Moreover, the critical physical parameters to be optimized are clearly:

➀ the inter-actuator distance (smaller and smaller),

➁ the number of analysis elements (higher and higher),

➂ the number of photons reaching the WFS (higher and higher),

➃ the global measurement variance (smaller and smaller),

➄ and the global “integration ⊕ delay” time (smaller and smaller),

where it is also straightforward that a number of trade-offs will have to be found.
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Fig. 5. Spatial/angular distribution of the different post-AO errors in the PSF halo.

(From Lardière et al. 2005.)

2.4 The (resulting) point-spread function morphology

When separating the effects due to the different error sources from an AO system
like I have done in the beginning of the present section, and more precisely looking
at the spatial/angular distribution of these errors within the focal plane, i.e. within
the PSF itself, we obtain what is represented in Figure 5.

The main interesting effect to observe from Figure 5 is the morphology of the
fitting error and the aliasing error (here dWFS = dDM = d), especially around
λ/2d, which gives this halo ring after which the Airy rings are not visible anymore
and hence the benefit from AO correction is no more present. Like aliasing, the
measurement error and the temporal error (σ2

measure and σ2
temporal respectively)

also participate for what concerns the angular resolution and to the distribution
of error definitely inside the “cleared” λ/d zone.

2.5 Quality of correction?...

The basic quantity permitting to characterize the AO-correction quality is indeed
the Strehl ratio (Strehl 1902) (SR), which is defined as:

S =
Ipost−AO[0, 0]

Iperfect case[0, 0]
, (2.11)
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Fig. 6. From left to right: object, PSF with a SR of 0.07, resulting image, PSF with a

SR of 0.93, resulting image.

where Iperfect case[0, 0] is the intensity of the ideal PSF in its central point ([0, 0])
and Ipost−AO[0, 0] corresponds to the same value but for the post-AO PSF.

Figure 6 shows the different effect that two different levels of attained SR have
on the resulting HAR images: while the object is clearly recognizable in its various
spatial details with a SR of 0.93, it is almost unrecognizable with a SR of only 0.07.

Nevertheless this could be far from being enough when a detailed study of the
observational capabilities of a given instrument, with respect to a given observa-
tional goal, is necessary. In many cases alternative more descriptive quantities
have to be used, such as:

➀ the attained FWHM of the PSF (when angular resolution is of main concern),

➁ the encircled energy for many spectrometric considerations,

➂ or for example the post-AO post-coronagraphic PSF wings level for very
high-contrast questions.

Indeed all these alternative quantities are linked to the Strehl ratio obtained by
a given system in a given observational situation, but not in an obvious linear
manner.

More refined criteria for qualifying the AO correction can also be considered, es-
pecially when adapted to a given astrophysical goal. For example estimation of the
attainable signal-to-noise ratio when dealing with detection problems (exoplanets,
faint objects, etc.), or even the capability to obtain well-reconstructed images. In
the latter one has typically to consider the whole imaging process: telescope ⊕ AO
system ⊕ instrument ⊕ data processing. Figure 7 details such an approach, where
the capability for the whole imaging chain (starting here from the Large Binoc-
ular Telescope (LBT) in interferometric imaging mode) to obtain astrophysical
informations on a given object is estimated through the precision obtained when
reconstructing the magnitude difference between the components of the inner close
binary star in one hand, and through the fidelity in retrieving the morphology of
a very weak circumbinary ring in the other hand.

2.6 The hard side

An introduction on the concept and basic behavior of both the SHS and the PS can
be found, e.g., in Campbell & Greenaway (2006). I will focus here on the current
duel that is featuring these sensors in particular in the framework of XAO.
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Fig. 7. Quality of post-AO K-band reconstructed images of a given object: a close double

star surrounded by a circumbinary ring (more precisely a GG-Tau-like object). Top left:

observed object (contour plot and cut along the inner binary star axis). Top right: quality

of the reconstruction in terms of the reconstruction error on the magnitude difference

between the components of the inner close binary system, for different Strehl ratios

obtained. Bottom: quality of the reconstruction for the morphology of the circumbinary

ring, for the same different Strehl ratios as before. (Adapted from Carbillet et al. 2002.)

Back in 1999 Ragazzoni & Farinato (1999) shown, thanks to an analytic rea-
soning, that the PS should permit a gain of 2 magnitudes (in terms of limiting
magnitude) with respect to its main competitor, the SHS. The analytic reasoning
was based on the expression expected for σ2

measure for each Zernike component of
the perturbed phase, expression derived from the result obtained previously by
Rigaut & Gendron (1992) for the SHS.

This was then confirmed by Esposito & Riccardi (2001) by means of numerical
simulations modeling AO correction (assuming weak phase perturbations), but in
an open-loop regime and without any atmospherical residuals out of the modes
corrected by the considered AO system.

Complete end-to-end simulations were then presented by Carbillet et al. (2003),
considering this time the whole post-AO error σ2

post−OA, and hence in particular
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σ2
measure in one hand and σ2

aliasing in the other hand. A gain was found in all the
cases considered: in the photon-starving regime (where σ2

measure dominates) as, at
the opposite, in the high-correction regime, where σ2

aliasing dominates.
The wind changed direction when Poyneer & Machintosh (2004) proposed to

diminish σ2
aliasing for the SHS by introducing a spatial filtering of each single spot

behind the lenslet array. Moreover, Nicolle et al. (2004) proposed to diminish also
σ2

measure by optimizing the signal calculations made after the SHS.
Finally Vérinaud et al. (2005) gave the definitive (but still theoretical) answer:

while the PS better performs around the center of the diffraction pattern (i.e.
around the core itself of the PSF), the (spatially filtered) SHS gives better results
towards the edges of the previously evoked “cleared” λ/d zone.

Since then, the PS has performed outstanding and unprecedented results on
sky with FLAO, the first-light AO system of the LBT (see Esposito et al. 2010 &
Riccardi et al. 2010). The instrument SPHERE is expected to give similar results
aboard the Very Large Telescope (VLT) from the SHS side... but it is still to be
proven, at least for now, on sky.

2.7 Deformable mirrors

Different deformable mirrors technologies are being considered for the various AO
systems existing or being developed world-wide: piezo-stacked mirrors, piezoelec-
tric mirrors, MOEMS (Micro-Opto-Electro-Mechanical Systems – also called op-
tical MEMS), adaptive secondary mirrors. They are all characterized at the very
end by a few basic and fundamental parameters:

➀ the coefficient before the dDM/r0 term in Equation (2.5),

➁ the inter-actuator distance dDM itself,

➂ the mirror stroke,

➃ the response time necessary for a command to be executed by the mirror.

Concerning the first point listed before, it is completely linked to the morphology
of the mirror itself when an actuator is pushed up, as clearly shown in Figure 8,
where two different simple mirror technologies are shown to give two different
mirror surface shapes and hence two different fitting error coefficients.

At this point a straightforward question has to be raised: how many actuators
for a given achievable Strehl ratio? By only considering Equation (2.5) again,
actual numbers to be given are (see Brusa et al. 1999):

� Sfit � 0.75⇒ d � r0(λ) gives N � 350,

� Sfit � 0.92⇒ d � 0.5 r0(λ) gives N � 1450,

considering band J and an 8-m class telescope.
The geometry (spatial distribution of the actuators) is another important point,

the one that will determine the influence functions of the mirror, and hence its
modes, the one that will be applied when a given command will be deduced by
the wavefront reconstructor after each WFS measure.
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Fig. 8. Deformable mirror fitting illustration. (From Riccardi 2003.)

An interesting case to be further discussed is the adaptive secondary mirror one,
for which a number of optical surfaces are eliminated, including the necessity of an
additional tip-tilt mirror for usual DMs, leading to a considerable gain in number
of photons available for WFS measures, and hence boosting the final performance
of an AO system which uses such a type of DM (like it is used for FLAO/LBT,
and will be used for the built-in M4 adaptive mirror of the EELT).

2.8 Wavefront reconstruction and command control

In order to have the DM applying the correct commands that will compensate the
turbulent wavefront coming from the entrance pupil of the telescope, a wavefront
reconstructor has to deduce the command needed to compensate the measured
wavefront deformations (slope x- and y-measurements from the WFS), and more-
over: a command control has to be considered.

A very basic standard command makes use of a reconstruction process coupled
with an integrator control law. The value of the gain of this integrator has to be
optimized for a given AO system and a given guide star magnitude (and hence a
given number of photons available per temporal unit), together with a number of
AO system central parameters such as the WFS integration time and the number
of DM modes to be corrected. A step forward consist in optimizing this gain mode
by mode, as a function of the signal-to-noise ratio on each mode.

A (more refined) Kalman filter approach is also usually considered in order to
command the system in an optimal way both for the reconstruction process and
the control. The reader is invited to consult the course of J.-P. Folcher within these
proceedings (Folcher 2013) for a detailed dissertation about this crucial subject.

3 Going further

3.1 Various improvements are possible

A number of improvements are definitely possible, as long as any term of σ2
post−AO

can be diminished in some way. At least the three following possible improvements
are currently investigated and seriously considered for AO systems:

➀ reduction of σ2
measure first: by using EMCCDs for the WFS. These devices

have the capability to mimic a very low read-out noise. The counter part of
it is nevertheless the addition of an “exotic” dark-current component.
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Fig. 9. Final error on the reconstruction of the PSF (left) and on the object (right), when

using an IBD) algorithm. Both plots are made as a function of the SR of the image data

and comparing the simple IBD (rhombuses) to the Strehl-constrained IBD (asterisks).

A gain of up to a factor ∼10 is achieved for the poorer SR. (From Desiderà & Carbillet

2009.)

➁ reduction of σ2
measure second: by adding a dedicated tip-tilt sensor in addition

to the global WFS. Then one has to find an optimal value for the splitting
of light between the tip-tilt sensor and the higher-order WFS, and that this
splitting of light is still of any advantage with respect to using a single WFS.
The answer is not unique but depend on the precise AO system used – and in
particular the WFS used (see, e.g., Carbillet et al. 2005): PS, SHS, filtered
SHS, etc.

➂ reduction of σ2
measure last: an idea proposed by Le Roux et al. (2005) also

consider to mask the WFS – toward a coronagraphic WFS?

➃ reduction of σ2
atmosphere: this last error could be the most simple (from the

conceptual point-of-view) but the most complicate (from the practical point-
of-view) to diminish, since it could imply to consider to install the AO-
equipped telescope on a tower in the middle of Antarctica, since it can be
seen as the best site on earth when eliminating the very thin turbulence
surface layer (see, e.g., Lardière et al. 2005; Aristidi et al. 2009; Carbillet
et al. 2010; Giordano et al. 2012).

3.2 Post-adaptive-optics object reconstruction

3.2.1 Knowledge of the Quality of Correction ⇒ Even Better Object
Reconstruction

Figure 9 shows the advantage of using a constraint on the Strehl ratio when recon-
structing the PSF (in the cases where it is unknown or badly known), and hence
the object from the obtained image, in the case of an iterative blind deconvolution
(IBD) of post-AO data.
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Fig. 10. From left to right: the observed image, the observed PSF, both pre-processed,

and the result of a Lucy-Richardson-based super-resolution algorithm on the image.

3.2.2 Going further in angular resolution

Figure 10 shows a very preliminary (and unpublished) result of the application of
a Lucy-Ricardson-based super-resolution algorithm (first evoked in Correia et al.
2002 and then described in details in Anconelli et al. 2005) on NACO/VLT data
of the unresolved binary star HD87643. It clearly unveils a very close binary star
(separation smaller than half an element of resolution λ/D), with some possible
matter around the component above, confirming previous AMBER/VLTI obser-
vations (Millour et al. 2009).

Thanks are due to Armando Riccardi and Olivier Lardière for having kindly provided both
of them one of the illustrations presented for this course/paper. Thanks are also due to the
organizers of the summer school for which this course/paper was prepared: Céline Theys-Ferrari,
David Mary, and Claude Aime.
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INTRODUCTION TO WAVEFRONT CODING
FOR INCOHERENT IMAGING

M. Roche1

Abstract. We propose in this paper an introduction to the wavefront
coding technique for incoherent imaging. Wavefront coding introduces
image processing in the conception of an imaging system. It consists
in introducing controlled aberrations in the optics able to reduce, after
processing, some defaults of the optical system such as defocus, chro-
maticity. We present the basis of wavefront coding and illustrate them
on two images with different characteristics: a spoke pattern and a
galaxy image.

1 Introduction

In traditional imaging systems, the design of the optics and the processing of the
recorded images are two separate steps. High aperture instruments allow one to
obtain images with high resolution, with high signal to noise ratio due to the large
amount of light collected and high depth of field. However these instruments are
more subject to aberrations like defocus as instrument with smaller aperture size.

In hybrid imaging systems, optics and processing are considered jointly and
designed together. These last imaging systems allow one to use optics of lower
quality and thus with reduced cost, the quality of the images warrantied not by the
quality of the optics but by the processing step. A good example of the interest to
associate the image processing to the optics could be the Hubble Space Telescope
(HST). It was launched in early 1990, at that time a spherical aberration has
been detected, leading to a blurring of the images. The first simple and effective
way to solve this degradation was to introduce image processing. Latter in 1993,
this default has been corrected by introducing the COSTAR corrective optics in a
Shuttle mission.

Wavefront coding was introduced by Dowski & Cathey (1995) for incoherent
imaging. They propose to introduce a phase mask in the imaging system, designed

1 Centrale Marseille, CNRS, Aix-Marseille Université, Fresnel, UMR 7249,
13013 Marseille, France
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to make the Point Spread Function (PSF) of the instrument insensitive to some
aberrations such as chromaticity, or spherical aberrations. It is also used to en-
hance the depth of field of an instrument by making the imaging system insensitive
to defocus aberrations.

Wavefront coding is now used in many domains such as security for iris recog-
nition (Narayanswamy et al. 2004) where it is useful for capturing an iris with-
out active user cooperation, thermal imagery (Muyo et al. 2004) for controlling
thermally induced defocus aberrations in infrared imaging system, fluorescence
microscopy (Arnison et al. 2007) to increase the depth of field. In astronomy,
wavefront coding has been not yet used but it has been shown (Kubala et al.
2004) that as telescope performances are limited by aberrations, misalignment,
temperature related defaults, this technique will provide improvement of the qual-
ity of the images.

This article is an introduction to wavefront coding technique. It does not
contain new results on it but presents the different steps that lead, from a degraded
image, to an image of higher quality after a post-processing. For the sake of clarity
and conciseness, the paper only discuss about defocus default and on the use of a
cubic phase mask.

It is organized as follows. In Section 2, the principle of image formation in
a classical imaging system is presented. In Section 3, a default of defocus in
the optics is introduced and modelized. In Section 4, the wavefront coding is
detailed and results are presented on two different images using a cubic phase
mask. Section 5 presents the optimization of the parameter of the cubic phase
mask. Finally Section 6 discusses on the robustness of wavefront coding in presence
of defocus.

2 Image formation in coherent and incoherent imaging

The wavefront coding technique is developped for incoherent illumination. In the
following, we first discuss about the coherent illumination of an object, which is
needed to explain the incoherent case.

2.1 Image of a point like object

Let us assume that we observe with an optical instrument a point like source, that
can be modelized by a Dirac distribution δ(x, y). When the imaging system is
only limited by diffraction, the image amplitude of this point-like source is given
by the Fraunhofer diffraction pattern of the exit pupil of the imaging system2

H(x, y) =
A

λL
P̂

( x

λL
,

y

λL

)
(2.1)

where A is a constant amplitude traducing the attenuation of the amplitude by
the imaging system, λ is the wavelength of the light emitted by a point like object,

2For detailed calculus see for example Goodman (2005), chapter 6.
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L is the distance between the exit pupil and the image plane, P̂ is the Fourier
transform of the pupil aperture, x and y the coordinates in the plane of the exit
pupil.

In the case of a circular pupil, H(x, y) corresponds to the Airy function of the
instrument. For notational convenience, we will assume in the following that A

λL
and λL equal unity.

2.2 Impulse function for the observation of an entire object

2.2.1 Coherent illumination

When coherent illumination is considered, all the point of the object emit field
whose phasor amplitude vary in unison. Thus the image of the object is obtained
by summing all the contributions of the complex amplitude coming from all the
point of the object. A coherent imaging system is thus linear in complex amplitude.
Assuming that one point of the object is modelized by a Dirac distribution δi, it
can be shown3 that the received amplitude from the object is given by:

A(x, y) =
∑

i

(δi ⊗H)(x, y) = ((
∑

i

δi)⊗H)(x, y) (2.2)

where ⊗ represents the convolution product, H(x, y) is called the amplitude PSF
of the instrument. This can be rewritten:

A(x, y) = (O ⊗H)(x, y) (2.3)

with O =
∑

i δi the amplitude of the object. The Fourier transform of the am-
plitude PSF is called the Amplitude Coherent Transfert Function (ACTF). In the
case of a symetric pupil (almost the cases encountered), it is easy to show that:

ACTF (μ, ν) = P (μ, ν) (2.4)

with P the pupil of the instrument, μ, ν the coordinates in the frequency plane.
For a circular aperture of diameter d in coherent illumination, the instrument

behaves as a low-pass filter with cutting frequency d
2 .

In general, the optic instruments measure intensity that means

i(x, y) = |A(x, y)|2 = |O ⊗H |2(x, y). (2.5)

2.2.2 Incoherent illumination

In the case of incoherent illumination, the phasor amplitudes are totally uncorre-
lated, the complex amplitude can no more be added. In this case, it can be shown4

that an incoherent imaging system is linear in intensity:

i(x, y) = (o⊗G)(x, y) (2.6)

3For detailed calculus see for example Goodman (2005), chapter 6.
4See for example Goodman (2005) for detailed calculus, chapter 6.
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where G(x, y) = |H(x, y)|2, i(x, y) the intensity of the image observed and o(x, y)
the intensity of the object.
|H(x, y)|2 represents the intensity point spread function of the instrument, it

will be denoted PSF in the following. The Fourier transform of this PSF is called
the Optical Transfert Function (OTF) and its modulus the Modulated Transfert
Function (MTF).

3 Analysis of the influence of defocus

Let us assume an incoherent imaging system with a circular pupil P (μ, ν) of di-
ameter d, that presents a focus default that is spatially constant over the pupil.
This defocus can be modelized in the pupil plane by introducing a supplementary
phase:

eiΨλ(ν2+μ2) (3.1)

where ea represents the exponential function of a, Ψλ corresponds to the defo-
calisation parameter and i =

√
−1. Ψλ depends on the diameter of the pupil d,

on the distance between the object and the primary plane of the lens d0, on the
distance between the secondary plane of the lens and the CCD camera dccd and
on the focal distance of the lens f(λ) (Dowski et al. 1995)

Ψλ =
πd2

4λ

(
1

f(λ)
− 1

d0
− 1

dccd

)
=

2π

λ
W20 (3.2)

with W20 is the traditional defocus aberration constant. The pupil of the imaging
system in presence of defocus is thus:

P ′(ν, μ) = P (ν, μ)eiΨλ(ν2+μ2). (3.3)

From Equation (2.1), the PSF of this imaging system in the case of incoherent
imaging is given by:

|H(x, y)|2 =
∣∣∣P̂ ′(x, y)

∣∣∣2 . (3.4)

Figure 1 shows respectively the PSF and the MTF for an instrument of circular
aperture when no defocus default is presents a) and c), and when a defocus of
parameter Ψλ3 = 50 is introduced b) d). The defocus induces a PSF extended
with respect to the ideal one (a) and consequently a MTF with an important
reduction of the high frequencies. The defocus will introduce a blurring effect in
the imaged object.

Figure 2 represents a central cut of the MTF in the case of incoherent imag-
ing system with a circular pupil in presence of different defocus. Three different
defocus are considered with Ψλ1 < Ψλ2 < Ψλ3 . The circular pupil behaves as a
low-pass filter, an increase of the parameter of defocus implies a reduction of the
cut-off frequency and introduces oscillations in the MTF with apparition of zeros.
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Fig. 1. Representation of the PSF (first line) and MTF (second line) of an instrument

with circular aperture when in focus a), c) and when a defocus of parameter Ψλ3 = 50

is introduced b), d). In order to improve the visualization, figures a) and b) correspond

to a central part of size 128 ×128 of the entire PSF (of size 1024 × 1024).

The effect of the MTF on two different imaged object is obtained from 2.6. The
two object considered are respectively, a spoke pattern with high spatial frequen-
cies, and the galaxie UGC 1810 taken by the Hubble Space Telescope5 containing
mostly low spatial frequencies. The results are presented in Figures 3 and 4 which
shows the blurring effect appearing in the observed image when the imaging sys-
tem presents a defocus default of parameter Ψλ3 = 50. This blurring effect appears
essentially on the edge and on the center of the spoke pattern (Fig. 3c) whereas it
is visible in the entire image of the galaxy (Fig. 4c) leading to the disapearrance
of the stars (point like object).

5http://hubblesite.org/gallery/album/galaxy/hires/true/
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Fig. 2. Effect of different defocus (with a) Ψλ1 = 10, b) Ψλ2 = 20, c) Ψλ3 = 50) on the

Modulated Transfert Function (MTF) of an incoherent imaging system with a circular

aperture as a function of normalized frequencies (the maximum frequency equals one).

4 Correction of the defocus

The observed image (Figs. 3c and 4c) can be processed to reduce the effect of
the PSF on the observation. If the PSF is known, classical deconvolution tech-
niques can be implemented allowing to reconstruct an object closed to the true one
(Figs. 3a and 4a) (when no noise is present6) to obtain the reconstructed image
of Figures 3d and 4d. When a defocus is introduced (Figs. 3c and 4c), the image
is blurred. The blurring effect can be supressed if it is known (Figs. 3e and 4e).
However in most cases this default is not known leading to deconvolved image of
Figures 3f and 4f. In these cases, it is evident that the blurring effect has been
neither suppressed nor reduced with respect to Figures 3c and 4c.

4.1 Introduction of wavefront coding

The wavefront coding was introduced in Dowski & Cathey (1995). It consists in
introducing a phase mask in the pupil. This phase mask is introduced in order
to correct the defaults of the imaging system: sphericity, chromatic aberrations
(Wach et al. 1998), defocus... Moreover, this mask is constructed to avoid the
presence of zeros in the corresponding PSF allowing first to preserve frequencies,
and to avoid calculus errors in the deconvolution process.

In the pupil plane, the mask can be modelized by:

M(ν, μ) = eiΦ(ν,μ) (4.1)

where Φ(ν, μ) characterizes the shape of the mask, |ν| < 1 and |μ| < 1 are the
normalized frequency coordinates.

6Of course this hypothesis is not realist but allows to simplify the problem and to present
basis on image formation.
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Fig. 3. Effect of different degradation on the initial object a): b) with an ideal circular

pupil with a diameter of 480 pixels, c) with a defocus of Ψλ3 = 50 on the observation.

Deconvolution of the observed image: d) deconvolution of b), e) deconvolution of c) with

the defocus known, f) deconvolution of c) with the defocus unknown.
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Fig. 4. Effect of different degradation on the initial object a): b) with an ideal circular

pupil with a diameter of 480 pixels, c) with a defocus of Ψλ3 = 50 on the observation.

Deconvolution of the observed image: d) deconvolution of b), e) deconvolution of c) with

the defocus known, f) deconvolution of c) with the defocus unknown.
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Fig. 5. Representation of the phases of a) the defocus default of parameter Ψλ3 = 50

and b) the phase introduced with a cubic phase mask of parameter α = 116.

Wavefront coding leads in presence of defocus to a new pupil

Pc(ν, μ) = P ′(ν, μ).M(ν, μ) = P (ν, μ)eiΨλ(ν2+μ2)eiΦ(ν,μ). (4.2)

We focus in this paper on wavefront coding used to increase the depth of field,
leading to optical system insensitive to defocus. Different phase mask have been
be proposed in the litterature to increase the depth of field: cubic phase mask
(Dowski et al. 1995), logarithmic (Sherif et al. 2004; Zhao et al. 2008), fractionnal-
power (Sauceda et al. 2004), exponentiel (Yang et al. 2007), polynomial (Caron
et al. 2008), asymetric phase mask (Castro et al. 2004) and have been compared
(Diaz et al. 2010; Sherif et al. 2004; Yang et al. 2007) with respect to different
criterion depending on the the aimed application.

These different phase masks are obtained by consideration of different criterion.
In Neil et al. (2000), an optimization is done to obtain a particular form for the
final PSF in the case of confocal microscope. In S. Prasad et al. (2004), the authors
use the Fisher information and the Strehl ratio to find the mask that reduces the
sensitivity of the phase to misfocus.

The cubic phase mask, we consider in the following, proposed by Dowski et al.
(1995), was obtained by using the ambiguity function and the stationary-phase
method.

Let us consider a cubic phase mask of the form

Φ(ν, μ) = α(ν3 + μ3). (4.3)

Figure 5 illustrates the phases of a defocus default of parameter Ψλ3 = 50 and the
phase introduced with a cubic phase mask of parameter α = 116.

This mask was constructed to minimize the variation of the OTF with defocus.
It presents only one parameter to optimize (α) with respect to the application,
leading to a simple mask. Other masks introducing more parameters lead to
better results in general, but increase the complexity of the mask.

Figure 6 represents respectively the PSF and the MTF of an instrument with
circular aperture with a cubic phase mask of parameter α = 116 when no defocus
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Fig. 6. Representation of the PSF (first line) and MTF (second line) of an instrument

with circular aperture with a cubic phase mask of parameter α = 116 when no defocus

default is present a) c) and when a defocus of parameter Ψλ3 = 50 is introduced b) d).

In order to improve the visualization, Figures a) and b) correspond to a central part of

size 128 × 128 of the entire PSF (of size 1024 × 1024).

default is present a), c) and when a defocus of parameter Ψλ3 = 50 is intro-
duced b), d). The wavefront coding leads to small noticeable changes in the PSF
and in the MTF with defocus.

Figure 7 shows a central cut of the MTFs of Figures 1c, d and 6c, d, represen-
tative of different configurations: imaging system with no default, imaging system
with defocus default of parameter Ψλ3 = 50, imaging system with wavefront cod-
ing when no defocus aberration exists and in presence of defocus. A cubic phase
mask is used with parameter α = 116. The use of wavefront coding allows to
increase the cut-off frequency and to reduce the number of zeros. Moreover, the
amplitude of the MTF is increased.
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Fig. 7. Effect of different configurations of the imaging system on the MTF as a function

of normalized frequencies (the maximum frequency equals one).
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Fig. 8. Image observed in presence of a defocus with Ψλ3 = 50 without a) and with

wavefront coding b). A cubic phase mask of the form 4.3 is considered with α = 116.

4.2 Deconvolution of the images

The influence of the wavefront coding on the observed image is represented on
Figures 8b and 9b. It clearly appears that the only introduction of a phase mask
allows to reduce the blurring in the observation. The image obtained is then pro-
cessed in order to still reduce the blurring effect. It is important to notice that the
defocus default is not yet known. The deconvolution is thus done considering two
configurations of the imaging system: a classical one, and another that introduces
the wavefront coding. The results of the deconvolution are presented in Figures 10
and 11. The visual quality is still better when wavefront coding is used and is
improved in comparison to the image of Figures 8b and 9b. In particular for the
spoke pattern, the region in the center of the image is sharper and for the galaxy,
the stars are closed to pointwise object.
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Fig. 9. Image observed in presence of a defocus with Ψλ3 = 50 without a) and with

wavefront coding b). A cubic phase mask of the form 4.3 is considered with α = 119.
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Fig. 10. Deconvolution of the image observed in presence of a defocus with Ψλ3 = 50

without a) and with wavefront coding b). A cubic phase mask of the form 4.3 is considered

with α = 116.

5 Optimization of the parameter of the cubic phase mask

The parameter α of the cubic phase mask must be optimized to obtain a efficient
wavefront coding that corrects, after a processing step, the defocus default.

In the results presented in Figures 8b and 10b, the parameter α is chosen
equal to 116. This parameter was obtained by considering a quality criterion
on the reconstructed image. In our simulation, the chosen criterion is the Mean
Square Error (MSE) between the true image of Figure 3a and the reconstructed
image when wavefront coding is considered. Other choices of quality criterion can
be done, for example the MSE can be averaged on several MSE (Diaz et al. 2010)
obtained from different values of the defocus, leading to a phase mask robust to
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Fig. 11. Deconvolution of the image observed in presence of a defocus with Ψλ3 = 50

without a) and with wavefront coding b). A cubic phase mask of the form 4.3 is considered

with α = 119.

the defocus parameter. These criterions based on the calculus of the MSE can be
considered only in simulations when the true object is known.

The MSE is represented in Figure 12 (curve c)) considering a parameter α
varying between 1 and 200. The choice α = 116 leads to the minimization of the
mean square error when a defocus parameter of Ψλ3 = 50 is considered.

The curves of MSE obtained for different parameter of defocus (a) Ψλ1 = 10,
b) Ψλ2 = 20) are also represented. It is clear that the value of the parameter α
of the cubic mask depends on the defocus parameter, however the choice of α is
not so sensitive to the defocus parameter. Indeed, a range of parameter α leads
to similar values of the MSE. For example, for the defocus Ψλ3 = 50, α can be
chosen in the range [90, 170] without leading to significative degradation of the
reconstruction.

For the image of the galaxy, the results presented in Figures 9b and 11b are
obtained with a mask parameter α = 119. The criterion used to optimize this
value is still the MSE but computed over a small zone (100 × 100 pixels) of the
image of Figure 4a. The use of the entire image of the galaxy gives a bad criterion
of quality as the image is complex. The curves for the MSE in presence of different
values of defocus are similar to the one of Figure 12 and are not represented.

6 Robustness of the cubic phase mask with respect to defocus

Once the parameter of the cubic phase mask is optimized, it is interesting to study
its robustness with respect to defocus. The curve in Figure 13 represents the MSE
between the reconstructed image and the true one when a cubic phase mask of
parameter α = 116 is chosen, and when the defocus parameter Ψλ varies from 0 (no
defocus) to 150 (important defocus). The image considered is the spoke pattern
represented in Figure 3a.
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Fig. 12. Influence of the choice of the parameter α in the cubic phase mask for a fixed

defocus a)Ψλ1 = 10, b)Ψλ2 = 20, c)Ψλ3 = 50.
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Fig. 13. Robustness of the optimization of the cubic phase mask towards defocus. The

parameter α is taken equal to 116 which is the optimal value for a defocus parameter of

Ψλ3 = 50 in the case of the spoke pattern.

It is clear that the parameter α depends on the defocus factor, however once
the parameter α is fixed, similar results are obtained in term of MSE for a defocus
parameter in [0, 50]. This result is illustrated on Figure 14 where the reconstruc-
tions b), d), f) are obtained with the same parameter (α = 116) but considering
respectively Ψλ2 = 20 (first line), Ψλ3 = 50 (second line), Ψλ4 = 100 (third line).

Once the phase mask is chosen, the optimization is a key point to obtain good
quality results. However, the parameter α can takes its value within a range
allowing the imaging system to give good results when different values of defocus
are introduced. It could be interesting for example when the defocus parameter is
not constant over the whole pupil.
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Fig. 14. Robustness of the optimization of the cubic phase mask towards defocus.

Figures a), c), e) represent the degraded images with three different parameters of defo-

cus Ψλ2 = 20, Ψλ3 = 50, Ψλ4 = 100. Figures b), d), f) represent the deconvolved images

when a cubic phase mask of parameter α = 116 is considered.
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7 Conclusion

The wavefront coding is a technique that allows one, by introducing a pupil mask,
to make insensitive the imaging system to some classical aberrations like defocus
leading to increase the depth of field.

The use of wavefront coding, or other techniques that introduce the processing
of the images jointly with the optics for the design of the imaging system, is going
to increase in the following year. The reduction of the cost of the imaging system
associated with the simplification of the conception, leading to high quality images
after processing, make the hybrid imaging system of great interest.

The introduction of joint conception of optics and processing will introduce
challenging tasks in next years to imagine or associate methods, to define new
criterion to qualify the objective to reach, by adapting them to the target appli-
cation.
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ADAPTIVE OPTICS FEEDBACK CONTROL
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Abstract. This paper concentrates on the control aspects of Adaptive
Optics (AO) systems and includes a prior exposure to linear control
systems from the “classical” point of view. The AO control problem
is presented and the well-established optimized modal gain integral
control approach is discussed. The design of a controller from a mod-
ern control point of view is addressed by means of a linear quadratic
Gaussian control methodology. The proposed approach emphasizes the
ability of the adaptive optics loop to reject the atmospheric aberration.
We derive a diagonal state space system which clearly separates the dy-
namics of the plant (deformable mirror & wavefront sensor) from the
disturbance dynamics (atmospheric model). This representation facil-
itates the numerical resolution of the problem. A frequency analysis is
carried out to check performance and robustness specifications of the
multiple-input multiple-output feedback system. The effectiveness of
the approach is demonstrated through numerical experiments.

1 Introduction

Among its applications, adaptive optics systems can be used to reduce the ef-
fects of atmospheric turbulence on images taken from ground-based telescopes.
A Deformable Mirror (DM) is used to spatially compensate the incoming (atmo-
spheric) wavefront as close as possible to a theoretical plane wavefront. The shape
of the DM is adjusted in real time using the measurements of a Wavefront Sensor
(WFS) which provides the local slopes of the residual wavefront. The AO system
imaging performance depends mainly on the WFS and DM characteristics and on
the control algorithm efficiency. For an overview of AO, the reader may consult the
book of Roddier (1999) and the companion chapter of Carbillet in this book. This
paper concentrates on the control aspects of AO systems. Our intended audience
includes researchers and research students in astrophysics and in signal processing
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who are not familiar with control engineering. In this context the reader will ben-
efit from a prior exposure to linear control systems from the “classical” point of
view. This is the goal of the Section 2 which is an introduction of a lot of funda-
mental topics in control engineering such as feedback, Laplace transform, transfer
function, Bode and Nyquist plots (Franklin et al. 1991; Dorf & Bishop 1998) which
are illustrated with case studies. In this section we also expose some elements for
digital controlled systems such as sampled-data systems, z-transform and discrete
time transfer function (Franklin et al. 1990; Astrom & Wittenmark 2011) and we
present basic case studies. Some paragraphs of the tutorial are selected passages
or strongly inspired from the cited books. For instance the automobile cruise con-
trol example is presented in the book of Franklin et al. (1991). Our goal is not
to teach the reader how to design linear controllers (several existing books do a
good job for that) but rather to give a comprehensive understanding of feedback
systems.

The third section is dedicated to the exposure of the Adaptive Optics control
problem. The AO system is modeled as a multiple-input multiple-output (MIMO)
feedback system using the “classical” control framework. A first category of control
strategies: the optimized modal gain integral control (OMGI) proposed by Gendron
& Léna (1994) and its improvements is discussed, see (Dessenne et al. 1998). A
static decoupling matrix is inserted in the feedback loop in order to divide the
MIMO control problem in a series of single-input single-output (SISO) control
problem. The design parameters are chosen to ensure stability and a trade-off
between disturbance rejection and measurement noise amplification. The main
quality of the optimized modal gain integral control, which is the current adaptive
optics control system is to express some of the controller’s signals in the modal
base which facilitates the physical interpretation. Furthermore it is intrinsically
a frequency approach: the analysis of the AO feedback system’s performance is
straightforward. The method can be used when the knowledge of the disturbance
temporal dynamics is weak.

The last section contains the design of a controller from a modern control
point of view (Kulcsár et al. 2006; Looze 2006). This approach was introduced
for the first time by Paschall et al. (1991), which explicitly tries to minimize the
mean-square residual wavefront error (and consequently maximize the imaging
performance index as the Strehl ratio). This problem can be formulated as a
linear quadratic Gaussian (LGQ) control problem, and the solution consists in
the optimal state-feedback control of the DM and the optimal estimation of the
atmospheric wavefront. The proposed approach emphasizes the ability of the LQG
controller loop to reject the atmospheric aberration. We propose a generic second
order autoregressive model to capture the main features of the aberrated wavefront.
We derive a diagonal state space system which clearly separates the dynamics of
the plant (DM & WFS) from the disturbance dynamics (atmospheric model).
Thus, we explicitly consider a disturbance rejection control problem, see (Bitmead
et al. 1990), which facilitates the numerical resolution of the estimation problem:
the order of the estimation discrete time algebraic Riccati equation is reduced.
This point is important from a practical point of view for the new generation of
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AO systems exhibiting a large number of modes where control laws have to be
designed in accordance with real time constraints. Numerical experiments using
the Software Package CAOS have been conducted to demonstrate the effectiveness
of the proposed approach.

2 Classic feedback control: A tutorial

2.1 Definitions & feedback framework

2.1.1 What is automatic control?

Control is a general concept which refers to a specific interaction between two
(or more) devices. Driving an automobile is a typical example: the driver has to
control the vehicle to reach a given destination. In such a case, the car is manually
controlled. At the opposite, automatic control only involves devices: this is the
case of automobile cruise control. The rate flow of the fuel/air mixture is adjusted
in real time depending on a speedometer measure to obtain a given speed.

2.1.2 What is feedback?

The main idea in control is feedback control where the variable/signal being con-
trolled (speed, temperature...) is measured by a sensor and fed back to the process
in order to influence the controlled signal. This feedback idea can be illustrated
for the automobile cruise control and is described by a component block diagram
in Figure 1. Main devices of the system are represented by blocks and arrows show
interaction from one device to another.

Fig. 1. Component block diagram of automobile cruise control.

Qualitatively, the temporal behavior of this controlled system can be ana-
lyzed. Suppose that when an air-fuel mixture is injected in the engine, the actual
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measured speed is below the desired speed. Then, the cruise controller will in-
crease the air-fuel mixture flow rate causing an increase of the engine speed and
consequently the body vehicle speed. If the actual speed is higher than the desired
speed then the cruise controller will decrease the air-fuel mixture flow rate in order
to reduce the body vehicle speed. For this example, the generic components of a
classic feedback loop are shown in Figure 1. The main component is called the sys-
tem (or plant or process) where one variable/signal is to be controlled or regulated.
In our example the plant is the automobile body and the controlled/regulated out-
put is the vehicle speed. The disturbance input is the road grade which acts on
the system. The actuator is the component that influences the regulated variable:
here the actuator is the engine. To obtain a feedback, we need to deliver to the
controller a measured output which is provided by the sensor. In this case, the
sensor is the speedometer. The role of the controller is to generate, using the
reference input and the measured output, the control input. Feedback control
properties can be demonstrated using quantitative analysis of a simplified model
of the automobile cruise control. We will neglect the dynamic response of the car
by considering only the steady state case. We will assume that for the range of
speed of the vehicle, the approximated relations are linear. For the automobile
speed, we measure speed on a level road at 55 kilometers per hour (km/h) and find
that a unit change in our control (injection pump input) causes a 10 km/h change
in speed. When the grade changes by 1%, we measure a speed change of 5 km/h.
The accuracy of the speedometer is sufficient and can be considered exact. These
relations permit to obtain the bloc diagram shown in Figure 2.

Fig. 2. Block diagram of automobile cruise feedforward control.

Here lines represent signals as regulated output z, control input u, disturbance
input d, measured output y and reference input r. Squared/round blocks represent
respectively multiplication and summation. In Figure 2, the feedforward controller
does not use the body speed. A possible control policy consists in inverting the
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plant characteristic and the controller sets u = r/10. In this case we obtain the
regulated output speed

z = 10(u− 0.5d)

= 10([r/10]− 0.5d)

= r − 5d.

If d = 0 (a level road) and r = 55 then the vehicle speed will be z = 55 and there
will be no error. However if d = 1 (a 1% grade) then the speed will be r = 50 and
we have a 5 km/h error in speed.

In contrast to feedforward control, a feedback controller uses the measure of
the controlled output (called the feedback signal) as in Figure 3 where the control
input is u = r − y = r − [0.9z].

Fig. 3. Component block diagram of automobile cruise feedback control.

The topology of this block diagram include includes a loop: this is a closed
loop control system. At the opposite the configuration shown in Figure 2 is called
open loop control system. The equations of the closed loop control system are

z = 10(u− 0.5d)

= 10([r − 0.9z]− 0.5d)

= 10r − 9z − 5w

and finally
z = r − d/2.

In this case, if the reference speed is still r = 55 and the grade d = 1 then the
vehicle speed will be y = 54.5 and the error is 0.5 km/h. The effect of feedback is to
reduce the speed error by a factor 10! If we include a gain factor for the controller
greater than 1 the error will still decrease. But there is a limit for the gain value
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due to the power of the engine but more importantly because when the dynamics
are introduced, feedback may induce poor temporal response (stability problems).
As Stephen P. Boyd contends in (Boyd 1993), “a bad feedback controller can yield
performance much worse than an open loop controller”.

2.1.3 Quantitative analysis in the time domain: A tentative

In order to analyze a feedback controlled system we need to obtain a quantitative
mathematical model of the plant. In this paper we assume that the process under
study can be considered as linear over a reasonably large range of the signals and
time invariant. That is, a mathematical model is frequently a set of ordinary dif-
ferential equations and a specific solution can be found using a computer program.
The output s of a general time invariant linear system, in the time domain, is given
by the convolution integral

s(t) = (h ∗ e)(t) =
∫ t

0

h(τ)e(t− τ)dτ, (2.1)

where e(t) is the input signal and where h(t) is the impulse response. We can use
the bloc diagram notation given in Figure 4.

Fig. 4. Block diagram notation of the convolution operation.

This generic block diagram may describe every component of a feedback system
as the controller, the actuator and the sensor. We note respectively k, g1 and g2

their impulse response. We study now a feedback system shown in Figure 5. The
block diagram resembles an automobile cruise block diagram depicted in Figure 3.
We require that the regulated output z becomes zero: this is a disturbance rejection
control problem. Thus the reference signal r is zero and is not represented in the
block diagram. We consider a more realistic model of the sensor: an additive
sensor noise n is taken into account. We will see later in the paper that this block
diagram is a simplified model of an AO control loop.

The equation of the feedback system is

z = d−
{ c︷ ︸︸ ︷

g1 ∗
[
k ∗ (

y︷ ︸︸ ︷
g2 ∗ z + n)︸ ︷︷ ︸

u

] }
, (2.2)

which can be rewritten as

z = d− (g1 ∗ k) ∗ n− (g1 ∗ k ∗ g2) ∗ z. (2.3)
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Fig. 5. Convolution based block diagram of the feedback system.

We have a complicated convolution Equation (2.3): the regulated output z is
the sum of the disturbance signal d, of the signal (g1 ∗ k) ∗ n and of the signal
(g1∗k∗g2)∗z. This last signal is the response of the cascaded system with impulse
response g1 ∗k ∗ g2 where the input is the regulated input z. The regulated output
z depends on itself: this is a feature of the feedback systems. In the time domain
we have a complex convolution Equation (2.3) which is not easy to understand
or to solve. We will see that in the frequency domain the computation and the
interpretation of the transformed equation is straightforward.

2.2 Feedback systems: A frequency approach

2.2.1 Laplace transform & transfer functions

The Laplace transform is well suited to find the solution of Equation (2.2) and
to give interesting information (settling time, overshoot, final value) of feedback
systems. The Laplace transform of a signal f(t) is defined as

L{f} (s) =
∫ ∞

0

f(t)e−stdt. (2.4)

A straightforward consequence of convolution integral (2.1) is

L{s} (s) = H(s)L{e} (s), (2.5)

where H(s) = L{h} (s) is called the transfer function. Thus the Laplace trans-
form of the output L{s} is the product of the transfer function H and of the
Laplace transform L{e}. In the frequency domain Equation (2.5) is the counter-
part of convolution integral (2.1) in the time domain. We can use the bloc diagram
notation given in Figure 4.

Fig. 6. Block diagram notation of the transfer function.
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2.2.2 Feedback system’s transfer functions

The feedback system shown in Figure 5 can be “translated” in the frequency
domain. We call G1(s) = L{g1} (s), G2(s) = L{g2} (s) and K(s) = L{k} (s)
respectively the actuator transfer function, the sensor transfer function and the
controller transfer function. The block diagram is drawn again: the controller’s
block is moved at the bottom and the sensor’s block is displaced at the top.

Fig. 7. Transfer function based block diagram of the feedback system.

In the frequency domain blocks G1(s), G2(s) and K(s) are simple scaling sys-
tems. From block diagram in Figure 7 we obtain

L{z} = L{d} −
{

L{c}︷ ︸︸ ︷
G1

[
K(

L{y}︷ ︸︸ ︷
G2L{z}+ n)︸ ︷︷ ︸

L{u}

] }
,

which can be solved as

L{z} =
1

1 + G1KG2︸ ︷︷ ︸
S

L{d} − G1K

1 + G1KG2︸ ︷︷ ︸
T

L{n} . (2.6)

To understand how controllers ensure relevant properties for the feedback system,
the Equation (2.6) is central. We call

L = G1KG2 (2.7)

the loop transfer function,

S =
1

1 + L
(2.8)

the sensitivity transfer function, and

T = G1KS (2.9)

the noise sensitivity transfer function. For “ideal control” we want z = 0 and
consequently

L{z} ≈ 0L{d}+ 0L{n} . (2.10)
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Disturbance rejection is achieved when S ≈ 0 and noise rejection is ensured when
T ≈ 0. In practice these two transfer function S and T cannot be small at the same
values of s and a trade off should be achieved during the design of the controller
transfer function K.

2.3 Standard examples

In this section we present two case studies to illustrate the concepts introduced in
the preceding paragraph. We will also study the properties ensured both in the
frequency domain and in the time domain for classical controllers (proportional
and integral).

2.3.1 Case study 1

We suppose that the actuator and the sensor have instantaneous responses:

G1(p) = α , G2(p) = β, (2.11)

where α and β are fixed positive scalar. We use a proportional controller which
produces the control input

u(t) = kP y(t), (2.12)

where the scalar kP is the proportional gain. We also consider an integral controller
which imposes the control input

u(t) = kI

∫ t

0

y(τ)dτ, (2.13)

where the parameter kI is the integrator gain. Time domain Equations (2.12)
and (2.13) can be cast under the convolution integral form k ∗ y with impulse
response k(t) = kP δ(t) and k(t) = kI . Hence, controller transfer function K can
be calculated. For numerical purpose, we set the actuator’s gain α = 10 and the
sensor’s gain β = 1. We consider a proportional controller with the gain kP = 0.2,
an integral controller with the gain kI = 0.4 and another integral controller with
the gain kI = 1. These controllers are

K(a)(s) = 0.2, K(b)(s) =
0.4
s

, K(c)(s) =
1
s
· (2.14)

The corresponding sensitivity transfer function, which we denote S(a)(s), S(b)(s),
and S(c)(s) respectively, can be computed from (2.8). The closed-loop systems
that result from using the controllers K(a), K(b), and K(c) can be compared by
examining the sensitivity transfer function S(a), S(b), and S(c). The magnitudes∣∣S(a)(jω)

∣∣, ∣∣S(b)(jω)
∣∣, and

∣∣S(c)(jω)
∣∣ are plot in Figure 8a. From this figure we

can conclude that a low frequency disturbance input will have the least effect in
the feedback system with controller K(c) i.e. the best disturbance rejection perfor-
mance. The real disturbance input is usually unknown. A reasonable approach is
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to choose a standard test input signal as a step d(t) = 1 shown in Figure 9a. This
step response checks the ability of the system to perform under normal operating
conditions using generic test input signals as a step d(t) = 1 shown in Figure 9a.
The step responses of the sensitivity transfer function are shown in Figure 8b.
From this figure it can be seen that the controller K(c) ensures the faster decay of
the transient response.

(a) (b)

Fig. 8. (a) Magnitude of the sensitivity transfer functions S(a), S(b), and S(c). (b) The

step responses from disturbance input d to regulated output z for the sensitivity transfer

functions S(a), S(b), and S(c).

The step responses from the disturbance input d to the control input z for
the three feedback systems are shown in Figure 9b. For integral controllers K(b)

and K(c), final value of their output (control input) is zero when final value of
the regulated output z is zero. This is an important feature of integral controllers
which ensures zero steady-state error for the actuator/plant/sensor configuration
given in (2.11).

(a) (b)

Fig. 9. (a) A step signal d. (b) The step responses from disturbance input d to control

input z for the transfer functions K(a)S(a), K(b)S(b), and K(c)S(c).
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2.3.2 Case study 2

In this section we still consider the standard closed loop system shown in Figure 7.
The sensor always has an instantaneous response but here the actuator is a second
order dynamical system

G1(p) = α
ω2

n

p2 + 2ζωnp + ω2
n

, G2(p) = β. (2.15)

For a numerical purpose, we conserve the actuator’s gain α = 10 and the sensor’s
gain β = 1 of Section 2.3.1. We set the damping factor ζ = 0.7 and the natural
frequency wn = 10. The controller transfer functions are given in (2.14). The
corresponding loop transfer function, which we denote L(d)(s), L(e)(s), and L(f)(s)
respectively, can be computed from (2.7). The same notation holds for

• the sensitivity transfer function S(d)(s), S(e)(s), S(f)(s) calculated from (2.8);

• the noise sensitivity transfer function T (d)(s), T (e)(s), T (f)(s) computed
from (2.9).

The magnitudes
∣∣S(d)(jω)

∣∣, ∣∣S(e)(jω)
∣∣, and

∣∣S(f)(jω)
∣∣ are plot in Figure 10a.

These plots should be compared to the plots depicted in Figure 8a. From this
figure we can conclude that a low frequency disturbance input will have the least
effect on the feedback system with controller K(c) i.e. the best disturbance re-
jection performance. In the low frequencies domain the remarks in Section 2.3.1
should be similar but there is a large peak of the magnitude

∣∣S(f)(jω)
∣∣. We can

conclude that the feedback system with controller K(c) is not stable enough.

(a) (b)

Fig. 10. (a) Magnitude of the sensitivity transfer functions S(a), S(b), and S(c). (b) The

step responses from disturbance input d to regulated output z for the sensitivity transfer

functions S(a), S(b), and S(c).

The Nyquist plots of the loop transfer function L(d), L(e) and L(f) are shown
in Figure 11. The Nyquist plot of L(f)(jω) is too close to the −1 point, see
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(Franklin et al. 1991). We can corroborate that the stability margins are small for
the feedback system with the controller K(c). The step responses of the sensitivity
transfer function are shown in Figure 10b. From this figure it can be seen that the
controller K(c) has a poor transient response. z plot exhibits oscillatory behavior:
the damping ratio of the feedback system is weak. Thus controller K(b) is selected
to be the operating controller.

(a) (b)

Fig. 11. (a) Nyquist plot for the loop transfer functions L(d)(s), L(e)(s) and L(f)(s). (b)

A sinusoidal signal d.

To assess the noise rejection performance we plot the magnitude of the noise
sensitivity transfer function T (d), T (e) and T (f). Figure 12 shows

∣∣T (d)(jω)
∣∣,∣∣T (e)(jω)

∣∣, and
∣∣T (f)(jω)

∣∣, i.e., the magnitudes of the feedback system transfer
functions from measurement noise n to regulated output z. From this figure, we
can conclude that a high frequency sensor noise will have the greatest effect on z
with the controller K(a)(s) and the least effect with the controller K(b)(s). For a
given controller, for instance K(b)(s), remark that the magnitude

∣∣S(e)(jω)
∣∣ and∣∣T (e)(jω)

∣∣ cannot be small in the same frequency domain.
The response of the noise sensitivity transfer function from a sinusoidal dis-

turbance input d plotted in Figure 11b are shown in Figure 10b. From this figure
it can be seen that the sinusoidal steady-state response of the feedback system
with controller K(b)(s) is the smallest. Controller K(b)(s) ensures the best noise
rejection performance.

2.4 Digital controlled systems

2.4.1 Sampled-data feedback system

In practice all control systems that are implemented today are based on a digital
computer. A computer controlled system is sketched schematically in Figure 13.
This block diagram is very similar to block diagram depicted in Figure 7, except
for a digital device which generates the control action. The analog-to-digital (A/D)
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(a) (b)

Fig. 12. (a) Magnitude of the noise sensitivity transfer functions T (a), T (b), and T (c).

(b) The responses from sinusoidal disturbance input d to regulated output z for the

sensitivity transfer functions T (a), T (b), and T (c).

converter shown in Figure 13 is a device that converts the sensor output y(t) to
digital numbers read by the computer. We assume that all the numbers arrive
with the same fixed period T and we neglect the quantization operation thus

y(k) = y(t)|t=kT . (2.16)

The computer interprets the converted signal, y(k) as a sequence of numbers,
processes the measurements using an algorithm, and provides a new sequence of
numbers u(k). The digital-to-analog (D/A) converter converts the sequence of
number u(k) to the physical control signal u(t). In many case the signal u(t) is
kept constant between the successive sampling instants

u(t) = u(k) kT ≤ t < (k + 1)T. (2.17)

We call variables y(k) and u(k) discrete time signals to distinguish them from
continuous time signals y(t) and u(t) which change continuously in time. The
computer-controlled system contains both continuous-time signals and discrete-
time signals and is called a sampled-data system.

For a numerical purpose, we assume that the actuator and the sensor are fading
memory systems with transfer function

G1(p) =
α

0.1s + 1
, G2(p) =

β

0.1s + 1
, (2.18)

and we retain the actuator’s gain α = 10 and the sensor’s gain β = 1 of
Section 2.3.1. The sampling period is T = 0.2 and the disturbance input is a
step d(t) = 1 shown in Figure 9a. The control sequence u(k) is obtained from the
measurement sequence y(k) using the control algorithm

u(k) = u(k − 1) + kITy(k), (2.19)
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Fig. 13. Sampled-data feedback system.

where kI = 0.5. The behavior of the A/D converter is illustrated in Figure 14.
Figure 15a is a plot of the sequence of numbers u(k) obtained from the sequence of
numbers y(k) plotted in Figure 14a. Note that the D/A converter keeps the signal
u(t) constant between the successive sampling instant kT , see the Figure 15b.

(a) (b)

Fig. 14. Analog-to-digital (A/D) converter operation: (a) measured output y(t), (b)

control algorithm input y(k).

For the sake of brevity we do not discuss sampling and reconstruction of
continuous-time signals. For a comprehensive exposure, the interested reader may
consult the book of Astrom & Wittenmark (2011). Remark that to avoid alias-
ing effect, it is necessary to filter the analog signal y(t) before the A/D converter
so that the signal obtained do not have frequencies above the Nyquist frequency.
Note that the output of the D/A are rectangular pulses which causes multiple
harmonics above the Nyquist frequency. This may cause difficulties for systems
with weakly damped oscillatory modes. If needed, the multiple harmonics could
be removed with a low pass filter acting as a reconstruction filter. The overall
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(a) (b)

Fig. 15. Digital-to-analog (D/A) converter operation: (a) control algorithm output u(k),

(b) control input u(t).

behavior of this hybrid feedback system which incorporates both continuous time
signals and discrete time signals can be studied by two different approaches.

1. The first approach, called the emulation design method, see (Franklin et al.
1991), deals with continuous time transfer function. In this case the digi-
tal computer behavior shown in Figure 16 is approximated by an equivalent
continuous time system described by transfer function K(s), see Figure 17.
The overall feedback system is assumed to be continuous and the continous
time framework presented in Sections 2.3.1 and 2.3.2 can be used consider-
ing the feedback loop depicted in Figure 7. This approach is discussed in
Section 2.4.2.

2. For the latter approach the sampled-data feedback system is transformed
into a discrete time feedback system. For this purpose the continuous part
of the system is sampled as seen from the digital computer’s point of view.
The resulting feedback system is characterized by a discrete time transfer
function using the z-transform. In this case discrete time controller design
methods may be used. An analysis of the feedback discrete time system is
performed in Section 2.4.3.

2.4.2 Emulation design method

The output of an integral controller (2.13) at time t = kT is

u(kT ) = kI

∫ kT

0

y(τ)dτ

= kI

∫ kT−T

0

y(τ)dτ + kI

∫ kT

kT−T

y(τ)dτ

= u(kT − T ) + kI

∫ kT

kT−T

y(τ)dτ︸ ︷︷ ︸
I

.
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Several approximations of the incremental term I can be chosen as for instance
the backward rectangular rule I ≈ Ty(kT ). Hence we obtain

u(kT )︸ ︷︷ ︸
u(k)

= u(kT − T )︸ ︷︷ ︸
u(k−1)

+kIT y(kT )︸ ︷︷ ︸
y(k)

,

which is equivalent to Equation (2.19). Thus the digital computer with algorithm
defined by Equation (2.19) is a discrete time equivalent to the continuous time
controller K(s) = kI/s.

Fig. 16. Association of the A/D converter with the control algorithm and with the D/A

converter.

Fig. 17. Equivalent transfer function K(s).

We consider that the feedback system is described by the block diagram shown
in Figure 7. For the given transfer functions G1, G2 defined by (2.18), standard
continuous time design method can be used to obtain the integral controller

K(h)(s) =
0.5
s
·

This continuous time controller is approximated with the difference Equation (2.19)
and we call K(i) and K(j) the discrete time controller with the sampling period
T = 0.2 and T = 0.05. We assume that the disturbance input d is a step. We
called z(h) the “ideal” regulated output response of the continuous time feedback
system, z(i) the regulated output response of the sampled-data feedback system
when the discrete time controller is K(i), and z(j) the regulated output response
of the sampled-data feedback system when the discrete time controller is K(j).
These signals are plotted in Figure 18a an Figure 19a. From these figures we
can conclude that z(j) is the best approximation of the “ideal” regulated output
response z(h).
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(a) (b)

Fig. 18. “Ideal” regulated output response z(h) of the continuous time feedback system,

regulated output response z(i) of the sampled-data feedback system when T = 0.2, and

regulated output response z(j) of the sampled-data feedback system when T = 0.05.

The “ideal” input response u(h) of the continuous time feedback system, the
regulated output response u(i) of the sampled-data feedback system when the
discrete time controller is K(i), and the regulated output response u(j) of the
sampled-data feedback system when the discrete time controller is K(j) are shown
in Figure 18b and in Figure 19b. It can be seen that the response u(j) matches
the “ideal” response u(h). We can conclude that clearly the sampling period
T = 0.2 is too rough and that the sampling period T = 0.05 ensures a satis-
factory performance. As mentioned by Franklin et al. (1991), “sampling at a rate
that is over 20 times faster than the bandwidth is a good, safe rule of thumb”.

(a) (b)

Fig. 19. “Ideal” regulated output response u(h) of the continuous time feedback system,

regulated output response u(i) of the sampled-data feedback system when T = 0.2, and

regulated output response u(j) of the sampled-data feedback system when T = 0.05.
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2.4.3 Discrete time controller design

In Figure 13 the job of the digital computer is to take the sampled value y(k) and
to compute the values u(k) to be sent to the D/A converter. The treatment of
the data inside the computer can be expressed as a linear difference equation as
for example the Equation (2.19), which describes a discrete time invariant linear
system. In Section 2.2 the Laplace transform plays an important role and permits
to introduce the transfer function and frequency interpretation of the closed loop
system shown in Figure 7. The discrete-time analog of the Laplace transform is
the z-transform which is a convenient tool to study general discrete linear systems.
The z-transform of a signal y(k) is defined as

Z {y} (z) =
∞∑

k=0

y(k)z−k, (2.20)

where z is a complex variable. If we multiply (2.19) by z−k and sum over k we
obtain ∞∑

k=0

u(k)z−k

︸ ︷︷ ︸
Z{u}(z)

=
∞∑

k=0

u(k − 1)z−k + kIT
( ∞∑

k=0

y(k)z−k

︸ ︷︷ ︸
Z{y}(z)

)
. (2.21)

In the first term on the right hand side, we let k−1 = j to get
∑∞

k=0 u(k−1)z−k =∑∞
j=1 u(j)z−(j+1) = z−1Z {u}. Equation (2.20) can be can be rewritten as

Z {u} (z) = z−1Z {u} (z) + kITZ {y} (z) (2.22)

which is simply an algebraic equation in z. The solution is

Z {u} (z) = kIT
z

z − 1︸ ︷︷ ︸
K(z)

Z {y} (z). (2.23)

We have obtained
Z {u} (z) = K(z)Z {y} (z) (2.24)

where K(z) = kIT
z

z−1 is called the discrete time transfer function. Thus the
z-transform of the output Z {u} is the product of the transfer function K and the
z-transform Z {y}. We can use the bloc diagram notation given in Figure 20.

Fig. 20. Block diagram notation of the transfer function.

All the framework presented in Section 2.3 for analyzing continuous time sys-
tems can be extended to discrete time systems. We consider a discrete time system
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with the associated block diagram shown in Figure 21 where K(z) is the controller
transfer function, G1(z) is the actuator transfer function, and G2(z) is the sensor
transfer function. This block diagram is similar to the block diagram depicted in
Figure 7.

Fig. 21. Discrete time feedback system.

Hence the regulated output response is

Z {z} =
1

1 + G1(z)K(z)G2(z)︸ ︷︷ ︸
S(z)

Z {d} − G1(z)K(z)
1 + G1(z)K(z)G2(z)︸ ︷︷ ︸

T (z)

Z {n} . (2.25)

We still use the following terminology: (i) L(z) = G1(z)K(z)G2(z) is the loop
transfer function; (ii) S(z) = 1

1 + L(z) is the sensitivity transfer function; (iii)

T (z) = G1(z)K(z)S(z) is the noise sensitivity transfer function. All results pre-
sented in Section 2.3 for continuous time feedback systems are relevant for discrete
time feedback systems.

The main difficulty concerns the correspondence between this block diagram
shown in Figure 21 and the block diagram of the “real” sampled data feedback
system depicted in Figure 13. This block diagram is redrawn in Figure 22 to make
the comparison easier.

Fig. 22. Sampled-data feedback system.
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It is obvious to note that the control algorithm is represented by the transfer
function K(z). For a “perfect” connection: (i) the discrete time transfer function
G1(z) should be viewed as the composition of the D/A converter system and the
actuator transfer function G1(p); (ii) the discrete time transfer function G2(z)
should describe the actuator transfer function G2(p) and the A/D converter. In
general this connection is not possible and a deeper analysis should be performed
using the pulse transfer function formalism, see (Franklin et al. 1990; Astrom
& Wittenmark 2011) which is beyond the scope of this tutorial. However in the
absence of continuous time disturbance d, the discretization of the continuous time
part of sampled data feedback system is a standard result, see Franklin et al. (1990)
and allows to obtain the aggregated/global transfer function G1(z)G2(z). But this
global transfer function cannot be split in order to obtain transfer function G1(z)
and transfer function G2(z). Yet for some special case of sensor transfer function
G2(p) as CCD-based sensor, see (Looze 2005), the connection of the sampled data
feedback system’s block diagram shown in Figure 22 and the discrete time feedback
system’s block diagram shown in Figure 21 is faithful.

3 Adaptive optics feedback control

3.1 Problem statement and wavefront spatial discretization

Among its applications, AO systems can be used to reduce the effects of atmo-
spheric turbulence on images taken from ground-based telescopes. The principle of
a classical AO system is depicted in Figure 23. The atmospheric wavefront on the
telescope aperture, defined at instant t as the two dimensional function ψa(x, t), is
the input of the feedback system. The deformable mirror introduces a correction
denoted by ψm(x, t) which is subtracted from the incoming/atmospheric wavefront
to obtain the outcoming/residual wavefront

ψr(x, t) = ψa(x, t)− ψm(x, t). (3.1)

The shape of the DM is adjusted in real time using the measurements y of a
wavefront sensor which provides the local slopes of the residual wavefront, see
Figure 24.

There exists different type of deformable mirrors and we choose to study the
case of the most common one. For additional details on basic principles of adaptive
optics, the reader can consult (Roddier 1999). We assume that the frequency
bandwidth of the DM is higher than the bandwidth of the A0 loop. Moreover the
DM’s deformation is sufficiently small to consider a linear response. nu actuators
are used and we denote ai(t) the stroke of the ith actuator. Thus the DM’s shape
is modeled as follows

ψm(x, t) =
nu∑
i=1

ai(t)fi(x), (3.2)
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Fig. 23. Adaptive optics system.

where fi(x) is called the influence function of the ith actuator. We suppose that the
DM’s actuators and the associated power amplifiers have sufficient fast dynamics
such that we assume that

ai(t) = ui(t). (3.3)

We denote ui(t) the control input which is the power amplifier input of the ith
actuator.

Different types of sensors (curvature sensor, pyramid wavefront sensor) may
be used to estimate the distortions affecting the outcoming wavefront but the
most frequently encountered in existing applications is the Shack-Hartmann (SH)
wavefront sensor. The principle of a SH wavefront sensor is shown in Figure 24.
The outcoming wavefront is imaged using a lenslet array of size nw. Each lens
takes a small part of the aperture, called sub-pupil, and forms an image of the
source recorded by the detector, typically a CCD. If no wavefront aberrations
are present, the image pattern is a grid of spots with constant intervals. As
soon as the wavefront is distorted, the images are displaced from their nomi-
nal positions. Displacements of image centroids in two orthogonal directions u, v
are proportional to the average wavefront slopes in u, v over the subapertures.
The shift is computed using classic methods (center of gravity algorithms, ...).
Thus, a SH sensor measures the wavefront average slopes (αu,i, αv,i) for each
subaperture i.

A usual representation of wavefront is made through the orthogonal basis, typ-
ically Karhunen-Loève functions or Zernike polynomials as defined in (Noll 1976).
An infinite number of functions is required to characterize the wavefront, but a
truncated basis {Fi(x)} of dimension nb, that we called the modal basis is used for
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Fig. 24. Shack-Hartmann wavefront sensor principle.

implementation purpose. Thus the atmospheric wavefront ψa can be decomposed
on the modal basis as follows:

ψa(x, t) ≈
nb∑
i=1

wa,i(t)Fi(x), (3.4)

where we denote wa,i the modal coordinates which are the coefficients of this
decomposition. We collect the scalar coefficient signals wa,1, ..., wa,nb

to form the
vector

wa(t) =

⎡⎢⎣ wa,1(t)
...

wa,nb
(t)

⎤⎥⎦ .

The same representation (3.4) is used for the mirror correction ψm, and the residual
wavefront ψr; similarly the coefficient signals are collected to form vector signals
wm and wr. Control inputs u1, ..., unu and average WFS slopes αu,1, αv,1, ...,
αu,nw , αv,nw are collected to form the control input vector u and the slope vector s.
That is,

u(t) =

⎡⎢⎣ u1(t)
...

unu(t)

⎤⎥⎦ , s(t) =

⎡⎢⎢⎢⎢⎢⎣
αu,1

αv,1

...
αu,nw

αv,nw

⎤⎥⎥⎥⎥⎥⎦ .

Equations (3.1), (3.2) are translated into modal coordinates using vector notation as

wr(t) = wa(t)− wm(t), (3.5)

and
wm(t) = Mmu(t), (3.6)
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where Mm is called the mirror influence matrix. The slope signal s is expressed as

s(t) = Mwwr(t), (3.7)

where we denote Mw the WFS matrix. As mentioned by Looze (2005), the out-
put of the CCD detector, intrinsically a discrete-time signal, integrates over the
sampling period T the delayed slope

s̃(t) = s(t− τ). (3.8)

We call τ the continuous time measurement delay which is the sum of the CCD’s
readout time and of the slopes’ computation time. Thus, the output of the CCD
based sensor is

y(t) =
1
T

∫ t

t−T

s̃(σ)dσ + n(t), (3.9)

where n(t) is an additive noise caused by the photon fluctuations and by the
detector’s readout noise.

3.2 Disturbance rejection MIMO feedback loop

If we refer to the feedback block diagram depicted in Figure 13, Equations (3.5),
(3.6), (3.7), (3.8), and (3.9) define the continuous time part of the sampled-data
feedback system shown in Figure 13. The regulated output is z(t) = wr(t), the
disturbance input is d(t) = wa(t), and the actuator output is v(t) = wm(t). The
actuator/DM transfer function is simply

G1(p) = Mm.

In Figure 13, the sensor/WFS is described by the transfer function

G2(p) =
(
e−τpI

)(1− e−Tp

Tp
I
)
Mw.

As proposed in the paper (Demerle et al. 1994), a first approach, the emulation
design method presented in Section 2.4.2, approximates the AO feedback system
with the continuous time feedback system shown in Figure 7. In Section 2.4.2 we
have considered a single-input single-output (SISO) feedback system but here the
feedback loop signals may have large dimensions: this is the multiple-input and
multiple-output (MIMO) feedback system depicted in Figure 25.

The Equation (2.6) established for a single-input single-output (SISO) system
becomes

L{wr} (p) =

S(p)︷ ︸︸ ︷
(I + G1(p)K(p)G2(p))−1 L{wa} (p)

− (I + G1(p)K(p)G2(p))−1G1(p)K(p)︸ ︷︷ ︸
T (p)

L{n} (p).
(3.10)



116 New Concepts in Imaging: Optical and Statistical Models

Fig. 25. An approximation of an AO MIMO feedback system.

where the following terminology remains:

(i) L(p) = G1(p)K(p)G2(p) is the loop transfer function;

(ii) S(p) = (I + L(p))−1 is the sensitivity transfer function;

(iii) T (p) = S(p)G1(p)K(p) is the noise sensitivity transfer function.

The disturbance rejection performance is entirely determined by transfer func-
tions S and T . At this step no assumption is made for the type of controller
(optimized modal controller, linear quadratic Gaussian control, ...) for the set
of the perturbation inputs wa and n. The performance criterion, the “size” of
the residual wavefront wr is not defined either. A possible approach sketched in
Section 2.2, involves the frequency response analysis generalized for MIMO systems
which provides some crucial information about the system performances (stability,
disturbance rejection, command input peak value), see for instance the book 2007.
Another way is to evaluate the “size” of the residual wavefront wr in terms of the
variance (mean-square error) E

[
wr(k)T wr(k)

]
when stochastic signals wa, nw are

considered zero mean, stationary and independent. The Maréchal approximation
(Born & Wolf 1999) can be invoked to show that bounding the mean-square error
of the residual wavefront ensures satisfactory imaging performance of AO systems.
Thus, in the frequency domain, the variance can be written as

E
[
‖wr(t)‖2

]
= 1

2π

∫ ∞

−∞
Tr

(
S(jω)Φwa(jωT )S(−jω)T

)
dω

+ 1
2π

∫ ∞

−∞
Tr

(
T (jω)Φn(jω)T (−jω)T

)
dω,

(3.11)

where Φwa and Φn are the power spectral densities of the input signals wa and
nw. The first term of the right hand side of Equation (3.11) represents the contri-
bution of the atmospheric wavefront and the latter the contribution of the WFS
measurement noise. The optimized modal gain integral control (OMGI) proposed
by Gendron & Léna (1994) and its improvements, see (Dessenne et al. 1998), is a
well-established method to tackle this control problem.
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3.3 Optimized modal gain integral control

The key idea of the approach is to reconstruct the wavefront using the WFS
measurement y and to consider the linear relation (3.7). The WFS matrix Mw

can be expressed into its singular value decomposition, see (Laub 2004)

Mw = UΣV T (3.12)

where U , V are orthogonal matrices. We assume that rank (Mw) = nb and

U =
[

U1 U2

]
, Σ =

[
S
0

]
, with S = diag (σi) ,

where terms σi are positive singular values of the matrix Mw. We define M †
w =

V S−1UT
1 as the Moore-Penrose pseudoinverse of the matrix Mw, see (Laub 2004).

We also denote rank (Mm) = nb and we call M †
m the Moore-Penrose pseudoinverse

of the matrix Mm. An integral (modal) controller can be defined as

K(p) = M †
m

(
1
p
KI

)
M †

w, (3.13)

where KI is the matrix integrator gain to design. We consider a new atmospheric
wavefront signal w̃a, and a new sensor noise signal ñ, such that

wa = V w̃a, n = U1Sñ,

and a new residual wavefront signal

w̃r = V T wr.

The block diagram of the feedback system is depicted in Figure 26.
Despite the complexity of the block diagram, a change of signals allows us to

obtain a straightforward expression of the residual wavefront

L{w̃r} =
(

I +
1
p
K̃Ie

−τp 1− e−Tp

Tp

)−1

︸ ︷︷ ︸
S̃

L{w̃a}

−
(

I +
1
p
K̃Ie

−τp 1− e−Tp

Tp

)−1
1
p
K̃I︸ ︷︷ ︸

T̃

L{ñ}
(3.14)

where the matrix gain is K̃I = V T KIV . If we fix the matrix gain such that
K̃I = diag

(
k̃i

)
, then the MIMO transfer functions S̃ and T̃ are diagonal: the

MIMO control problem reduces to nb independent SISO control problems. We
call S̃i (T̃i) the ith diagonal entry of the sensitivity transfer function S (the noise
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Fig. 26. Modal feedback system.

sensitivity transfer function T ). Thus, the variance of each component can be
written as

E
[
‖w̃r,i(t)‖2

]
=

1
2π

∫ ∞

−∞

∣∣∣S̃i(jω)
∣∣∣2 Φw̃a,i(jω)dω +

1
2π

∫ ∞

−∞

∣∣∣T̃i(jω)
∣∣∣2 Φñi(jω)dω,

(3.15)
where Φw̃a,i(jω) and Φñi(jω) are the power spectral densities of the ith component
of vector signals w̃a and ñ. The integral gain k̃i is tuned using the loop shaping
approach sketched in Section 2.3.2 to minimize the variance of the ith compo-
nent which induces the minimization of the variance E

[
wr(t)T wr(t)

]
. Then, the

controller matrix gain is computed as

KI = V K̃IV
T . (3.16)

The main advantage of the optimized modal gain integral control, which explains
its success in practice, is to express some of the controller’s signals in the modal
base which facilitates the physical interpretation. Furthermore it is intrinsically
a frequency approach: the analysis of the AO feedback system’s performance is
straightforward. The well established OMGI control offers interesting abilities.
Constant additive disturbances as actuator offset are intrinsically rejected. The
real time computational cost is reasonable and induces limited delay. The method
can be used when the knowledge of the disturbance temporal dynamics is weak.
Some shortcomings have been mentioned in the literature. The integral controller
can be transformed into an observer based controller structure, see (Kulcsár et al.
2006). The observer is not stable and the control u may blow up. On a simplified
SCAO configuration some authors Conan et al. (2011) indicated that more ad-
vanced control approaches such as linear quadratic Gaussian control ensure better
performances.
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4 Modern feedback control: LQG method for adaptive optics

4.1 Towards linear quadratic Gaussian control

4.1.1 Adaptive optics feedback loop

The WFS Equations (3.7), (3.8), and (3.9) provide a linear relationship between
the temporal average of the residual wavefront over the sampling period T and the
discrete time measurement (2.16) corrupted by a measurement noise. Thus, we can
write the discrete time residual wavefront wr(k) as the average of the continuous
time residual wavefront wr(t)

wr(k) =
1
T

∫ kT

(k−1)T

wr(t)dt. (4.1)

The same temporal discretization (4.1) is done for the mirror wavefront wm(k)
and the atmospheric wavefront wa(k). The WFS Equations (3.7), (3.8), (3.9),
and (2.16) are transformed into difference equation. We obtain in the frequency
domain

Z {y} = z−kyMw︸ ︷︷ ︸
G1

Z {wr}+ Z {n} , (4.2)

where n is an additive measurement noise and where ky is the measurement delay
such that τ = kyT . Equations (3.5) and (3.6) become

Z {wr} = Z {wa} −Mwz−ku︸ ︷︷ ︸
G2

Z {u} , (4.3)

where ku ≥ 1 represents the control input delay. We call G1(z) the DM transfer
function and G2(z) the WFS transfer function. The block diagram of the discrete
time AO feedback system is shown in Figure 21. Here the AO loop is a MIMO
feedback system. The regulated output response (2.25) established for a SISO
system becomes

Z {wr} (z) =

S(z)︷ ︸︸ ︷
(I + G1(z)K(z)G2(z))−1Z {wa} (z)

− (I + G1(z)K(z)G2(z))−1G1(z)K(z)︸ ︷︷ ︸
T (z)

Z {n} (z).
(4.4)

where the following terminology remains:

(i) L(z) = G1(z)K(z)G2(z) is the loop transfer function;

(ii) S(z) = (I + L(z))−1 is the sensitivity transfer function;

(iii) T (z) = S(z)G1(z)K(z) is the noise sensitivity transfer function.
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Up to now the framework is identical to the approach presented for the continuous
time feedback loop in the frequency domain. However we have to keep in mind
that here we adopt the point of view of the digital computer and that the regulated
output wr(k) is the temporal average of the “real” regulated output wr(t). This
approach is relevant when the choice of the sampling period T is not critical in
regards with the dynamics of the atmospheric wavefront. We assume that signals
wa, nw are zero mean, stationary and independent stochastic signals. Thus, in the
frequency domain, the variance E

[
‖wr(k)‖2

]
can be written as

E
[
‖wr(k)‖2

]
= T

2π

∫ 2π
T

0

Tr
(
S(ejωT )Φwa(ω)S(e−jωT )T

)
dω

+ T
2π

∫ 2π
T

0

Tr
(
T (ejωT )Φn(ω)T (e−jωT )T

)
dω ,

(4.5)

where Φwa and Φn are the power spectral densities of the input signals wa and n.
The first term of the right hand side of Equation (4.5) represents the contribution
of the atmospheric wavefront and the latter the contribution of the WFS mea-
surement noise. Equation (4.5) indicates the frequency range where the frequency
responses S(ejωT ) and T (ejωT ) have to be small. Power spectral densities Φwa

and Φn can be seen as weighting functions for performance objective (4.5). The
control problem can be formulated as finding the control law that minimizes the
variance E

[
‖wr(k)‖2

]
To take into account more accurately the information of

the atmospheric wavefront we have to build a model of the temporal evolution
of wa(k).

4.1.2 Identified atmospheric wavefront model

The power spectral densities Φwa may be factored as

Φwa(w) = Ga(ejωT )Ga(e−jωT )T ,

and the atmospheric wavefront wa is assumed to be the output of a causal and
stable diagonal transfer function matrice Ga driven by a white noise na having a
unitary covariance matrix. To take into account the oscillating behavior of wa(k)
a second order diagonal AR model is considered

A0wa(k) + A1wa(k − 1) + A2wa(k − 2) = na(k), (4.6)

where diagonal matrices (A0, A1, A2) are the AR parameters. The computation
of the parameters is carried out with the Burg algorithm, see (Burg 1975), which
minimizes the sum of the squares of the forward and backward prediction errors.
In the frequency domain we obtain

Z {wa} =
(
A0z

2 + A1z + A2

)−1
z2︸ ︷︷ ︸

Ga

Z {na} .

which defines the atmospheric wavefront filter Ga. The AO block diagram is
depicted in Figure 27 where the different loop signals are mentioned.
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Fig. 27. AO discrete-time system block-diagram including the atmospheric model.

4.1.3 Performance objective in the time domain

In the time domain, the AO control problem can be formulated as finding the con-
trol law that minimizes the empirical variance of the residual wavefront, averaged
over a large exposure time Te

E
[
‖wr(t)‖2

]
= lim

Te→∞

1
Te

∫ Te

0

‖wr(t)‖2 dt, (4.7)

which is the time domain counterpart of (3.11) for a stationary ergodic process
and the “true” imaging performance index. Several authors Kulcsár et al. (2006),
Looze (2007) demonstrated that the minimization of the residual wavefront vari-
ance E

[
‖wr(t)‖2

]
can be performed using the discrete-time model of the hybrid

AO system without loss of optimality. Therefore, the performance objective to
minimize, in the discrete-time domain is translated as

E
[
‖wr(k)‖2

]
= lim

N→∞

1
N

N∑
k=1

‖wr(k)‖2 , (4.8)

which is the time domain counterpart of (4.5). This last control objective can be
minimized using LQG design approach using a state-space description of the aug-
mented plant (DM, WFS, atmospheric wavefront model) as discussed in
Section 4.3.

4.2 LQG control framework

4.2.1 State space equation

The state space method is based on the description of system equation in terms
of n first-order difference equations, which may be combined into a first-order
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vector-matrix difference equation. The state space equation of a discrete time
system can be written

x(k + 1) = Ax(k) + Be(k)
s(k) = Cx(k) + Du(k).

(4.9)

Here x ∈ Rn is the state of the system, e ∈ Rm is the input, and s ∈ Rr is the
output. For example consider the AR difference Equation (4.6) when the signals
wa and na are scalars

a0wa(k + 1) + a1wa(k) + a2wa(k − 1) = na(k),

where real scalars a0, a1, a2 are given. To convert this equation into the state
space Equation (4.9), we define x1(k) = wa(k), x2(k) = wa(k − 1), e(k) = na(k),
and s(k) = wa(k). The first-order difference equations are then

x1(k + 1) = wa(k + 1) = −a1
a0

wa(k)− a2
a0

wa(k − 1) + 1
a0

na(k)

= −a1
a0

x1(k)− a2
a0

x2(k) + 1
a0

e(k)

x2(k + 1) = wa(k) = x1(k)

s(k) = wa(k) = x1(k).

We can write this in matrix/vector form as[
x1(k + 1)
x2(k + 1)

]
=

[
−a1

a0
−a2

a0
1 0

] [
x1(k)
x2(k)

]
+

[
1
a0
0

]
e(k)

s(k) =
[

1 0
] [ x1(k)

x2(k)

]
+ 0 e(k).

If we pose

A =
[ −a1

a0
−a2

a0
1 0

]
, B =

[
1
a0
0

]
, C =

[
1 0

]
, D = 0,

we obtain the state space Equation (4.9). In the general case, the atmospheric
wavefront model Ga can be written in state space form as

xa(k + 1) = Aaxa(k) + Bana(k),

ya(k) = Caxa(k),
(4.10)

where the state xa ∈ R2nb is xa(k) =
[
wa(k)T wa(k − 1)T

]T and where state
space matrices are

Aa =
[
−A−1

0 A1 −A−1
0 A2

I 0

]
, Ba =

[
A−1

0

0

]
, Ca =

[
I 0

]
. (4.11)
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4.2.2 Linear quadratic Gaussian control

The discrete-time LQG control theory considers that the system is linear and that
the disturbance (plant noise) and the measurement noise inputs are stochastic.
Thus, the system is described by the state-space representation

x(k + 1) = Ax(k) + Bu(k) + w(k)
y(k) = Cx(k) + v(k), (4.12)

where x ∈ Rn is the state vector, u ∈ Rnu the command input, y ∈ Rny the
measured output, and where w ∈ Rn represents the disturbance input and v ∈
Rny is the measurement noise input. We assume that Gaussian noise processes
w(k) and v(k) are mutually independent, zero mean white noises with covariance
E

[
w(k)wT (l)

]
= Wδ(k − l) and E

[
v(k)vT (l)

]
= V δ(k − l), respectively. It is

supposed that the pair (A, B), (A, W 1/2) are stabilizable and the pair (A, C) is
detectable.

The LQG control problem is to find the optimal control u(k) for system (4.12)
that minimizes the infinite horizon quadratic cost criterion

J = lim
N→∞

1
N

E

[
N−1∑
k=0

x(k)T Qx(k) + u(k)T Ru(k)

]
, (4.13)

with given weighting matrices Q = QT ≥ 0, R = RT > 0 and the pair (A, Q1/2)
detectable.

The solution of the LQG control problem is then provided by the interconnec-
tion of a linear quadratic regulator and a state estimator. This result is known
in linear optimal control theory as the Separation Principle, see (Kwakernaak &
Sivan 1972; Anderson & Moore 1990). The optimal control sequence minimizing
the cost function (4.13) is given by the state-feedback control law

u(k) = −Kx̂(k), (4.14)

where x̂ is the optimal estimate of the state x. The state-feedback gain K is a
constant matrix

K =
(
R + BT PB

)−1
BT PA, (4.15)

where the matrix P = PT is the unique positive-semidefinite solution of the control
discrete-time algebraic Riccati equation (DARE)

P = AT PA−AT PB
(
BT PB + R

)−1
BT PA + Q. (4.16)

Note that the conditions R > 0, (A, B) detectable and (A, Q1/2) detectable can be
relaxed, see (Bitmead & Gevers 1991; Dorato & Levis 1971). The optimal state es-
timation which minimizes the variance of the estimation error E

[
|x̂(k)− x(k)‖2

]
,

is performed through a standard Kalman predictor filter with

x̂(k + 1) = Ax̂(k) + Bu(k) + L(y(k)− Cx̂(k)), (4.17)
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where L is the observer gain

L = AXCT (CXCT + B)−1. (4.18)

where the matrix X = XT is the unique positive-semidefinite solution of the
estimation DARE

X = AXAT −AXCT (CXCT + V )−1CXAT + W. (4.19)

4.3 Application of LQG control to the adaptive optics system

4.3.1 AO state space system

In the sequel we consider a unitary input delay ku = 1 and a unitary output delay
ky = 1. The “augmented system”, depicted in Figure 27, is described by the state
space Equation (4.9) where the signals are defined as follows.

1. The state vector x is split in two parts x =
[

xT
m xT

a

]T . The state xm(k) =[
wm(k)T wm(k − 1)T

]T represents the plant dynamics (DM & WFS) and
state xa(k) corresponds to the perturbation dynamics (4.10).

2. The state noise is w =
[

0
Ba

]
na and the measurement noise is v = n.

The state space matrices of the augmented system (DM, WFS, ATM) are defined
as

A =
[
Am 0
0 Aa

]
, B =

[
Bm

0

]
, C = Mw

[
Cm Ca

]
. (4.20)

The state space matrices of the plant are

Am =
[
0 0
I 0

]
, Bm =

[
Mm

0

]
, Cm =

[
0 −I

]
, (4.21)

and state-space matrices (Aa, Ba, Ca) are given in (4.11).
The special form of state space matrices (4.20) can be exploited to simplify the

resolution of the Riccati equations, see (Bitmead et al. 1990). For the presentation
of the following results, matrices P , X and Q are partitioned conformally with the
matrix A, that is

P =
[
Pm P0

PT
0 Pa

]
, X =

[
Xm X0

XT
0 Xa

]
, Q =

[
Qm Q0

QT
0 Qa

]
.

4.3.2 Solving the control DARE

The control DARE (4.16) can be simplified to obtain solutions for the individual
blocks of P . We have to find the matrix Pm = PT

m the unique positive-semidefinite
solution of the reduced order DARE

Pm = AT
mPmAm −AT

mPmBm

(
BT

mPmBm + R
)−1

BT
mPmAm + Qm. (4.22)
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The state-feedback gain (4.15) becomes K =
[
Km Ka

]
with

Km = (BT
mPmBm + R)−1BT

mPmAm. (4.23)

We search matrix P0 which is a solution of the following discrete-time Sylvester
equation

P0 = (Am −BmKm)T
P0Aa + Q0 . (4.24)

We obtain
Ka = (BT

mPmBm + R)−1BT
mP0Aa. (4.25)

The special form of state space matrices (4.21) imply that Km = 0 and that

Ka = −
(
R + MT

mMm

)−1
MT

mCaA2
a . (4.26)

4.3.3 Solving the estimation DARE

The estimation error can be written as x̃T =
[
x̃T

m x̃T
a

]
=

[
x̂T

m − xT
m x̂T

a − xT
a

]
.

The state xm is a deterministic signal and thus x̃m = 0 which simplifies the blocks
Xm = 0, X0 = 0. The estimation DARE (4.19) can be simplified to obtain
solutions for the individual blocks of X . Thus the matrix Xa = XT

a is the unique
positive-semidefinite solution of the reduced order DARE

Xa = AaXaAT
a −AaXaCT

a

(
CaXaCT

a + V
)−1

CaXaAT
a + BaBT

a . (4.27)

The observer gain (4.18) becomes L =
[

0
La

]
with

La = AaXaCT
a

(
CaXaCT

a + V
)−1

. (4.28)

4.3.4 LQG controller

The strictly proper, linear time invariant controller, is described by the state-space
equation

x̂(k + 1) = Âx̂(k) + B̂y(k)

u(k) = Ĉx̂(k)
(4.29)

where the matrices Â, B̂, Ĉ are

Â =
[

Am −BmKa

−LaMwCm Aa − LaMwCa

]
, B̂ =

[
0

La

]
, Ĉ = −

[
0 Ka

]
.

Note that the LQG controller is equivalently described by the discrete time transfer
function

K(z) = Ĉ
(
zI − Â

)−1

B̂,

which is a convenient form (i) to analyze the AO feedback system depicted in
Figure 27; (ii) to interpret the AO performance index (4.5).
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4.4 LQG controller design

We consider an 8-m telescope without obstruction and the 512× 512-pixels wave-
fronts projected over 44 Zernike (nb = 44). The physical modeling has been
performed by means of the Software Package CAOS (Carbillet et al. 2005), de-
veloped within the CAOS problem-solving environment (PSE), see (Carbillet et al.
2010). The computation of the LQG state-space matrices (4.20) is carried out
using Matlab software and the Control system toolbox and involves the fol-
lowing steps.

Step 1: AO discrete-time state-space computation. DM controls perfectly
low spatial frequencies with nu = 44 actuators and consequently Mm = Inb

. The
WFS device is a 8×8 (⇒ ny = 52) subaperture Shack-Hartmann WFS (8×8 0.2′′

px/subap., λ = 700nm ± 150 nm, Δt = T = 1ms.). The WFS influence matrix
Mw is determined from the WFS calibration simulation.

Using Software Package CAOS 500 × 1 ms wavefronts propagated through an
evolving 2-layers turbulent atmosphere (r0 = 10 cm at λ = 500 nm, L0 = 25 m,
wind velocities = 8 & 12 m/s) are obtained. After the projection on the Zernike
base, the signal wa is modeled as the output of an AR system using the approach
presented in Section 4.1.2. The computation of the parameters is carried out with
the Burg algorithm, see (Burg 1975), using the Signal Processing Toolbox of
Matab and permits to obtain state space matrices (4.11). Then, the computation
of the LQG state space matrices is obvious using Equation (4.20).

Step 2: Additive noise covariance estimation. Covariance matrix V for
LQG design is a tuning parameter which dictates the performance of the AO con-
trol loop. We use the empirical covariance matrix obtained from a photon noise
calibration from our CAOS simulations. Note that this needs anyway to be refined
for future developments.

Step 3: controller design. To minimize the performance objective E
[
‖wr(k)‖2

]
given in the discrete-time domain (4.8) we consider the LQG performance index
J defined by (4.13) with the weigthing parameter R = 0 (cheap control case).
We have designed two kinds of optimal controller. LQG1 has been designed with
the noise covariance matrix V equal to zero, while for LQG2 we use the empirical
covariance matrix built in step 2.

4.5 Discussion

4.5.1 A posteriori frequency analysis

In the Figure 28–30 show the singular values of S(ejωT ) in the left part, and the
singular values of T (ejωT ) in the right part. The maximum singular values are
plotted in plain line, while the minimum singular values are plotted in dashed
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Fig. 28. Plot of singular values of S(ejωT ) in the left part, and the singular values of

T (ejωT ) in the right part for integrator case (with a gain of 0.3).

Fig. 29. Plot of singular values of S(ejωT ) in the left part, and the singular values of

T (ejωT ) in the right part for LQG1 controller case.

line. The integrator case (with a gain of 0.3) is plotted in Figure 28, the LQG1
controller case in Figure 29, and the LQG2 controller case in Figure 30.

Note that the sensitivity transfer function S for the LQG1 controller case shows
that the LQG1 controller ensures a better rejection of the atmospheric wavefront
than the LQG2 controller. If we check the frequency response of the noise rejection
transfer function T , LQG1 design is more sensitive to noise than LQG2 design.
The integrator case exhibits the worst frequency performance. These indications
have to be confirmed by using CAOS end to end simulation.

4.5.2 Performance comparison

The time simulation has been performed by means of the Software Package
CAOS. An ad hoc module, SSC, which stands for “Space-State Control”, has been
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Fig. 30. Plot of singular values of S(ejωT ) in the left part, and the singular values of

T (ejωT ) in the right part for LQG2 controller case.

developed especially for this study, also with the goal of making it publicly avail-
able with a future upgrade of the Software Package CAOS. Figure 31 shows the
numerical modeling designed within the CAOS PSE.

Fig. 31. CAOS numerical modeling of the AO system.

Figure 32 represents an example of running simulation. Left: the atmospheri-
cally-perturbed input wavefront. Middle: the corresponding Shack-Hartmann
spots. Right: the resulting corrected wavefront.

For different operating conditions (star magnitude) we have obtained the fol-
lowing results sum up in Table 1. In bright conditions LGG and integral controllers
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Fig. 32. CAOS running simulation.

Table 1. Obtained residual wavefront rms.

Photons/subaperture/T Integrator LQG1 LQG2
no noise ∞ ∼268 nm ∼267 nm ∼271 nm
mag 12 ∼320 ∼269 nm ∼268 nm ∼271 nm
mag 14 ∼51 ∼272 nm ∼271 nm ∼273 nm
mag 16 ∼8.0 ∼296 nm ∼297 nm ∼284 nm
mag 17 ∼3.2 ∼350 nm ∼356 nm ∼313 nm
mag 18 ∼1.3 ∼471 nm ∼475 nm ∼438 nm

are equivalent until magnitude 14. In faint conditions (magnitude 16 to magnitude
18) the LQG2 controller induces better performance than the integral controller.

The authors are greatly indebted to the referee Céline Theys, for her helpful and constructive
comments and Anthony Schutz for the computer assistance. The first author would like to thank
Calypso Barnes for her valuable contribution to improve the quality of the english text.
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1 Introduction

The Be stars with low metallicity are supposed to produce little or no magnetic
field. This absence of magnetic field leads to a high spin-up during the contrac-
tion then formation of these stars (Martayan et al. 2006). This rotation rate
can attain more than 80% of the critical, or breakup, velocity vc =

√
(GM/Rc)

(with Rc the equatorial radius at this velocity) in some cases. These fast-rotating
stars are called “fast rotators” and exhibit a number of peculiar characteristics
(Domiciano de Souza et al. 2003), among which geometrical flattening, coupled
with gravitational darkening von Zeipel (1924), making the poles hotter than the
equator.

The models from Collins & Sonneborn (1977) indicate a two-components spec-
tral energy distribution (SED) for these stars, with an infrared excess due to
gravity darkening. Hence, it is not easy to place these stars in one single spectral
classification, as the observed SED depends on its rotational velocity and inclina-
tion angle (Maeder & Peytremann 1972).

Furthermore, rapid rotation induce an additional change in the apparent spec-
tral type and class of the star (Collins & Harrington 1966). Indeed, the full widths
at half-maximum (FWHM) of UV lines are generally narrower (up 0.2 km/s) than
those of the visible lines due again to gravitational darkening (Hutchings et al.
1979), since the spectral lines, depending on the temperature and gravity, are not
formed uniformly on the star. This has an impact on the estimate of the inclina-
tion angle (Hutchings & Stoeckley 1977) and, hence, the estimation of the spectral
type of the star. A classification based on the spectral ratio between the widths
of these lines would be distorted by this effect (Collins 1974).

In addition, mechanisms such as meridional circulation and/or turbulence may
affect the internal structure of the star and its evolution (Meynet 2009). Thus,
fast rotators have always been considered as a physics laboratory to study stellar
interiors, stellar evolution and primordial stars.

Moreover, Non-Radial Pulsations (NRP) can be a crucial explanation of tran-
sient mass ejections in Be stars. The classical observational techniques, as pho-
tometry and spectroscopy, suffer from the observational selection of NRP modes
that is generally impossible to distinguish from physical selection. For example,
the observational selection is different for pair and impair modes (integration of
symmetric and asymmetric brightness or velocity distributions) and could explain
the fact that only pair (or impair) modes are observed in some Be stars, a phe-
nomenon that can also be due to a physical effect as argued by, for example,
Jankov et al. (2000). The mechanisms governing the time variations of the mass
ejection of Be stars remain largely debated. One possible explanation is the tran-
sient combination of several modes of non-radial pulsation (NRP) (Rivinius et al.
1999). It depends on the excited modes, which in turn critically depend on the
fundamental stellar parameters (Levenhagen et al. 2003). The stellar diameter,
flattening, rotation velocity, differential rotation and gravity govern the dominant
excitation mechanisms. Limb and gravitational darkening have a strong impact
on the interpretation of time evolution of spectrophotometric data. However,
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differential interferometry yields differential phase information on non resolved
objects which allows to measure the diameter, flattening, rotation velocity and
differential rotation, and allows much better identification of NRP modes that the
spectroscopy and/or photometry alone (e.g. Jankov et al. 2005). Physical selec-
tion mechanisms would select equatorial modes if a high latitudinal differential
rotation has a destabilizing effect (Stockley & Buscombe 1987), but the detection
of such modes is also favored by observation biases depending from the obser-
vation angle. Even if Be stars can be only marginally resolved with the largest
VLTI baselines, and structures in the disk are completely unresolved, differential
interferometry can extract the displacement with wavelength (λ) of the photocen-
ter ε(λ) of an unresolved source from the small variations of the interferometric
differential phase through a spectral line (Petrov 1988 and Vakili & Percheron
1991). Recently, we have used this to measure the diameter and the rotation ve-
locity of Achernar (Domiciano de Souza et al. 2012). Jankov et al. (2001) treated
explicitly the case of non-radial stellar pulsations. The photocenter shift delivers
the first order moment of the spatial brightness distribution and some stellar re-
gions are reinforced. Consequently, the modes that are observationally canceled in
flux spectrum should appear in the spectrally resolved photocenter shift. The full
reconstruction of the NRP modes requires a Fourier temporal analysis of the pho-
tocenter displacement ε(λ, t), in a generalization of the Fourier Doppler Imaging
based on the spectrum S(λ, t).

In this context, long baseline interferometry using spectral resolution in dif-
ferent bands from the visible to the IR, offers new oppotunities to observe the
details of such stars with enough spatial resolution (e.g. van Belle 2012) to go be-
yond the limitation of classical techniques such as spectroscopy, photometry and
polarimetry. We hereby describe a numerical model that includes a subset of the
different mechanisms explained above: namely fast rotation and stellar pulsation
that shape the emergent flux as a function of different parameters such as rotation
rate (therefore flatenning), inclination angle to the line of sight, iso-velocity maps
across the spectral line among others. The intensity of the differential phase signal
critically depends on the characteristics of the observed spectral lines. In HR-K
we have access to Brγ, which will be strongly polluted by circumstellar emission
and to He lines, which are often strongly affected by atmospheric lines and will
also be affected by circumstellar emission, but in a way different than for Br.

Our work including the effect of NRP can be innovative, especially with tech-
nological advances in interferometry. Observations campaigns on AMBER / VLTI
had been requested and obtained for 2013 by our team, in the hope to validate
our numerical model.

2 SCIROCCO+

2.1 Theoretical discription of the model

SCIROCCO+: stands for Simulation Code of Interferometric-observations for
rotators and CirCumstellar Objects including non-radial pulsations. It is written



134 New Concepts in Imaging: Optical and Statistical Models

in Matlab and makes use of the following semi-analytical approach, adopting the
frame depicted in Figure 1 (shown in cartesian reference): a pixellized intensity
map is computed independently from a velocity map, and both are combined
into a spectrally-resolved intensity image-cube, which can be input in a later
step into an interferometric simulation code. This model was inspired by an an-
terior virsion; Simulation Code of Interferometric-observations for rotators and
CirCumstellar Objects (SIROCCO) which does not include the non-radial pulsa-
tions effects (Hadjara et al. 2012).

Fig. 1. Adopted reference system for a rotating star (flattened star with major axis a

and minor axis b, here the apparent minor axis is b′ = ab/(a + (b − a) cos i); assuming

ellipsoid revolution principal/equations). The cross indicates the point where the rotation

axis crosses the stellar surface. This rotation axis forms an angle i with the observer’s

direction (x axis) and its projection onto the sky is parallel to the z axis.

2.1.1 Intensity map

First, an intensity map of the star’s photosphere is computed. We can use for
example a simple limb-darkened model from (Hestroffer 1997), expressed in the
geographical (co-latitude, longitude) coordinates (θ, φ):

Ic(θ, φ) = I0(1 − ελ(1− μ(θ, φ))) (2.1)

where I0 represents the flux at the center of the star, ελ is the limb darkening
parameter, and μ(θ, φ) is the cosine of the angle between the normal to the surface
at the point considered and the observer direction (Domiciano de Souza et al.
2004). The contour of the star is delimited by an ellipse with the minor axis in the
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direction of the rotation axis of the star. The minor-to-major axis depends on the
rotation rate following the prescriptions of inclination angle i (see Fig. 1). I0 can
serve as a weighting of the continuum flux as a function of wavelength (λ) using
for example a Planck’s law:

I0(λ, Teff) =
2hc2

λ5

1

e
hc

λσTeff − 1
(2.2)

h being Planck’s constant, c the speed of light, σ the Boltzmann constant, and Teff

the effective temperature of the star. I0 can also be used to input the von Zeipel’s
effect into our model, by considering a co-latitude-dependent temperature in the
below-mentioned local gravity field equation:

I0(θ) ∝ F (θ) = σT 4
eff(θ) (2.3)

with Teff(θ) ∝ g0.25(θ), g being the local gravity field, also called the modulus of
local effective surface gravity g = |∇Ψ(θ)|, with Ψ(θ) is the stellar equipotential
surfaces (Domiciano de Souza et al. 2002). An example of intensity map combining
rotational flattening and gravity darkening is shown in Figure 2 (top).

2.1.2 Velocity map

SCIRROCO+ produces a velocity map where we consider rotation and non-radial
pulsations:

Vproj(θ, φ) = Vrot(θ, φ) + Vnrp(θ, φ). (2.4)

In this equation we represent the global velocity map combining rotational flat-
tening and non-radial pulsationsis shown in Figure 2 (bottom).

Where non-radial pulsations velocity has been introduced:

Vnrp(θ, φ) = vpuls ∗ Ylm = vpuls ∗
√

(2l + 1)
4π

l − |m|!
l + |m|!Pl,|m| cos(θ)eimφ. (2.5)

With, vpuls: the average velocity pulsation, l: the mode order, m: the mode
azimutal order, and Pl,|m|: the Legendre function.

And rotational velocity be written:

Vrot(θ, φ) = Veq cos(φ)(1 − α sin2(θ)) sin(i). (2.6)

Where Veq represent the equatorial rotation velocity, and the parameter α allows
us to include a parametric differential rotation law (Domiciano de Souza et al.
2004).

An example of the non-radial pulsations velocity map is shown in Figure 3
(top) & another example of pure rotational velocity map is shown in Figure 3
(bottom).
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Fig. 2. Left: simulated η Centauri intensity map at continuum. The intensity at the

poles is greater than at the equator. Here the velocity is upper than 80% of the critical ve-

locity of the star. Right: global iso-velocity map (rotation+pulsation) of the same model

(inclination 57◦). Here the simulated rotation is differential (the velocity of rotation at

the equator is 60% larger than at the poles).

2.1.3 Spectrally-resolved image cube

The last step of the modelization process is to compute λ-dependent maps. For
that, we need to model the natural line-profile of the considered line: we can
assume e.g. Gaussian, Lorentzian, or Voigt profile, at the central wavelength λ0:⎧⎪⎪⎪⎨⎪⎪⎪⎩

HGauss(λ) = 1−H0

[
−πH2

0
(λ−λ0)2

W 2

]
HLorentz(λ) = 1−

[
H0

1+(
λ−λ0
W/2 )2

]
HVoigt(λ) = (HGauss ∗HLorentz)(λ).

(2.7)

Where H0 and W are the central depths and the equivalent width, respectively.
The symbol ∗ represents the convolution product.

The last step calculates the intensity maps of the star as a function of wave-
length. For that, we project via the Doppler effect the global velocity map (Vproj,
Eq. (2.4)) to the intensity map (Ic, Eq. (2.1)), given the line profile (H , Eq. (2.7))
and the work wavelength λ:

I(λ, θ, φ) = H

(
λ + λ0

Vproj(θ, φ)
c

)
Ic(θ, φ). (2.8)
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Fig. 3. Left: iso-velocity of pure rotation map (inclination 70◦, 0◦ orientation), the

direction of rotation thereby is from the left to the right (from the brightness to darkness).

Right: iso-velocity of pure pulsation map, we note that m = 4, the mode azimuthal order

(number of nodes lines that pass through the centers of vibration) and that l = 5, the

mode order (total number of nodes lines). For the both, the color code adopted here, is

brightness for the positive velocities and darkness for the negative ones.

We get one intensity map per wavelength of interest around the central wavelength
λ0 of the line (see Fig. 4, left). Once all intensity maps are computed, we synthesize
the interferometric observables by Fourier-Transforming each map (see Fig. 4,
right). This provides us spectra, visibility amplitudes, phases, and closure phases.

By comparing the observed interferometric measurements to the synthesized
quantities, we can access to the parameters of the fast rotating star such as: effec-
tive temperature as a function of co-latitude, rotational rate, inclination, angular
radius and flattening and, if possible the differential rotation.

2.2 Interferometric observations simulations - Application to η Cen

Assuming the following characteristics (Table 1):

Table 1. η Cen chosen parameters.

Star Eta Centauri vpuls (km/s) 34 Teq (K) 16000
Spectral type Be Orientation (◦) 0 Rpole (R�) 3-4

Velocity v (km/s) 340 Gravity darkening β 0.25 Req (R�) 5-6
Inclination i (◦) 70 Tpole (K) 21000 Oblateness 0.34
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Fig. 4. Left: monochromatic intensity map for a given wavelength. Right: map of

corresponding 2D module visibility, which is represented on the three bases with inter-

ferometric which will make the observation (1st base small circles, 2nd small triangles

and 3rd small diamonds).

Fig. 5. Top: photo-center (or centroid: the first order term of the phase by Mac Lauren

development Jankov et al. 2001) along the Z axis (see reference adopted in Fig. 1).

We note well, here, the influence of the pulsation effect in addition to the inclination

effect. Middle: photo-center by Y (note that the photo-centers are in radian). Bottom:

normalized spectrum, we see well that our starting line (with a depth of 0.6, and a

FWHM = 10Δλ) has expanded and its depth was decreased (precisely because of the

rotation), it is impacted too by the pulsation (the double hump at the bottom of the

spectrum).

In addition, we introduce to our model a differential rotation coefficient
(α = 0.6) and a Voigt intrinsic line profile with a depth of 0.6, and a
FWHM = 10Δλ).
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Fig. 6. Top: module visibility observed by the interferometric three bases (dot line for

the cercles base, dash-dot line for the triangles base and dash line for the diamonds base).

Middle: the phases observed in the three interferometric bases (dot line for the cercles

base, dash-dot line for the triangles base and dash line for the diamonds base), we note

that the dash-dot line & the dot line are in opposite phase when their corresponding bases

(cercles base & triangles base) are perpendicular. We note although the phase observed by

the base close to perpendicular to the axis of rotation of the star (dash-dot line) is the one

that has the highest amplitude & inversely that which is close to along the axis of rotation

(dot line) is low, without forgetting that the dash line is the lowest that the corresponding

interferometric base is outside of the first visibility lobe (diamonds base). Bottom: the

closure phase; which is classically defined, in AMBER, as: Ψ = Φ12 + Φ23 − Φ13.

We choose to simulate interferometric observations with the AMBER/VLTI
instrument on the 3 following interferometric baselines : K0−G1 (74.63 m, −139◦.),
G1−A0 (90.12 m, −53.6◦), A0−K0 (120.6 m, −91.7◦), around the Brackettγ line
(2.165 μm). Without forgetting the pulsation parameters of the star: m = 4; m is
the azimuthal order of the mode (number of nodes lines that corss the vibration
poles) & l = 5; l is the mode order (the total number of nodes lines). The star
pulsing with a velocity vpuls = 34 km/h.

The intensity map at continuum & global iso-velocity map are shown in Figure 2,
the pure iso-velocity rotation map & pure iso-velocity pulsation map in Figure 3,
the monochromatic intensity map at a given wavelength & corresponding 2D vis-
ibility amplitude map in Figure 4, the photo-centers & spectrum in Figure 5, and
finally visibilities, phases & closure phase in Figure 6.

3 Conclusions & discussions

We presented here a semi-analytical model of fast-rotators including non-radial
pulsations whose aim is to interpret interferometric datasets. We are able to
produce interferometric observables using a set of physical parameters like the
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rotation law, gravity darkening effect, etc., while keeping the computing time
reasonable (one set of visibility curves can be computed in 17 s).

Note that for this simulation, we have obtain the same shape of spectrum (in
Fig. 5) as observing by Levenhagen et al. (2003), with spectroscopy in Hα, which
is encouraging.

The next step is to develop a “model-fitting” approach to compare real datasets
with this model.
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HIGH ANGULAR RESOLUTION AND YOUNG STELLAR
OBJECTS: IMAGING THE SURROUNDINGS OF MWC 158

BY OPTICAL INTERFEROMETRY
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J.-B. Le Bouquin1 and C. Pinte1

Abstract. In the course of our VLTI young stellar object PIONIER
imaging program, we have identified a strong visibility chromatic de-
pendency that appeared in certain sources. This effect, rising value of
visibilities with decreasing wavelengths over one base, is also present in
previous published and archival AMBER data. For Herbig AeBe stars,
the H band is generally located at the transition between the star and
the disk predominance in flux for Herbig AeBe stars. We believe that
this phenomenon is responsible for the visibility rise effect. We present
a method to correct the visibilities from this effect in order to allow
“gray” image reconstruction software, like Mira, to be used. In paral-
lel we probe the interest of carrying an image reconstruction in each
spectral channel and then combine them to obtain the final broadband
one. As an illustration we apply these imaging methods to MWC158,
a (possibly Herbig) B[e] star intensively observed with PIONIER. Fi-
nally, we compare our result with a parametric model fitted onto the
data.

1 Introduction

The processes that lead to the formation of exoplanets are important to under-
stand. Stars form after a collapse of a giant cloud of dust and gas. After a
million year, a protoplanetary disk is forming around the star, believed to be the
birthplace of planets.
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A young star is surrounded by an active environment with which it interacts.
Accretion disks (Monnier & Millan-Gabet 2002), inner gaseous disks (Benisty et al.
2010; Eisner et al. 2009; Tannirkulam et al. 2008), infalling envelop renmands,
winds (Cabrit et al. 2010; Dougados et al. 2005; Malbet et al. 2007; Tatulli et al.
2007) and jets (Cabrit 2003; Dougados et al. 2004) are the main components of such
environments. There are several types of young stellar objects. The complexity of
physical phenomena at play requires direct observation at the astronomical unit
(A.U.) scale. Optical interferometry is able to bring such informations, because it
can observe both in the near infrared, where the hot dust and hot gas nearby the
star are emitting, and resolve the first A.U., which correspond to milliarcsecond
scale at the distance of star formation regions.

Interferometry consists in combining the light of 2 or more telescopes in order
to measure the complex degree of coherence. For that purpose, the interferometer
measures interference fringes. The amplitude of the fringes yields the norm, and
its position the phase of a complex quantity called visibility V (u, v). Thanks
to the van Cittert-Zernicke theorem we know that the Fourier transform of the
visibilities in the Fourier plan (u, v) gives us the intensity distribution I(x, y) of the
source. Unfortunately, in the near infrared (NIR) the atmosphere blurs the phases
of the visibilities. The hint then, is to measure a quantity that is the sum of the
phases over a baseline triangle. In that case, the atmospheric influence vanishes
and we obtain only an astrophysical quantity called the closure phase. So, in
practice, there are two interferometric measurements: the squared amplitude of
the visibilities V 2 and the closure phases.

We noticed in several datasets that the visibility is higher at short wavelengths.
If B is a baseline length projected on the sky plan and λ the wavelength, we can
plot the squared visibilities V 2 in function of B/λ (which is the spatial frequency).
For a monochromatic object, we expect the points to follow a general trend in the
visibility curve, since B/λ represents only the spatial frequency. But, this is not
the case. Indeed, we can see (Fig. 1) that the rising curve of visibilities per base is
not fitting the general trend of the data for different baselines. First, it was seen
in AMBER (Petrov et al. 2007) data, but it was considered as an instrumental
defect. Now, the same effect has been observed with PIONIER (Le Bouquin et al.
2011). We try to explain this effect astrophysically, claiming that the image of the
object is varying through the different spectral channels inside the same spectral
band, and we propose three techniques in order to take it into account and to be
able to reconstruct images.

These methods will be applied to an astrophysical object. They are useful
to analyze MWC158 (also known as HD 50138). This star is a Be star known to
have the B[e] phenomenon and presents a strong variability (Andrillat & Houziaux
1991; Borges Fernandes et al. 2009; Hutsemekers 1985; Pogodin 1997), which com-
plexify the evolutionary stage identification of the source. Its distance is poorly
constrained (d = 500 pc± 150 pc, van Leeuwen 2007).

In Section 2 we will describe the chromatic effects in the visibilities and the
Section 3 will show the different methods to deal with them. Finally we will apply
them to the astrophysical case of MWC 158 in the Section 4.
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Fig. 1. Data on MWC 158. Left: AMBER (Petrov et al. 2007) data from Borges

Fernandes et al. (2011). Center: PIONIER (Le Bouquin et al. 2011) squared visiblities.

Right: PIONIER closure phases. For PIONIER data the gray scale varies in function

of the wavelength. We can see on the visibility graphs than a “coma” trend appear for

visibilities belonging to the same baseline.

2 Chromatism

Since interferometric instruments with spectral dispersion exist, we need to take
into account the flux variations with the wavelength in order to correctly analyze
the data and have access to the spectral super synthesis. In the case of Young
Stellar Objects (YSOs), we noticed that the visibilities have a strong spectral
dependence such as the geometrical shape of the object could not explain it.

For Herbig AeBe star, the chromatic effect explained in the Section 1 exists
typically for the Near Infrared interferometry. In the following, we explore the
possibility that this effect is caused by a different spectral index between the
central star and its surrounding media.

In order to confirm that, we made a simple model with a central star and its
dusty disk.



144 New Concepts in Imaging: Optical and Statistical Models

2.1 The star

In our model, the star is considered to be unresolved. This hypothesis is justi-
fied for the young objects we are looking at. To simplify our model, we assume
Vstar = 1.

For the star we have 3 parameters: the radius (R∗), the distance (d) and
the temperature (T∗). If we asumme a Herbig AeBe star with a temperature
of 12 000 K radiating as a black body, we know that in NIR we will look on the
Rayleigh-Jeans regime of a black body (see Fig. 2). That means that the spectral
curve is proportional to a power law: F star

λ ∝ λ−4 (F being the luminous flux).

2.2 The disk

The disk model is simple: it is a geometrically thin optically thick passive disk.
Its temperature is a function of the radius:

T (r) = T (r0)
(

r

r0

)−q

(2.1)

with:
q =

3
4

(2.2)

see Adams et al. (1988); Lynden-Bell & Pringle (1974).
The disk will be sampled on several rings, each ring having its own temperature

as a function of its distance to the star. We will use a lot of rings (more than 100) to
model the disk. We can then approximate that each ring has the fourier transform
of an infinitesimal width ring. However, for the flux, we will take each ring width
into account. The other geometrical parameters are the inclination (inc), the inner
and outer rims radii (Rin, Rout), and the temperature of the inner rim (Tin). The
flux of each ring will be a black body at the temperature of the disk. The ring
visibility is defined as follows (Berger 2003):

Vring = J0

(
2πr

B

λ

)
· (2.3)

Then to obtain the Fourier transform of the whole disk we have to add the flux of
each ring and sum every contributions:

Vdisk =
nring∑

i

J0(2πri
B

λ
)Bλ(Ti)Si. (2.4)

Si being the surface of the i-th ring (Si = 2πriwi; wi being the width of the i-th
ring and ri its radius).

In the results shown in Figure 2 the chromatic effect which tends to look like
the data shown in Figure 1. The visibilities have the particularity to rise for every
base even though the general trend of the visibilities is to decrease. It is similar
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Fig. 2. On the left, we show the location of the PIONIER spectral channels on the

Spectral Energy Distribution (SED) of the model. The component on the left is the

stellar photosphere approximated by a black body and the component on the right is the

environment. The black line is the sum of the two components. We can see that they

are located at the crossing between the stellar and the dust fluxes. On the right, we can

see that the chromatic phenomenon is reproduced in the visibilities. For any base the

visibility is rising with the spatial frequency (B/λ). On black we have the visibilities of

the environment only.

to that we observe in real data. We can reproduce this effect by the chromatism
that exists between the star and its environment. We can then suggest that the
chromatic effect is not instrumental but astrophysical.

The effect is dominated by the flux ratio which is changing through the different
spectral channels. If we compute the total correlated flux we have (given that the
Fourier transform is linear):

Vtot(B/λ)Ftot(λ) = F∗(λ) + Vdisk(B/λ)Fdisk(λ) (2.5)

with:
Ftot(λ) = F∗(λ) + Fdisk(λ). (2.6)

If we introduce the stellar to total flux ratio f∗, we obtain the mathematical
description of the chromatic phenomena:

Vtot(B/λ) = f∗(λ) + Vdisk(B/λ)(1 − f∗(λ)) (2.7)

with

f∗(λ) =
F∗(λ)
Ftot(λ)

· (2.8)

In the next section we will discuss the different methods to overcome the chromatic
effect.
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3 Methods

Our goal is to be able to analyze chromatic data. We developed three comple-
mentary methods to do that: gray image reconstructions, data modification and
parametric fit. The first two methods are based on image reconstruction and the
last one is model fitting. We are mostly interested in the disk around the star and
we are looking for informations on the resolved geometry and the strength of the
chromatic effects.

3.1 Image reconstruction per spectral channel

Once we are aware of the chromatic effect, one can make image reconstructions
selecting only one wavelength per reconstruction (see Fig. 3). In that case the
gray image reconstruction is justified. The technique is to have one image per
wavelength and to stack all the images in order to have the final broadband one.

Fig. 3. An image reconstruction is made for each spectral channel of the instrument.

Then all the images are stacked together in order to obtain the final image.

The presence of various components of different spectral indexes prevents from
using a gray emission approximation in the image reconstruction process. As
a consequence, since we need to work on a per-spectral-channel basis the (u, v)
coverage quality is severely affected.

3.2 Modification of the data

We want to have access to the disk visibilities. From the Equation (2.7), if we
know the SED and then the stellar flux ratio f∗(λ) and its variation through the
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wavelengths, we can compute the disk visibilities as:

Vdisk(B/λ) =
Vtot(B/λ)− f∗(λ)

1− f∗(λ)
· (3.1)

We can apply the modification described in Equation (3.1) to one of the inter-
ferometric measurements which is the power spectrum (V V ∗ = |V |2). In sum-
mary, our measurements are |Vdata|2 and we want to recover |Vdisk|2. Using the
Equation (3.1), we have:

V 2
disk(B/λ) =

(√
|Vdata(B/λ)|2 − f∗(λ)

1− f∗(λ)

)2

· (3.2)

One of the problem is the value that we take for
√
|Vdata(B/λ)|2; we must choose

between the positive (phase φ = 0) and the negative one (φ = π). But it could
be solved analyzing more precisely the data and other interferometric observables
like the phase of the bispectrum (also called the closure phase). The goal is to
find where the visibilities are reaching the first “zero”, where there is a jump of π
in the phase (and the in the closure phase). Moreover the chromatic parameter f∗
must be estimated from other observations (e.g. photometry).

It is not possible to retrieve the bispectrum phase of the dust from the data
because we are loosing the phase of each pair of telescopes. The equations lead to
a solution where we need the phase (Ragland et al. 2012).

3.3 Parametric model

In this section we have attempted to model the object. The model is geometrical
and includes the chromatic effect as described in the Sections 1 and 2. Our model
is composed of multiple components and was developed when chromatic data was
fitted.

3.3.1 Geometric part of the fit

The first component of the model is an unresolved star (a dirac in the image space)
which can be shifted compared to the image photo center (that will produce a rise
of closure phases). The second component is a Gaussian ring. This shape is close
to the shape of a puffed-up inner disk rim model. (Isella & Natta 2005). In the
Fourier space the ring is defined as in Equation (2.3) but using

√
u2 + v2 for the

spatial frequencies (B/λ) and their orientations that we want to solve.
We take into account the Position Angle (P.A.), which is defined from the North

to the East, and the inclination (inc). One of the parameters of this shape is the
ring radius r. But this will define a ring with a infinitely small width. In order to
have a Gaussian width we have to convolve the ring formulae by a Gaussian, in
other words, to multiply the visibility of the ring by the visibility of the Gaussian
function with the correspondent width w. Once we have the Gaussian ring, we will



148 New Concepts in Imaging: Optical and Statistical Models

add some azimuthal modulations of the ring intensity to be closer to the physics of
an inner rim. The modulations are functions in cosinus and sinus of the azimuthal
angle (α) of the ring which starts at its major axis. We have included two sorts of
modulation: one on 2 π (c1, s1) and the second on π (c2, s2). They are described
on Figure 4 We add a Gaussian width to the ring, with rgauss being the Half Width
at Half Maximum (HWHM) of the Gaussian function.
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Fig. 4. Description of the azimuthal modulations. The first figure is the original gaussian

ring slightly inclined. The second figure represent a π-modulation with c1 = 1 (modu-

lation through the long axis) and the third with s1 = 1 (modulation through the short

axis). The second line represent the 2π-modulation with respectively c2 = 1, c2 = −1,

s2 = 1, s2 = −1. The model can combine the modulations and express them with slighter

intensity (below 1).

We have a model with three components: the star, the Gaussian ring and a
second Gaussian ring or a Gaussian function.

The total visibilities are depending on all these components weighted by their
flux.

3.3.2 Modeling the chromatism

To obtain the model visibilities we use the linearity property of the Fourier trans-
form.

FtotVtot = F∗V∗ + F1V1 + F2V2. (3.3)

The fluxes are the ones recieved by the interferometric instrument. So we have:

F =
∫ λ+Δλ

2

λ−Δλ
2

Fλdλ =
∫ ν+Δν

2

ν−Δν
2

Fνdν (3.4)

with Δλ and Δν being the spectral width of one spectral channel in wavelength
(λ) and frequency (ν).
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We will use the approximation that the channel spectral width is constant and
that the flux is constant in one spectral band. The flux is then equal to the value
of Fλ at the central wavelength of a spectral channel. From the Equation (3.3),
we see that we can determine a flux ratio at one wavelength and to deduce the
ratios on the other wavelength by the laws that we assume for each component.
PIONIER is operating in the NIR in the H band. At this wavelength, we can
assume that Herbig stars are in their Rayleigh-Jeans regime. That means that
their flux Fλ is proportional to the wavelength at the power of −4. The laws for
the environment are more difficult to find. We can fit a power-law in wavelength or
to a black body variation if we are resolving a thermal emitting region. Since the
dust temperature is supposed to be below 2000 K (Dullemond & Monnier 2010),
we can assume that it is in its Wien regime. Then if we assume black body regimes
we obtain (from Eq. (3.3)):

Vtot(B, λ) = f0
∗
( λ

λ0

)−4 + f0
1

BB(λ, T1)
BB(λ0, T1)

V1(BB, λ) + f0
2

BB(λ, T2)
BB(λ0, T2)

V2(BB, λ)

(3.5)
with f0 the flux ratios at λ0, T the temperature of a component and B the baseline
and

BB(λ, T ) =
2hcλ−5

exp hc
kBλT − 1

(3.6)

is the black body function, with h the Planck constant, c the light speed, and kB

the Boltzmann constant.
The variations of the flux ratios through the observational band will build the

chromatic effect that we want to take into account in our fit.
Once we get all our tools to investigate data with chromatic effect, let us apply

them on an astrophysical case: MWC 158.

4 The case of MWC 158

The interest on this object came with the data we get with PIONIER (Le Bouquin
et al. 2011) a 4 telescopes interferometric, visitor instrument operating at the VLTI
and which observes in the H band.

4.1 Image reconstructions

We were interested into this data (see Fig. 1) because it shows clearly signs of
chromatism. As the u, v-plan is sufficiently covered we can reconstruct images.
We use the Mira algorithm (Thiébaut 2008), but as many image reconstruction
algorithms it does not take into account the chromatism. Since it extrapolates
and interpolates the Fourier space, the chromatism makes him “guessing” badly
and many artifacts appear. We then use the monochromatic reconstructions per
spectral channel. It means that we select every spectral channel one by one and
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Fig. 5. Left: the stack of image reconstructions per spectral channels. Right: image

reconstruction after modifying the squared visibilities.

make one reconstruction by channel. We also use the visibility correction method.
These method (described Sect. 3.2) is not modifying the closure phases (they
should be stronger). The results are showed on the Figure 5.

We can see that there is a second resolved component. We can also see the ori-
entation of the smallest extended component. Both of the reconstruction methods
shows similar patterns. That brings us to the idea to fit two extended components.

4.2 Parametric fit

The fit bring us an idea on the geometry and the light emission from the source
but with a strong a priori which is the model we want to fit. That is why we
took the geometries suggested by the image reconstructions. We can see a central
extended part which is composed of the star and its environment which seems to
have a P.A. and an inclination.

We have begun the fit with one extended component which is a Gaussian
function or a Gaussian ring. Both of the fits gave us the more or less the same
inclinations and P.A. which are consistent with the image reconstructions. But
the data was not entirely fitted: the short baselines indicates that there is a more
extended component as showed by image reconstruction. We then add another
component to our fit. In order to fit the strong closure phase signal we add
azimuthal modulation to the ring. It appears not to be sufficient, and the best fit
was to shift the central star. It is the only solution to fit the closure phases.

In the end, and adding the different parameters, we ended with 15 parameters
and a χ2 of 3.5. In the current state of the data processing and interpretation, we
believe that the best fit is presented Figure 6. The parameters are in the Table 1.
We can see that the best fit is done with two Gaussian rings.
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Fig. 6. The best fit results are presented. Left: the image corresponding to the best fit.
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result, the crosses are the data points.

The geometrical fit suggests a star, with a relatively close Gaussian ring (radius
of 1.5 mas) with a lot of flux (≈60%). We interpret that as the resolution of
the inner rim of the dusty disk. Its azimuthal modulation is strong in the semi
minor axis direction which leads us to deduce that it is due to the inclination.
Moreover, the star is shifted towards the most brilliant part of the inner rim. It
indicates that the inner rim has a non-negligible height. The outer ring suggests
the continuation of the disk, or a part of the disk which is not self shadowed, or a
halo. The constraints are poor so we can not conclude on its origins.
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Table 2. The previous interferometry results on MWC 158. Some results were complete

on instruments watching at longer wavelengths (10.7 or 2.2 μm). The P.A. are consistent

and the inclinations i also. The references are: 6: Borges Fernandes et al. (2011) and 20:

Monnier et al. (2009).

FWHM FWHM2 i P.A. χ2 λ0 Ref.

66 ± 4 45 63 ± 6 1 10.7 μm 20

64.7 ± 0.6 70.1 ± 0.7 59.1 ± 1.7 5.1 10.7 μm 6

35.2 ± 1.5 131.4 ± 11.2 56.7 ± 0.4 65.9 ± 2.0 1.9 10.7 μm 6

4.4 ± 0.5 54 ± 8 66 ± 9 40.8 2.2 μm 6

3.0 ± 0.4 ≥14.0 54 ± 8 77 ± 2 13.3 2.2 μm 6

The results are shown in Table 2. They are closed to the images get by re-
construction. The results are also consistent with that found with previous obser-
vations (Borges Fernandes et al. 2011; Monnier et al. 2009). The authors found
similar P.A. with close values of the inclination of the most luminous extended
object.

The fit of the chromatism, indicates us a black body temperature of the in-
ner rim of ≈1500 K (see Table 1). This is approximately the dust sublimation
temperature found in the litterature (Dullemond & Monnier 2010; Duschl et al.
1996).

5 Conclusions

The chromatic effect due to the flux predominances of two objects of different sizes
is well understood and can be used in order to find astrophysical information of
the object. In the case of Herbig AeBe stars we are able to have an approximation
of the temperature of the components. If the chromatic information is given,
we can perform gray disk image reconstructions. They are contributing to the
astrophysical analysis of the object because they show the P.A. and the inclinations
of the disk. Moreover, in the case of MWC 158 it brought us the idea of the second
extended component, even if it is poorly constrain (we can have the information on
the flux ratio). By the fit we were able to find a value for the inner rim radius and
its temperature and to compare what we found with the data from photometry.
We bring the first confirmation of the dust sublimation temperature at the inner
rim. The information taken from the NIR interferometry and the chromatic effect
argue in favor of a young nature of MWC 158.

The main challenge is to be able to make chromatic Young Stellar Objects im-
age reconstructions keeping the super spectral synthesis and without information
on the total flux variation. It seems to be degenerated and we need information
from photometry. One of the thing which is in process of testing, is the adapta-
tion of the Mira algorithm to the case of young stellar object. The “gray” mira
free parameters are the image pixels intensities. If we define the image as the
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image of the dust at λ0, the start can be represented by a dirac at the center
of the image. Hence, we can put the stellar flux and a stellar relative spectral
power law as additional parameters to the fit. Since the regularization will tend
to smooth the Fourier plan, the algorithm will favor the added parameters to fit
the fixture. Indeed, the parameters will not be constrained by the regularization
and the gradient will be stronger on it than on the pixels values.

For these objects, there is a need to include parametric models in the image
reconstruction algorithms and to develop a global chromatic image reconstruction
algorithm.

This work is supported by the French ANR POLCA project (Processing of pOLychromatic
interferometriC data for Astrophysics, ANR-10-BLAN-0511).
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PRINCIPLES OF IMAGE RECONSTRUCTION IN
INTERFEROMETRY

É. Thiébaut1

Abstract. Image reconstruction from interferometric data is an inverse
problem. Owing to the sparse spatial frequency coverage of the data
and to missing Fourier phase information, one has to take into account
not only the data but also prior constraints. Image reconstruction then
amounts to minimizing a joint criterion which is the sum of a likelihood
term to enforce fidelity to the data and a regularization term to impose
the priors. To implement strict constraints such as normalization and
non-negativity, the minimization is performed on a feasible set. When
the complex visibilities are available, image reconstruction is relatively
easy as the joint criterion is convex and finding the solution is similar
to a deconvolution problem. In optical interferometry, only the power-
spectrum and the bispectrum can be measured and the joint criterion
is highly multi-modal. The success of an image reconstruction algo-
rithm then depends on the choice of the priors and on the ability of
the optimization strategy to find a good solution among all the local
minima.

The best angular resolution of a telescope is given by the diffraction limit λ/D
(with D the diameter of the primary mirror and λ the wavelength). For an astro-
nomical interferometer, this limit is λ/B (with B the separation of the telescopes
projected in a plane perpendicular to the line of sight). In the optical, the largest
telescopes have a diameter D ≈ 10 m; thus, with baselines up to B ≈ 600 m,
astronomical interferometers resolve much smaller angular scales, below the mil-
liarcsecond in the H band (1.65 μm). This unrivaled resolution has however a cost:
an interferometer measures only a single spatial frequency per baseline, while a
monolithic telescope harvests all spatial frequencies (up to its diffraction limits)
in a single exposure. The data collected by an interferometer are thus very sparse
and image reconstruction is a mandatory tool to build an image in spite of the
voids in the spatial frequency coverage.
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Inverse problem approach is a very powerful tool for extracting meaningful in-
formation from available data. In particular, it is the method of choice for image
reconstruction from interferometric observables. A power of the inverse approach
is to relax the constraint that the model of the observables be invertible and thus
let us exploit a realistic model. To benefit from this potential, the data model has
to be wisely written knowing the instrument and making relevant approximations.
The direct model of the interferometric observable is developed in the first sec-
tions of this paper. From the instantaneous output of an interferometer (Sect. 1),
time averaging (Sect. 2) yields the expression of the complex visibilities integrated
during an exposure. In the most simple case, that is when complex visibilities
are directly measurable, image reconstruction amounts to solving a deconvolution
problem (Sect. 3). In optical interferometry, atmospheric turbulence introduces
unknown random optical path perturbations which prevent to directly measure
complex visibilities and imposes to integrate observables such as the powerspec-
trum and the bispectrum which are insensitive to such perturbations (Sect. 4).

Owing to the sparsity of the interferometric data and to the missing of part of
the Fourier phases, prior information must be taken into account to solve the image
reconstruction problem in a stable and robust way. Without loss of generality,
image reconstruction can be stated as an optimization problem over a feasible
set (Sect. 5). The penalty to minimize is the sum of a likelihood term (Sect. 6)
which enforces fidelity to the measurements and a regularization term (Sect. 7)
which favors the priors. Finally, it remains to design an optimization algorithm to
effectively solve the image reconstruction problem (Sect. 8).

1 Instantaneous output of an interferometer

In its simplest form, a stellar interferometer (see Fig. 1) consists in two telescopes
(or antennae for an array of radio-telescopes) pointing at the astronomical target
and coherently recombined. By varying the optical path delay between the two
arms of the interferometer, one observes interference fringes. The contrast of
the fringes and their phase are the amplitude and phase of the so-called complex
visibility which is related to the observed object by:

Vj1,j2(λ, t) = g∗j1(λ, t) gj2(λ, t) Îλ(bj1,j2(t)/λ) (1.1)

with j1 and j2 the indexes of the interfering telescopes, λ the wavelength, t the
time, gj(λ, t) the instantaneous complex amplitude transmission for the jth tele-
scope, g∗j (λ, t) its complex conjugate, Îλ(ν) the angular Fourier transform of the
specific brightness distribution Iλ(θ) of the observed object in angular direction θ,
and bj1,j2(t) the projected baseline:

bj1,j2(t) = rj2(t)− rj1(t)

where rj(t) is the position of the jth telescope projected on a plane perpendicular
to the line of sight. The amplitude of the complex transmission gj(λ, t) accounts for
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Fig. 1. Interferometer. Fig. 2. (u, v) coverage with IOTA

3-telescope interferometer in the H band

(from: Lacour et al. 2008). The spatial

frequencies ν are given as the projected

baselines b in mega-wavelength units

(symbol Mλ) that is 106×b/λ = 106×ν.

the efficiency of the transfer of the light from the jth telescope to the recombiner,
the phase of gj(λ, t) accounts for the optical delay along this travel.

Equation (1.1) shows that a stellar interferometer samples the Fourier trans-
form of the brightness distribution Îλ(ν) at the spatial frequency:

νj1,j2(λ, t) = bj1,j2(t)/λ =
(
rj2(t)− rj1(t)

)
/λ .

A single exposure yields one measurement of Îλ(ν) per pair of recombined tele-
scopes per spectral channel. For Ntel telescopes in a non-redundant configuration,
there is a maximum of Ntel (Ntel − 1)/2 different baselines. Thanks to Earth rota-
tion, the sampling of the spatial frequencies – the so-called (u, v) plane – by a given
configuration of telescopes varies with the time, this is called super-synthesis. The
sampled frequencies also depend on the wavelength: the longer the wavelength
the shorter the sampled frequency. Because of the limited number of telescopes
for current optical interferometers (2 ≤ Ntel ≤ 6), even by combining all these
possible measurements, the sampling of the (u, v) plane remains very sparse and
uneven (cf. Fig. 2).

2 Averaging during exposures

The previous equations consider the instantaneous and monochromatic case: they
are given for continuously varying time t, wavelength λ and projected telescope
positions rj(t). In practice, a finite number of measurements are obtained for given
exposure times, spectral channels and telescope combinations. In the sequel, we
use the index m to label the available data: for the m-th measurement (possibly
complex), the exposure time is denoted tm, λm is the effective wavelength of the
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spectral channel and there are up to three interfering telescopes numbered jm,1,
jm,2 and jm,3. Of course different measurements, say m and m′, may have the
same observing times (tm′ = tm) or may share the same telescopes and the same
spectral channel.

Because of the finite exposure time and spectral bandwidth, the instantaneous
and monochromatic complex visibility in Equation (1.1) must be averaged to give
the effective complex visibility:

Vm = 〈Vjm,1,jm,2(λ, t)〉m =
〈
g∗jm,1

(λ, t) gjm,2 (λ, t) Îλ

(
bjm,1,jm,2(t)/λ

)〉
m

(2.1)

where 〈. . .〉m denotes averaging (or integrating) during the exposure and inside
the spectral channel corresponding to the m-th measurement:

〈f(λ, t)〉m def=
1

Δtm

∫ tm+Δtm/2

tm−Δtm/2

1
Δλm

∫
sm(λ) f(λ, t) dλdt (2.2)

with Δtm the duration of the exposure, sm(λ) the transmission of the spectral
channel, and Δλm

def=
∫

sm(λ) dλ the effective spectral bandwidth.
To measure interference patterns, the effective bandwidth Δλm must be such

that the complex amplitude transmissions are approximately constant in each
spectral channel and the exposure duration Δtm must be short enough to neglect
the temporal variation of the baselines. Under these conditions, the double integral
which results from combining Equations (2.1) and (2.2) becomes separable:

Vm =
1

Δtm

∫ tm+Δtm/2

tm−Δtm/2

1
Δλm

∫
sm(λ) g∗jm,1

(λ, t) gjm,2(λ, t)

× Îλ

(
bjm,1,jm,2(t)/λ

)
dλdt

≈ 1
Δtm

∫ tm+Δtm/2

tm−Δtm/2

g∗jm,1
(λm, t) gjm,2(λm, t) dt

× 1
Δλm

∫
sm(λ) Îλ

(
bjm,1,jm,2(tm)/λm

)
dλ

= ĥm Îm(νm) (2.3)

with:

ĥm
def=

1
Δtm

∫ tm+Δtm/2

tm−Δtm/2

g∗jm,1
(λm, t) gjm,2(λm, t) dt , (2.4)

Îm(ν) def=
1

Δλm

∫
sm(λ) Îλ(ν) dλ (2.5)

≈ Îλm(ν) (2.6)

νm
def= bm/λm , (2.7)

bm
def= rjm,2(tm)− rjm,1(tm), (2.8)
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respectively the effective interferometric transfer function, the Fourier transform of
the specific brightness distribution integrated in the spectral channel, the spatial
frequency and the effective baseline for the m-th observed complex visibility. The
approximation in Equation (2.6) applies for spectral bandwidths narrower than the
spectral features of the specific brightness distribution. To simplify the notations
but without loss of generality, we will assume that this is the case in what follows.

When the complex amplitude transmissions are stable during and exposure,
the effective interferometric transfer function can be further simplified:

ĥm ≈ g∗jm,1
gjm,2 (2.9)

where:

gjm,i

def=
1

Δtm

∫ tm+Δtm/2

tm−Δtm/2

gjm,i(λm, t) dt ≈ gjm,i(λm, tm). (2.10)

Thus, for monochromatic observations with an interferometer composed of Ntel

telescopes and under stable observing conditions, the effective transfer function
only depends on Ntel − 1 complex numbers (one complex amplitude transmission
can be chosen arbitrarily) per exposure while there are Ntel (Ntel − 1)/2 mea-
sured complex visibilities. Depending on the number of interfering telescopes,
the amount of information needed to estimate the transfer function may be much
smaller than the amount of measurements. This open the possibility to perform
self-calibration (Cornwell & Wilkinson 1981; Schwab 1980).

3 Easy case: image reconstruction ∼ deconvolution

Considering only complex visibilities for a given effective wavelength λ, we can
combine them to form the distribution:

d̂λ(ν) def=
∑

m∈Sλ

Vm δ(ν − νm) (3.1)

with Sλ = {m: λm = λ} and δ(·) the Dirac’s distribution. Using the definition of
the observed complex visibilities Vm in Equation (2.3) and the approximation in
Equation (2.6), d̂λ(ν) can be expanded as follows:

d̂λ(ν) =
∑

m∈Sλ

ĥm Îλm(νm) δ(ν − νm)

= Îλ(ν)
∑

m∈Sλ

ĥm δ(ν − νm)

= Îλ(ν) ĥλ(ν), (3.2)

with:

ĥλ(ν) =
∑

m∈Sλ

ĥm δ(ν − νm). (3.3)
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Fig. 3. From left to right: spatial frequency sampling, dirty beam, object brightness

distribution and dirty image.

Taking the inverse Fourier transform of d̂λ(ν), we obtain a 2D angular distribution
called the dirty image:

dλ(θ) def=
∫∫

d̂λ(ν) e+i 2 π 〈θ,ν〉 d2ν

=
∫∫

ĥλ(ν) Îλ(ν) e+i 2 π 〈θ,ν〉 d2ν

= (hλ ∗ Iλ) (θ) (3.4)

where 〈θ, ν〉 is the 2D scalar product of θ by ν and the symbol ∗ denotes the
convolution product of the brightness distribution Iλ(θ) by the so-called dirty
beam:

hλ(θ) def=
∫∫

ĥλ(ν) e+i 2 π 〈θ,ν〉 d2ν

=
∑

m∈Sλ

ĥm e+i 2 π 〈θ,νm〉. (3.5)

In words, the dirty image dλ(θ), synthesized from the observed complex visibilities,
is simply the convolution of the specific brightness distribution Iλ(θ) by the dirty
beam hλ(θ). Figure 3 shows, for given (u, v)-coverage and observed object, the
resulting dirty beam and dirty image. The dirty beam hλ(θ) is the analogous
of the point spread function (PSF) in conventional imaging; it is however not
a probability density function, in particular, when super-synthesis is exploited,
hλ(θ) is not a normalized non-negative distribution (cf. the negative lobes of the
dirty beam in Fig. 3).

To summarize, when the observables are the complex visibilities Vm and the
transfer function ĥm properly calibrated, Equation (3.4) shows that image recon-
struction amounts to a deconvolution problem (Cornwell 1995). There are however
many unmeasured values – the voids in the coverage of the (u, v)-plane – thus the
problem is, at least, ill-posed and other constraints than the data are required to
warrant the uniqueness and the stability of the solution. The principles of image
reconstruction developed in the remaining sections of this paper can be applied to
solve this inverse problem.
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So far, no considerations have been made regarding the quality of the measure-
ments which may be very variable. In practice, regridding techniques (Sramek &
Schwab 1989; Thompson & Bracewell 1974) are implemented to synthesize a dirty
image with proper weighting of the data according to their confidence levels. By
inverse Fourier transforming the expression of d̂λ(ν) given by Equation (3.1), the
dirty image can be directly synthesized from the complex visibilities data Vm:

dλ(θ) =
∑

m∈Sλ

Vm e+i 2 π 〈θ,νm〉. (3.6)

To take into account the variable quality of the measurements, one can use statis-
tical weights and synthesize the dirty image as:

dλ(θ) =
∑

m∈Sλ

wm Vm e+i 2 π 〈θ,νm〉. (3.7)

where the weights wm are computed according to the variance of the noise. The
corresponding dirty beam then writes:

hλ(θ) =
∑

m∈Sλ

wm ĥm e+i 2 π 〈θ,νm〉. (3.8)

The somewhat idealized case considered here is relevant for radio-astronomy for
which the complex amplitude transmissions gj(λ, t) are stable during an exposure
and can be calibrated. We will see next (Sect. 4) that, due to the atmospheric
turbulence, these assumptions cannot be made in the optical where the situation
is much more involved. In terms of complexity, an intermediate situation arises
when the transfer function ĥm cannot be calibrated. Self calibration methods
(Cornwell & Wilkinson 1981) have been developed to cope with this case and
consist in jointly recovering the complex amplitude transmissions gj(λm, tm), see
Equation (2.10), and the image of the object from uncalibrated complex visibilities.
Self calibration is the analogous of blind deconvolution in conventional imaging
(Campisi & Egiazarian 2007).

4 The effects of turbulence

The atmospheric turbulence induces random variations of the refractive index along
the path traveled by the light (Roddier 1981). These fluctuations affect the mod-
ulus and the phase of the complex transmissions gj(λ, t) during an exposure. For
instance, for an instrument like Amber (Petrov et al. 2007), the modulus |gj(λ, t)|
fluctuates due to the boiling of the speckle pattern in the focal plane of the tele-
scopes which changes the amount of coherent light injected in the optical fibers
which feed the instrument and perform the spatial filtering. The turbulence also
induces random delays in the optical path which affect the phase φj(λ, t) of gj(λ, t).
The variations of the modulus of the complex transmissions can be estimated or
calibrated, e.g. by the photometric channels of Amber. But it is much more
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difficult to estimate the phase errors. The situation is about to improve with the
development of recombinators with phase reference (Delplancke et al. 2003) but,
for now, there are no reliable means to estimate the phase φj(λ, t). This has a pro-
found impact on the kind of measurements provided by an optical interferometer.

Because of the fluctuations of the complex transmissions gj(λ, t) during an
exposure, the approximation in Equation (2.9) no longer applies: the effective
transfer function ĥm is given by Equation (2.4). Then, if the fluctuations of the
phase φj(λ, t) of gj(λ, t) are too important during the exposure, the integrand
in Equation (2.4) becomes randomly distributed around zero and the averaging
during the exposure yields:

ĥm ≈ 0. (4.1)

This means that the complex visibilities cannot be measured when the unknown
random phase fluctuations are too large during an exposure. This is the case
at optical wavelengths. Even if the phase fluctuations are not so important, the
effective transfer function cannot be described by a small number of complex
transmissions. This forbids the use of self-calibration to guess the effective transfer
function: in order to directly exploit the mean complex visibilities, ĥm must be
calibrated simultaneously to the observations. For these reasons, astronomers have
to integrate observables which are insensitive to phase delay errors.

Using very short exposure durations, typically ∼1 ms, compared to the evo-
lution time of the atmospheric effects, the instantaneous complex visibilities can
be measured but with unknown phase terms. The interferometric observables
are then computed by forming, from simultaneously observed complex visibilities,
quantities which are insensitive to the phase of the complex transmissions. These
observables are the powerspectrum:

Pm
def= 〈|Vjm,1,jm,2(λ, t)|2〉m
≈ 〈|gjm,1(λ, t)|2 |gjm,2(λ, t)|2〉m︸ ︷︷ ︸

> 0

|Îλm (νm)|2 (4.2)

and the bispectrum:

Bm
def=

〈
Vjm,1,jm,2(λ, t)Vjm,2,jm,3(λ, t)Vjm,3,jm,1(λ, t)

〉
m

≈ 〈|gjm,1(λ, t)|2 |gjm,2(λ, t)|2 |gjm,3(λ, t)|2〉m︸ ︷︷ ︸
> 0

Î
(3)
λm

(νm, ν′
m) (4.3)

where:

νm = (rjm,2(tm)− rjm,1(tm))/λm ,

ν ′
m = (rjm,3(tm)− rjm,2(tm))/λm ,

and:

Î
(3)
λ (ν, ν′) def= Îλ(ν) Îλ(ν ′) Î∗λ(ν + ν′) (4.4)
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is the bispectrum of the brightness distribution of the object. To be able to
measure the powerspectrum, given by Equation (4.2), two telescopes (jm,1 and
jm,2) have to be coherently recombined; while, to measure the bispectrum, given
by Equation (4.3), three telescopes (jm,1, jm,2 and jm,3) have to be coherently
recombined.

Note that, being non-linear quantities, the empirical powerspectrum and bis-
pectrum have bias terms which are not shown here to simplify the equations.
Dainty & Greenaway (1979) and Wirnitzer (1985) give the expressions of unbiased
estimators for the powerspectrum and for the bispectrum respectively at low light
levels (photon counting mode).

5 Inverse problem approach for image reconstruction

Given the interferometric observables, we want to recover an image, that is an
approximation of the object specific brightness distribution at a given wavelength.
Before going into the details of a method to tackle this problem, we can anticipate
a number of issues and make some preliminary remarks. (i) Due to voids in the
spatial frequency coverage, we are dealing with very sparse data (with typically a
few tens of baselines, see Fig. 2). (ii) Avoiding the turbulence effects implies to use
non-linear data (powerspectrum or bispectrum) which is more difficult to fit than,
say, the complex visibilities. (iii) Compared to the Ntel (Ntel − 1)/2 sampled fre-
quencies per exposure, the powerspectrum provides no Fourier phase information
while the bispectrum only provides (Ntel − 1) (Ntel − 2)/2 phase closures, so there
are missing phase data (with only 3 telescopes, 2/3rd of the phases are missing).
(iv) There may be calibration problems which means that there are additional
unknown factors in the data.

For the sake of simplicity, we will consider in the following the case of monochro-
matic image reconstruction (at a given wavelength λ) and assume that we are
working with debiased and calibrated data. That is, all the effective transfer func-
tions are assumed to be equal to unity and the main problem is to deal with the
sparsity of the data, the missing Fourier phase information and the non-linearity
of the estimators. The possible types of measurements that may be available are:

- complex visibilities: Vm ≈ Îλ(νm);
- powerspectrum data: Pm ≈

∣∣Îλ(νm)
∣∣2;

- bispectrum data: Bm ≈ Î
(3)
λ (νm, ν ′

m);

where the ≈ symbol is used because of omitted error terms.
As all measured quantities are related to the Fourier transform of the specific

brightness distribution, we first need a model of the complex visibilities. This is
the subject of Section 5.1.

On the one hand, due to the noise, exactly fitting the data is pointless and we
expect some discrepancy between actual data and their model given the sought
image. On the other hand, owing to the amount of missing information (sparse
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sampling of the spatial frequencies and, perhaps, only partial Fourier phase infor-
mation), the data alone cannot uniquely define an image: additional priors are
required. Image reconstruction is then a compromise between fidelity to the data
and to the priors; the different formulations of this inverse problem are introduced
in Section 5.2.

We will see that solving the image restoration problem amounts to minimizing
the sum of two terms: a likelihood term to enforce data fidelity and a regulariza-
tion term to promote agreement with the priors. Bayesian inference (Sect. 5.3)
can be invoked to formally derive these terms. Practical derivation of the likeli-
hood term is discussed in Section 6. The regularization is developed in Section 7.
At least because of the necessary flexibility of the regularization2, choosing the
regularization and its tuning parameters is needed. This is briefly discussed in
Section 7.3.

Finally it remains to effectively solve the problem, that is to find the best image
parameters which minimize the given penalized likelihood. Numerical optimization
is introduced in Section 8.

5.1 Image and complex visibilities models

Because of the noise and of the limited number of measurements, it is hopeless
to aim at recovering the specific brightness distribution Iλ(θ) of the observed
object exactly. Instead, a realistic objective is to seek for a good estimate of
an approximation i(θ) of Iλ(θ) which depends on a finite number of parameters.
To that end, the specific brightness distribution in angular direction θ can be
approximated by:

i(θ) def=
∑

n
xn bn(θ) ≈ Iλ(θ) (5.1)

with {bn(θ): R2 �→ R}Nn=1 a basis of functions and x ∈ RN the image parameters.
This general parametrization accounts, for instance, for a pixelized image, for
a wavelet decomposition, etc.. For image reconstruction, it may be the most
convenient to use a shift-invariant basis of functions defined by:

bn(θ) = b(θ − θn) (5.2)

where b(θ): R2 �→ R is a single basis function and G = {θn ∈ R2 | n = 1, . . . , N}
is a grid of evenly spaced positions. If b(θ) is an interpolation function (Thévenaz
et al. 2000), then the image parameters sample the brightness distribution:

xn = i(θn) ≈ Iλ(θn).

The advantage of approximating the specific brightness distribution by the linear
expansion i(θ) given in Equation (5.1) is that its exact Fourier transform is also
linear with respect to the image parameters x:

ı̂(ν) =
∑

n
xn b̂n(ν) ≈ Îλ(ν), (5.3)

2Such flexibility is required because the object of interest is unknown.
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where the hat ̂ denotes the Fourier transformed distribution and ν is the spatial
frequency conjugate of the angular position θ. For any sampled spatial frequency
νm the model complex visibility thus writes:

ym
def= ı̂(νm) =

∑
n

b̂n(νm)xn =
∑

n
Hm,n xn ≈ Îλ(νm) ,

with Hm,n = b̂n(νm). In matrix notation:

y = H · x, (5.4)

where y ∈ CM collects the model complex visibilities at all sampled frequencies
and H ∈ CM×N is a sub-sampled Fourier transform operator. The memory re-
quirement to store the coefficients of the operator H and the computer time needed
to apply H (or its adjoint) both scale as O(M × N). Fast approximations of H
based on the FFT can be used (Fessler & Sutton 2003; Potts et al. 2001) when
M × N is too large. To use these fast approximations, the image model must
be defined with shift-invariant basis functions, see Equation (5.2), on an evenly
spaced grid G.

5.2 Inverse problem formulations

As stated before, image reconstruction is a compromise between various constraints
resulting from the measurements and from prior knowledge. The first of these
constraints is that the image must be compatible with the available data. This
is asserted by comparing the measurements with their model given the image
parameters x. To keep the maximum flexibility and since the model of all the
measured quantities depend on the model complex visibilities y = H · x, we
postulate that, to be compatible with the measurements, the image parameters
must satisfy the following criterion:

fdata(H · x) ≤ η (5.5)

where fdata(y): CM �→ R+ is a measure of the distance between the model complex
visibilities y = H · x and the actual data. The threshold η is chosen to set how
close to the data should be the model. As fdata(y) is a distance, the smaller η the
closer the model to the data. However taking η = 0 would mean that the model
should exactly match the data and thus fit the noise which is undesirable. So we
always want η > 0, depending on the exact definition of fdata(y), the value of the
threshold may vary with, e.g., the noise level and the number of measurements.

The level of agreement with the prior knowledge can be expressed in the same
spirit by specifying a distance fprior(x) and requiring that this distance be as small
as possible providing that the model remains compatible with the data. Formally,
this writes:

x
 = arg min
x∈X

fprior(x) s.t. fdata(H · x) ≤ η, (5.6)

where the feasible set X ⊂ RN is introduced to impose strict constraints such
as the non-negativity of the image. For instance, using bilinear interpolation for
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the approximation in Equation (5.1), the specific brightness distribution i(θ) is
non-negative and normalized if and only if the parameters x are non-negative and
their sum is equal to ξ

def=
∫∫

i(θ) d2θ:

i(θ) ≥ 0 and
∫∫

i(θ) d2θ = ξ ⇐⇒ x ∈ X

with:
X = {x ∈ RN | x ≥ 0,1� · x = ξ}, (5.7)

where the inequality x ≥ 0 is taken componentwise and where 1 is the vector of
RN with all components equal to 1:

x ≥ 0 ⇐⇒ ∀n, xn ≥ 0

1 = (1, . . . , 1)� =⇒ 1� · x =
∑

n
xn.

The constrained problem (5.6) is usually solved via the Lagrangian (Nocedal &
Wright 2006):

L(x; �) = fprior(x) + � fdata(H · x)

with � ≥ 0 the Lagrange multiplier for the inequality constraint fdata(H · x) ≤ η.
Assuming that L(x; �) has a unique reachable minimum on the feasible set, we can
define:

x+
L(�) def= arg min

x∈X

L(x; �) ,

and seek for the value �
 ≥ 0 of the multiplier such that the solution x
 = x+
L(�
)

complies with the constraints. Obviously, we want �
 > 0 otherwise the data
play no role in the determination of the solution. Intuitively, having the solution
strictly closer to the data than required, i.e. fdata(H ·x
) < η, yields a worst value
of fprior(x
) than having fdata(H · x
) = η. Thus, unless the a priori solution:

xprior
def= argmin

x∈X

fprior(x)

is such that fdata(H · xprior) ≤ η, in which case the solution is (x
, �
) = (xprior, 0),
the solution to the problem (5.6) is given by x
 = x+

L(�
) with �
 > 0 such that
fdata(H · x
) = η.

Since the solution is obtained for a Lagrange multiplier strictly positive, we
can take μ = 1/� and alternatively define the solution to be given by minimizing
another penalty function:

x+
f (μ) = argmin

x∈X

f(x; μ) with: f(x; μ) = fdata(H · x) + μ fprior(x) . (5.8)

The solution is then x
 = x+
f (μ
) where the optimal weight μ
 > 0 for the priors

is such that fdata(H · x
) = η. The two different formulations are equivalent and
yield the same solution of the constrained problem (5.6).

We shall now see how to derive the expression of the distances fdata(H ·x) and
fprior(x).
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5.3 Bayesian inference

The previous considerations may found strong theoretical justification in a Bayesian
framework where probabilities represent any available information. For instance,
in a maximum a posteriori (MAP) approach, the best image parameters xMAP are
the most likely ones given the data z:

xMAP = argmax
x

Pr(x|z),

where Pr(x|z) denotes the probability (or the probability density function) of x
given z. Note that the data z collects all measurements; in our case, z may
include complex visibilities, powerspectra and bispectra. Using Bayes theorem3,
discarding terms which do no depend on x and noting that − log(p) is a strictly
decreasing function of p yields:

xMAP = arg max
x

Pr(z|x) Pr(x)
Pr(z)

= arg max
x

Pr(z|x) Pr(x)

= arg min
x

− log(Pr(z|x))− log(Pr(x)).

Hence:

xMAP = arg min
x

fz|x(x) + fx(x), (5.9)

with:

fz|x(x) = − log(Pr(z|x)) (5.10)
fx(x) = − log(Pr(x)). (5.11)

In words, the MAP solution xMAP is a compromise between maximizing the like-
lihood of the data z given the model parameters x and maximizing the prior
probability of the model. Said otherwise, the compromise is between fitting the
data, i.e. minimize fz|x(x), and agreement with prior knowledge, i.e. minimize
fx(x).

Finally, the solution x+
f (μ) of the problem (5.8) is also the MAP solution xMAP

if we take:

fdata(H · x) = c′0 + c1 fz|x(x) (5.12)
μ fprior(x) = c′′0 + c1 fx(x) (5.13)

with c′0, c′′0 and c1 > 0 any suitable real constants. From this close relationship,
we deduce a possible way to define the penalty functions fdata(H ·x) and fprior(x).
This is the subject of the next two sections.

3Bayes theorem states that the joint probability of A and B writes:

Pr(A, B) = Pr(A) Pr(B|A) = Pr(B) Pr(A|B).
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6 Likelihood of the data

Ideally, the likelihood should be strictly based on the noise statistics of the data:

fdata(H·x) def= c′0 − c1 log(Pr(z|H·x)).

If the measurements have Gaussian statistics, then for c1 = 2 and for an appro-
priate choice of c′0, the likelihood term is a so-called χ2 given by:

fdata(H·x) = [z − z̃(H·x)]� ·W · [z − z̃(H·x)],

where z̃(H·x) is the model of the measurements z and W is a weighting matrix
equal to the inverse of the covariance of the measurements: W = Cov{z}−1. Our
notation accounts for the fact that the model of the measurements only depends
on the model complex visibilities H·x and assumes that all measurements are real
valued (any complex valued data has to be considered as a pair of reals).

A first difficulty is that the statistics of real interferometric measurements is
not well known and may not be Gaussian at all. For instance, Figure 4 shows
the empirical distribution of bispectrum data. At low signal to noise ratio (SNR),
the distribution may be well approximated by a Gaussian distribution; while, at
high SNR, the banana shaped distribution of the data suggests that the amplitude
and phase of the complex bispectrum may be independent variables. Figure 5
shows that this banana shaped distribution can only be grossly approximated by
a Gaussian with respect to the real and imaginary parts of the bispectrum data.

A second difficulty is that not all statistical information is provided with the
data. Generally, only estimates of the error bar (standard deviation) of each mea-
surement is available. In particular no information is stored about the correlation
of the measurements. This is the case of data stored into the OI-FITS format, a
data exchange standard for optical interferometry (Pauls et al. 2005). Without
any measured correlations, one is obliged to assume that measurements are inde-
pendent variables (for the powerspectrum data) or pairs of variables (for complex
data like the complex visibilities and the bispectra). The likelihood term is then
a sum of terms, one for each independent subset of data:

fdata(H·x) =
∑
m

fm(zm − z̃m(H·x))

where each elementary datum zm is either a real or a pair of reals (amplitude and
phase or real and imaginary parts of a complex measurement).

In the most simple case, the data consists in independent calibrated complex
visibilities with independent and identically distributed (i.i.d.) real and imaginary
parts (the so-called Goodman approximation, Goodman 1985). The likelihood
term then writes:

fdata(H·x) =
∑
m

wm |zm − (H·x)m|2

with wm = 1/ Var{Re{zm}} = 1/ Var{Im{zm}} and |zm − (H·x)m| the mod-
ulus of the complex residuals. In matrix notation and providing the Argand
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representation4 of the complex visibilities is used, the likelihood can be put in
the form of a quadratic cost function with respect to the unknowns x:

fdata(H·x) = (z −H·x)� ·W · (z −H·x)

where W is block diagonal matrix with 2 × 2 blocks. This is suitable for radio-
astronomy data but not for current optical interferometers. See, for instance,
Meimon et al. (2005a) and Thiébaut (2008) for various approximate expressions
of the likelihood term. Note that Goodman approximation would give circular
isocontours in Figure 5.

For complex data zm = ρm exp(i ϕm) in polar form with independent modulus
and phase, Meimon et al. (2005a) suggested to use a quadratic approximation of
the likelihood:

fm(H · x) = em(H · x)� ·
(

W rr
m W ri

m

W ri
m W ii

m

)
· em(H · x), (6.1)

with the weights:

W rr
m =

cos2 ϕm

Var{ρm}
+

sin2 ϕm

ρ2
m Var{ϕm}

, (6.2)

W ri
m =

(
1

Var{ρm}
− 1

ρ2
m Var{ϕm}

)
cosϕm sin ϕm , (6.3)

W ii
m =

sin2 ϕm

Var{ρm}
+

cos2 ϕm

ρ2
m Var{ϕm}

, (6.4)

and the complex residuals:

em(H · x) =
(

ρm cosϕm − ρ̃m(H·x) cos ϕ̃m(H·x)
ρm sin ϕm − ρ̃m(H·x) sin ϕ̃m(H·x)

)
(6.5)

where the tilde indicates the model of a given measurement. The expression of the
likelihood in Equation (6.1) can be used for complex visibilities Vm or bispectrum
data Bm in polar form as provided by OI-FITS format. However note that this
yields a non-quadratic penalty for the bispectrum.

Some algorithms ignore the measured amplitudes of the bispectrum and only
consider the bispectrum phase βm = arg(Bm) to provide Fourier phase information
for the image reconstruction, the Fourier amplitude information being provided by
the powerspectrum data. In this case, practical expressions of the likelihood with
respect to such kind of data must be introduced. In MiRA algorithm (Thiébaut
2008), powerspectrum data are treated as independent Gaussian variables, the
likelihood for the measured powerspectrum Pm then writes:

fm(H · x) =

(
Pm − P̃m(H · x)

)2

Var{Pm}
· (6.6)

4Real and imaginary parts.
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Fig. 4. Empirical distribution of complex bis-

pectrum data at low (left and high (right) signal

to noise ratio (SNR). Horizontal axis is the real

part, vertical axis is the imaginary part.
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Fig. 5. Convex quadratic approxi-

mations of the true distribution of

errors for a complex measurement.

Thick lines: χ2 isocontours (at 1, 2

and 3 rms levels) for a complex data

with independent amplitude and

phase. Dashed lines: isocontours

for the global quadratic approxima-

tion. Thin lines: isocontours for

the local quadratic approximation.

(Meimon et al. 2005a).

In order to account for phase wrapping and to avoid excessive non-linearity, the
term related to the phase closures data is defined by MiRA to be the weighted
quadratic distance between the complex phasors rather than between the phases
closures:

fm(H · x) =
1

Var{βm}
∣∣∣ei βm − ei β̃m(H·x)

∣∣∣2 . (6.7)

In the limit of small phase closure errors, the penalty becomes:

fm(H · x) ≈

[
βm − β̃m(H · x)

]2

Var{Pm}
(6.8)

which is readily the χ2 term that would be obtained for Gaussian phase statis-
tics. This justifies the weighting used in Equation (6.7). Other expressions of the
likelihood with respect to phase data have been proposed to cope with the phase
wrapping (Haniff 1991; Lannes 2001) but, in practice, they give penalties which
slow down or even prevent the convergence of the optimization algorithm.

For optical interferometry which only provides powerspectrum and
bispectrum data, the likelihood term fdata(H·x) is highly non-quadratic, e.g. see
Equations (6.6) and (6.7). This will give rise to optimization issues when fitting
the data. Before tackling these issues, let us discuss the second penalty term, that
is the regularization.
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7 Regularization

In principle, the regularization penalty could be derived from Bayesian considera-
tions (see Sect. 5.3):

μ fprior(x) = c′′0 − c1 log(Pr(x)). (7.1)

with c′′0 any real constant and c1 > 0 the same constant as in the previous section.
However, introducing a prior probability density function of the parameters which
is sufficiently general for all possible observed objects would yield highly uninfor-
mative priors which do not really help finding a satisfying image. To be effective,
the regularization has to be more restrictive which implies to make more specific
assumptions about the object brightness distribution. Besides, even if we knew
the object quite exactly, we would like that the prior penalty be at least insensitive
to the observing conditions, thus to the position of the object, its orientation and
its distance (i.e. its angular size and its integrated brightness).

7.1 Simple quadratic regularization

Let us examine the consequences of these elementary considerations. To simplify
our reasoning, we consider the pixel-oriented image model:

xn = i(θn) ≈ Iλ(θn),

and assume that the parameters x follow a Gaussian distribution5, then:

fx(x) = − log(Pr(x))

= c + (1/2) (x− x)� ·C−1
x · (x− x) (7.2)

where x = E{x} is the expected value of x, Cx = Cov(x) its covariance and

c =
1
2

log
[
det

(
Cx

2 π

)]
is a constant due to the normalization of Pr(x) and which does not depend on x.

From the principle that the regularization shall be shift-invariant, the covari-
ance (Cx)n,n′ between the nth and the n′th pixels must only depend on their
relative position θn − θn′ ; moreover, since the regularization shall be isotropic, it
must only depend on the relative distance ‖θn − θn′‖. This is also true for the
inverse of the covariance matrix, thus:(

C−1
x

)
n,n′ = α ζ(‖θn − θn′‖/Ω) (7.3)

5Which cannot be really true because of the non-negativity and, perhaps, normalization
constraints.
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where α > 0 is a scaling factor, ζ: R+ �→ R is a function of the relative angular
separation between the pixels and Ω is a typical angular size. From the require-
ments that the prior shall not depend on the absolute brightness of the object, nor
on its angular size, the factor α shall scale as the reciprocal of the square of the
object brightness and Ω shall scale as the angular size of the object.

As the regularization shall be shift-invariant, the mean must not depend on
the pixel index, hence:

x = β 1, (7.4)

where β is the mean pixel brightness. Noting that:

(xn − xn′)2 = [(xn − β)− (xn′ − β)]2

= (xn − β)2 + (xn′ − β)2 − 2 (xn − β) (xn′ − β)

=⇒ (xn − β) (xn′ − β) = (1/2) [(xn − β)2 + (xn′ − β)2 − (xn − xn′)2] ,

the prior penalty fx(x) in Equation (7.2) writes:

fx(x) = c + (1/2) (x− β 1)� ·C−1
x · (x− β 1)

= c +
1
2

∑
n,n′

(
C−1

x

)
n,n′ (xn − β) (xn′ − β)

= c +
μ0

2

∑
n

(xn − β)2 +
1
2

∑
n<n′

μn,n′ (xn − xn′)2 (7.5)

with:

μ0 =
∑

n

(
C−1

x

)
n,n′ =

∑
n′

(
C−1

x

)
n,n′ (7.6)

μn,n′ = −
(
C−1

x

)
n,n′ (7.7)

where the two equivalent expressions for μ0 come from the fact that the covariance
matrix is symmetrical and so is its inverse.

Taking c1 = 2 (as for the likelihood in Sect. 6) and c′′0 = −c1 c, yields the
quadratic regularization term:

μ fprior(x) = μ0

∑
n

(xn − β)2 +
∑
n<n′

μn,n′ (xn − xn′)2 . (7.8)

These simple and general considerations lead us to the quadratic regularization in
Equation (7.8) which has the required properties (shift-invariance, isotropy, etc.)
and which is parametrized by so-called hyper-parameters: α, β (both related to the
object brightness), Ω (the size of the object) and ζ: R+ �→ R the relative weighting
function. If we take μ = μ0 > 0, β = 0 and μn,n′ = 0, ∀(n, n′), then we obtain the
most simple form of Tikhonov’s regularization (Tikhonov & Arsenin 1977):

fprior(x) =
∑

n

x2
n = ‖x‖22.
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Fig. 6. Image reconstruction with various types of regularization. From left to right:

(a) original object smoothed to the resolution of the interferometer (FWHM ∼ 15 mas);

(b) reconstruction with a quadratic regularization given by Equation (7.9) and which

imposes a compact field of view; (c) reconstruction with edge-preserving regularization

as in Equation (7.10); (d) reconstruction with maximum entropy regularization as in

Equation (7.12). All reconstructions by algorithm MiRA (Thiébaut 2008) and from the

powerspectrum and the phase closures data of the 2004’ Imaging Beauty Contest (Lawson

et al. 2004).

Whereas if we take μ0 = 0 and μn,n′ ≥ 0 a decreasing function of the distance
between the nth and the n′th pixels, then we obtain a regularization which favors
solutions where nearby pixels have similar values hence the smoothness of the
restored image.

7.2 A marketplace for regularization

The Gaussian assumption for the prior distribution of the image parameters yields
quadratic regularizations, like the one in Equation (7.8), which are easy to min-
imize numerically. However such regularizations alone6 are not very efficient to
interpolate missing data when dealing with sparse interferometric data. They
are also not the best choice to restore some features of the observed objects, in
particular point-like sources or sharp edges. Non-quadratic regularizations have
been proposed which may be more suitable for sparse data and images with sharp
structures.

The most useful regularizations for image restoration are shift-invariant, (ap-
proximately) isotropic and parametrized by a few hyper-parameters. However,
in the case of optical interferometry data where the observables (powerspectrum
and bispectrum) are insensitive to the position of the object, it may be useful to
introduce a shift-variant regularization to fix this degeneracy (see the compactness
regularization below proposed by le Besnerais et al. 2008).

It is impossible to give an exhaustive list of regularizations, but for image
restoration, in particular from interferometric data, the following prior penalties
have been used with some success:

Quadratic smoothness is imposed by minimizing the differences between close
pixels. This is achieved with:

fprior(x) = ‖D · x‖22

6Without the strict constraints imposed by the feasible set X.
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where D is a finite difference operator. For instance, in 1-D:

(D · x)n = xn+1 − xn

and in 2-D:

(D · x)n1,n2 =
(

xn1+1,n2 − xn1,n2

xn1,n2+1 − xn1,n2

)
.

This regularization is specific instance of Equation (7.8) with μ0 = 0 and

μn,n′ = μ [δ(n1 + 1− n′
1) δ(n2 − n′

2) + δ(n1 − n′
1) δ(n2 + 1− n′

2)].

A similar result can be obtained with:

fprior(x) = ‖x− S · x‖22
where S is a smoothing operator.

Compactness can be achieved with

fprior(x) =
∑

n
wprior

n x2
n, (7.9)

where wprior
n ≥ 0 are given weights. If the weights increase with the distance

to a given position (for instance, wprior
n ∝ ‖θn‖β with β > 0), this regular-

ization favors a compact brightness distribution with its flux concentrated
around this position. In the Fourier domain, this yields spectral smoothness
which may be very helpful to interpolate the voids in the (u, v)-coverage.

If the weights are all strictly positive, it can be shown (le Besnerais et al.
2008) that the default solution:

xprior def= arg min
x∈X

∑
n

wprior
n x2

n

on the feasible set X given in Equation (5.7) is simply:

xprior
n ∝ 1/wprior

n

where the constant of proportionality is such that the normalization con-
straint is satisfied.

Non-linear smoothness can be imposed with the following general expression:

fprior(x) =
∑

n

√
‖∇xn‖2 + ε2 (7.10)

where ‖∇xn‖2 is the squared magnitude of the spatial gradient in the image
at nth pixel and ε ≥ 0. Taking ε = 0 yields the so-called total variation (TV)
regularization which favors flat regions separated by sharp edges (Rudin
et al. 1992). Otherwise, taking ε > 0 yields edge-preserving smoothness
(Charbonnier et al. 1997) which behaves as a quadratic smoothness prior
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in region where the spatial gradient of the image is smaller than ε in mag-
nitude, while preserving sharp edges elsewhere. The actual expression in
Equation (7.10) depends on the approximation of the spatial gradient which
is usually implemented via a finite difference operator: ∇xn = Dn · x
(Chambolle et al. 2011). There are also other possibilities to achieve edge-
preserving regularization (see e.g., Charbonnier et al. 1997).

Spatial sparsity can be imposed thanks to separable �p norms:

fprior(x) =
∑

n
|xn|p, (7.11)

with p ≥ 0. If p < 1, minimizing the �p norm favors sparse distribution,
while p = 2 corresponds to regular Tikhonov regularization (Tikhonov &
Arsenin 1977) and favors flat distributions. Note that p must be greater or
equal 1 to have a convex criterion. Taking the smallest such p, that is p = 1,
is what is advocated in compress sensing (Donoho 2006).

Maximum entropy methods (MEM) have been proposed for radio-astronomy
and exploit a separable non-linear regularization with the general form:

fprior(x) = −
∑

n
h(xn|xn). (7.12)

Here the prior is to assume that the image is drawn toward a prior model x
according to a non-quadratic potential h, called the entropy. Various entropy
terms have been proposed in the literature (Narayan & Nityananda 1986):

MEM-sqrt: h(x|x) =
√

x;
MEM-log: h(x|x) = log(x);
MEM-prior: h(x|x) = x− x− x log (x/x) .

Being separable, the expression in Equation (7.12) assumes that the pixel
values are uncorrelated. To impose some level of smoothness in the solution,
Horne (1985) has proposed a non-separable MEM regularization by defin-
ing the prior model x as a smoothed version of the model x, for instance:
x = S · x with S a smoothing operator.

7.3 Choosing and tuning the regularization

As we have just seen, there are many different possible expressions for the regu-
larization term. Since the exact statistics of the sought object is seldom known,
the regularization has to be chosen on the basis of general properties that one
expect to see in the sought image. In the case of interferometric imaging, Renard
et al. (2011) have compared the regularization methods presented in the previous
section. As expected they concluded that the best prior depends on the object
of interest. However, non-linear smoothness, in Equation (7.10), and compact-
ness combined with non-negativity constraints, in Equation (7.9), are the most
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Fig. 7. Image reconstruction with 
2 compactness and for various levels of regularization.

The optimal regularization level is μ+ (source: Renard et al. 2011).

successful regularizations in general. Figure 6 shows that images restored with
different types of regularization are fairly similar. This is a general observation:
providing there are sufficient data and the hyper-parameters are correctly set (see
below), the restored image either succeeds to approximate the object or clearly fails
(Renard et al. 2011). In practice, it is fruitful to exploit the variety of regular-
ization types to determine which one is most adapted to the object of interest.
Comparing images obtained under different priors is also useful to disentangle be-
tween artifacts and real features. One must however keep in mind that, among
other properties, the priors must be able to lift the degeneracies of the inverse
problem and to regularize it, that is to warrant a unique and stable solution with
respect to small perturbations such as those due to the noise.

In addition to the choice of the form of the regularization itself, there are
tuning parameters: the weight μ of the regularization, and perhaps some other
hyper-parameters (e.g. the relaxation parameter ε in the edge-preserving regular-
ization below). Ideally one would like to set these hyper-parameters automatically
according to some objective criterion. Although several unsupervised methods
have been proposed for setting the hyper-parameters, this is still a vivid research
subject and no methods is at the same time robust and easy to apply. When there
are few hyper-parameters, visual assessment of the result is often sufficient to cor-
rectly set these parameters. For instance, Figure 7 shows the effects of tuning the
level of regularization μ. Compared to the optimal setting (central panel in Fig. 7),
if the weight of the regularization is too small, many artifacts due to the voids in
the (u, v) coverage contaminate the image (left panel in Fig. 7). On the contrary,
if the weight of the regularization is too important, the image becomes too flat
(right panel in Fig. 7). Although this depends on the particular regularization
implemented.

8 Optimization strategy

We have seen that image reconstruction amounts to solving:

min
x∈X

{μ fprior(x) + fdata(H · x)}︸ ︷︷ ︸
f(x)

· (8.1)
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In the case of optical interferometric data, this constrained optimization problem
depends on a very large number of parameters (the image pixels), is highly non-
linear7 and multi-modal (has multiple minima). Solving such a problem requires
global optimization or a good starting point followed by continuous optimization.
It is remarkable that existing image reconstruction algorithms implement not only
different priors but also different strategies to search the solution.

CLEAN (Högbom 1974) was initially developed for radio-interferometry (i.e.
for complex visibility data) and exploits a matching pursuit algorithm to iteratively
build the image by modifying a single pixel at every iteration. The building-blocks
method (Hofmann & Weigelt 1993) is an adaptation of the CLEAN algorithm to
deal with bispectrum data. The assumption made by these two methods is that
the object of interest mainly consists in point-like sources. Using the regulariza-
tion given by Equation (7.11) with p = 1 (i.e. taking the �1 norm of the pixels
as the prior penalty) yields a similar result and produces a spatially sparse so-
lution. Introducing such a continuous regularization, although not smooth, gives
the opportunity to use optimization strategies much more efficient than matching
pursuit algorithms (Thiébaut et al. 2012).

Wisard (Meimon et al. 2005b) implements a kind of self-calibration strategy
alternating between (i) estimating the missing Fourier phases given the object and
the phase closures to complete the data and produce pseudo-complex visibility
data, and (ii) image reconstruction given these pseudo-data and the priors.

MACIM (Markov Chain Imager, Ireland et al. 2008) generates a stochastic
sampling of the posterior probability

Pr(x|z) ∝ Pr(z|x) Pr(x)

by means of a Monte-Carlo Markov Chain (MCMC) algorithm. The image samples
can then be used to find the mode of the distribution (which gives the most likely
solution) or to compute the posterior mean of the sought image (which gives the
image which minimizes the mean quadratic error). For large size problems, MCMC
may however take prohibitive computational time to generate good samples of the
posterior distribution.

Wipe (Lannes et al. 1997), BSMEM (Baron & Young 2008; Buscher 1994) and
MiRA (Thiébaut 2008) directly minimize the penalty in Equation (8.1) by means
of non-linear conjugate gradient algorithm, sub-space method (Skilling and Bryan
1984) or quasi-Newton methods (Nocedal & Wright 2006). These optimization
algorithms can deal with non-linear penalties with very large number of parameters
and, possibly, with constraints such as non-negativity. A change of variables can
be introduced to implement the normalization constraint (le Besnerais et al. 2008).
To my knowledge, Wipe can only cope with complex visibility data and has not
been adapted to deal with optical interferometry data.

In an attempt to unify direct optimization and self-calibration approaches to
solve the image reconstruction problem (8.1), we describe next another

7Which means that the joint criterion f(x) is non-quadratic.
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optimization strategy that can be adapted to any type of data and priors. The
method follows the Alternating Direction Method of Multipliers (ADMM, Gabay
& Mercier 1976) and consists in alternatively minimizing the two terms fprior(x)
and fdata(y) subject to the constraint y = H · x.

8.1 Augmented Lagrangian

Solving the image reconstruction problem (8.1) by direct minimization is exactly
the same as solving the constrained problem:

min
x∈X,y

{μ fprior(x) + fdata(y)} s.t. H · x = y (8.2)

where the model complex visibilities y = H · x have been explicitly introduced as
auxiliary variables. This will allow us to treat separately the specificity of fprior(x)
and fdata(y), in particular their non linearity or lack of smoothness.

A standard approach to solve the constrained problem (8.2) is to use the
Lagrangian of the problem:

L(x, y, u) = μ fprior(x) + fdata(y) + u� · (H · x− y) ,

with u the Lagrange multipliers associated to the constraints H · x = y. For a
solution {x
, y
, u
} of the problem, the necessary conditions of optimality, the
so-called Karush-Kuhn-Tucker (KKT) conditions, write:

H · x
 = y
 (8.3)
0 ∈ ∂xL(x
, y
, u
) (8.4)
0 ∈ ∂yL(x
, y
, u
) (8.5)

where ∂ denotes the subdifferential operator Boyd et al. (2010) which only con-
tains the gradient of its argument if it is differentiable. For instance, if the
Lagrangian is differentiable with respect to variables x, the second KKT condition
in Equation (8.4) becomes:

∇xL(x
, y
, u
) = 0.

Using the Lagrangian involves searching the optimal multipliers u
 such that min-
imizing the Lagrangian with respect to the variables (x, y) given the multipliers
yields a solution matching the constraints. However, finding the optimal multipli-
ers requires to solve a system of M (the number of observed baselines) non-linear
equations which is much more involved than finding a single root as required by
the constrained problem in Section 5.2.

Unless a closed form solution exists, it is easier to solve the constrained prob-
lem (8.2) by using the augmented Lagrangian (Hestenes 1969; Powell 1969):

LA(x, y, u; ρ) = L(x, y, u) + (ρ/2) ‖H · x− y‖22 (8.6)

with ρ > 0 the weight of the augmented penalty to reinforce the constraints.
Obviously for any variables matching the constraints, i.e. such that H · x = y,
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the Lagrangian and the augmented Lagrangian are equal; thus they both yield
the same solution. Solving the constrained problem (8.2) via the augmented
Lagrangian however has a number of practical advantages compared to using the
Lagrangian: (i) it provides an explicit update formula for the multipliers (see
Eq. (8.7) in Algorithm 1), (ii) it owns strong convergence properties for ρ large
enough even for non-smooth penalties, (iii) it can be exploited to derive a simple
yet efficient algorithm based on alternate minimization (see Algorithm 2).

Solving the image reconstruction problem (8.2) via the augmented Lagrangian
and simply considering the variables x and y as a single group of variables yields
the following algorithm:

Algorithm 1: Augmented Lagrangian algorithm for solving (8.2). Choose
initial multipliers u0. Then, for k = 0, 1, . . ., repeat the following steps until
convergence:

1. Choose augmented penalty parameter ρk > 0 and improve the variables:{
xk+1, yk+1

}
≈ arg min

x∈X,y
LA (x, y, uk; ρk) .

2. Update the multipliers:

uk+1 = uk + ρk

(
H · xk+1 − yk+1

)
. � (8.7)

8.2 Alternating direction method of multipliers

Algorithm 1 involves minimizing the likelihood and the regularization at the same
time which has not much practical interest compared to directly minimizing
Equation (8.1) with respect to x. The minimization becomes easier if one considers
the penalties fprior(x) and fdata(y) separately. To that end, Step 1 of Algorithm 1
can be implemented thanks to alternating minimization, for instance:

xk+1 = arg min
x∈X

LA(x, yk, uk; ρk),

followed by

yk+1 = arg min
y

LA(xk+1, y, uk; ρk).

This imposes to choose an initial value y0 for the auxiliary variables y. If an
initial image x0 is available, the order of updating x and y can be exchanged.
Alternating minimization yields the following algorithm:

Algorithm 2: Alternate Direction Method of Multipliers (ADMM) algorithm
for solving (8.2). Choose initial multipliers u0 and initial complex visibilities y0.
Then, for k = 0, 1, . . ., repeat the following steps until convergence:
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1. Image Reconstruction Step. Choose the augmented penalty parameter
ρk > 0 and approximately find the best image given the complex visibilities
and the Lagrange multipliers:

xk+1 ≈ arg min
x∈X

LA (x, yk, uk; ρk) .

2. Self Calibration Step. Approximately find the best complex visibilities
given the image and the Lagrange multipliers:

yk+1 ≈ argmin
y

LA (xk+1, y, uk; ρk) .

3. Updating of the Lagrange Multipliers. Apply the following formula to
update the multipliers:

uk+1 = uk + ρk

(
H · xk+1 − yk+1

)
. � (8.8)

Before going into the details of the algorithm, let us remark that by elementary
manipulations, the augmented Lagrangian can be rewritten as:

LA(x, y, u; ρ) = μ fprior(x) + fdata(y) + u� · (H · x− y) +
ρ

2
‖H · x− y‖22

= μ fprior(x) + fdata(y) +
ρ

2
‖H · x− y + u/ρ‖22 −

1
2 ρ
‖u‖22. (8.9)

8.2.1 Image reconstruction step

Discarding in Equation (8.9) terms which do not depend on the variables x, Step 1
of Algorithm 2 consists in improving x given the other variables and writes:

xk+1 = argmin
x∈X

LA(x, yk, uk; ρk)

= argmin
x∈X

μ fprior(x) + (ρk/2) ‖H · x− yk + uk/ρk‖22

= argmin
x∈X

(μ/ρk) fprior(x) + (1/2) ‖H · x− vk‖22 (8.10)

with: vk = yk − uk/ρk , (8.11)

which is the analogous of image reconstruction given pseudo-complex visibilities
vk = yk − uk/ρk with i.i.d. Gaussian noise of variance ∝ μ/ρk. Note that, if the
feasible set is just RN , the right hand side of Equation (8.10) is the value returned
by the proximity operator8 of (μ/ρk) fprior at vk (Combettes & Pesquet 2011).

8The proximity operator of f : RN �→ R is defined by:

proxf (v) = arg min
x

{
f(x) + (1/2) ‖x − v‖2

2

}
.
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Depending on the particular regularization fprior(x), a specific algorithm may
be designed to efficiently solve this problem. If the regularization is quadratic,
Equation (8.10) is a large scale quadratic problem which can be solved by exist-
ing methods like the gradient projection conjugate gradient algorithm (GPCG by
Moré & Toraldo 1991). Otherwise, for a number of non smooth fprior(x), there
exist closed form solutions of Equation (8.10) with X = RN (Combettes & Pesquet
2011) which can be adapted to account for non negativity constraint (Thiébaut
et al. 2012).

8.2.2 Updating the complex visibilities

Discarding in Equation (8.9) terms which do not depend on the auxiliary variables
y, Step 2 of Algorithm 2 consists in improving y given the other variables and
writes:

yk+1 = arg min
y

LA(xk+1, y, uk; ρk)

= arg min
y

fdata(y) + (ρk/2) ‖H · xk+1 − y + uk/ρk‖22

= arg min
y

fdata(y) + (ρk/2) ‖y −wk‖22 (8.12)

with: wk = H · xk+1 + uk/ρk (8.13)

which enforces the complex visibilities y to be a compromise between the actual
data and the shifted model complex visibilities wk = H · xk+1 + uk/ρk. If there
are missing data (for instance, incomplete Fourier phases when working with the
bispectrum or the phase closures and the powerspectrum), this step is nevertheless
a well posed problem thanks to the augmented term (ρk/2) ‖y −wk‖22.

8.3 Conclusions about optimization strategy

Steps 1 and 2 of Algorithm 2 are the analogous of the image reconstruction and self-
calibration steps in self-calibration methods (Cornwell & Wilkinson 1981; Meimon
et al. 2005b; Schwab 1980). However, to really mimic these latter methods, these
steps should be carried out in Algorithm 2 with the Lagrange multipliers always
equal to zero. Formally, this means that standard self-calibration methods do not
consistently solve a well defined optimization problem. This is not the case of
the proposed approach where the self-calibration step accounts for the Lagrange
multipliers which are associated to the constraints that H · x = y.

Although global optimization is in principle required to solve Equation (8.1),
the most successful algorithms proposed for optical interferometry BSMEM (Baron
& Young 2008) and MiRA (Thiébaut 2008) use direct optimization. They how-
ever implement numerical optimization algorithms designed for smooth penalties9.

9Smooth means here twice continuously differentiable.
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Thanks to the variable splitting trick, Algorithm 2 handles separately the speci-
ficities of fprior(x) and fdata(y). As a consequence, it can efficiently cope with
non-smooth penalties such as the ones used to impose sparsity. Moreover, the
augmented penalty term introduces a simple quadratic term which regularizes the
minimization of fprior(x) and that of fdata(y). This makes theses sub-optimization
problems well posed and may speed up their numerical solving.

9 Summary and perspectives

After describing the type of measurements which can be acquired with an inter-
ferometer and the specific issues due to the turbulence. We addressed the inverse
problem of synthesizing an image from these data. The inverse approach provided
us a useful framework to derive a kind of recipe for image reconstruction. This
recipe involves:

1. A direct model of the observables z given the image parameters x. This
model implements an approximation of the brightness distribution Iλ(θ)
and its Fourier transform Îλ(ν) from which is derived the linear relationship
y = H · x between the sampled complex visibilities ym = Îλ(νm) and the
image parameters.

2. A criterion to be minimized to determine a unique and stable solution.
This criterion takes the form f(x) = fdata(H ·x)+μ fprior(x) and reflects the
compromise between fidelity to the data, i.e. minimizing fdata(H ·x), and to
the priors, i.e. minimizing fprior(x). The hyper-parameter μ > 0 is used to
tune this trade-off. Eventually, a feasible set X can be introduced to account
for strict constraints such as non negativity or normalization of the solution.

3. An optimization strategy to solve the constrained optimization problem.

The same general framework can been used to describe most (if not all) inter-
ferometric image reconstruction algorithms (le Besnerais et al. 2008; Thiébaut
& Giovannelli 2010; Thiébaut 2009) so the issues encountered while cooking the
recipe are also general and have their counterparts in all proposed methods.

In this short presentation, we mainly focused on the so-called analysis approach
to reconstruct a non-parametric model of the brightness distribution. An alter-
native, the synthesis approach, is to describe the image as the combination of a
number of elementary atoms (Elad et al. 2007). In the synthesis approach, the
regularization is achieved by imposing to use the smallest number of atoms to ex-
plain the data. As described in our presentation, this sparsity constraint may be
introduced via an �1 norm penalty and the problem solved by specific algorithms
to cope with continuous but non-smooth criteria. It is also possible to try to mimic
the effects of using an �0 norm penalty with greedy algorithms. The CLEAN al-
gorithm (Högbom 1974) mentioned in Section 8 can be seen as a precursor of the
synthesis approach where the atoms have all the same shape (they are point-like
sources) which are only allowed to have different brightnesses and positions.
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The ADMM strategy implemented by Algorithm 2 was introduced for pedagog-
ical proposes to make a link between constrained optimization and self-calibration
methods and to exhibit some of the issues of solving the optimization part of
the image restoration problem. We have argued that the proposed strategy is
more consistent than existing self-calibration methods and more flexible than us-
ing algorithms restricted to smooth penalties. Introducing variables splitting and
ADMM strategy was also motivated by the effectiveness of a similar approach for
multi-spectral interferometric data. In this case, the reconstruction algorithm was
designed to deal with complex visibilities and exploits structured sparsity regu-
larization to favor point-like sources in the image (Thiébaut et al. 2012). To deal
with current optical interferometry data, it remains to demonstrate whether such
an approach has the ability to find a path to a good solution at a lower cost than
a stochastic global optimization method like MACIM (Ireland et al. 2008).

As mentioned along this presentation, optimization is not the only direction
of research to improve interferometric imaging. Perhaps first of all, multi-spectral
image reconstruction is now required to fully exploit the spectral resolution of the
existing interferometers. Indeed, it has been clearly demonstrated that spatio-
spectral regularization drastically improves the quality of the restored images
(Soulez et al. 2008). Hence existing algorithms must be extensively modified to
globally account for multi-variate data and not just reused to perform independent
reconstructions at given wavelengths (le Bouquin et al. 2009). In spite of its unri-
valed angular resolution, stellar interferometry is not as popular as, say adaptive
optics, in the astronomical community. This is partially due to the difficulty to
interpret the interferometric data. Making state of the art image reconstruction
algorithms available to non-specialists may be a good way to promote interfero-
metric observations. To that end, the methods must be not only robust but also
relatively easy to use. Developing unsupervised methods to automatically tune
the hyper-parameters of image reconstruction algorithms is therefore of particular
interest.
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IMAGING TECHNIQUES IN MILLIMETRE ASTRONOMY

M. Bremer1

Abstract. Compared to optical astronomy, millimetre radio astronomy
experiences not only a different and complementary aspect of the uni-
verse but also different perturbations and limitations from Earth’s at-
mosphere that are mostly imposed by atmospheric water vapour and
its dynamics. After discussing the physics behind the refractive index
variations and possible correction schemes, a small introduction into
the basics of radio interferometry and image reconstruction with the
CLEAN algorithm is given.

1 Introduction

Millimetre Astronomy is a powerful tool to observe the cold, molecular gas in
space, ranging from nearby objects in the Solar system over targets in our Galaxy
to galaxies so remote that their light has been travelling for more than 90% of the
age of the universe before reaching Earth.

Radio interferometry differs in a number of important points from optical in-
terferometry. Real and imaginary parts of the incoming signal are detected and
correlated electronically, observations can be performed at daytime and night time
with only weather-imposed limitations, and Earth’s atmosphere becomes a bright
background against which the astronomical source must be detected.

2 Atmosphere

In the optical, astronomical observations are perturbed by seeing: a large num-
ber of small (∼10 cm), rapid refractive index fluctuations in the atmosphere leads
to multiple splitting of an image into speckles that change with a rate of about
100 Hz (Lohman et al. 1983). The influence of speckles diminishes in the near
infrared, but so does the atmospheric transmission when moving further to longer
wavelengths: Extended absorption line systems of mainly water vapour and car-
bon dioxide block ground-based astronomical observations. When observations

1 Institut de Radio Astronomie Millimétrique (IRAM), 300 rue de la Piscine,
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Fig. 1. Atmospheric transmission on Plateau de Bure, France calculated with the ATM

model (Pardo et al. 2001) for different amounts of total precipitable water. Water vapour

has an exponential scale height of only 2 km (dry air has 8.4 km) allowing high altitude

sites to extend the edge of the radio window to higher frequencies.

become possible again at the short wavelength edge of the radio window (see
Fig. 1), seeing has completely changed its character. It is now slow (0.1 – 0.01 Hz)
and moves the whole image around instead of splitting it into speckles. Obvi-
ously, radio waves become sensitive to an atmospheric component that does not
influence optical wavelengths in the same way. This component is water vapour.
Its extended absorption line systems between the optical and radio windows do
more than locally absorb emission. For H2O a total of 114, 241, 164 spectral lines
are recorded in the HITRAN V13.0 database (Rothman et al. 2009, the number
of H2O transitions is given on the associated web pages); each line introduces
a long-range step into the refractive index according to the Kramers-Kronig re-
lation that links the real and imaginary parts of the dielectric constant. When
solving the Kramers-Kronig relation for the whole spectrum is impractical, local
approximations based on experimental measurements can be employed. Numerical
atmospheric radiative transfer codes like ATM (Pardo et al. 2001, also available
in the ASTRO software within the GILDAS-IRAM package2) or AM (Paine 2012)
often use fitted pseudo-continua to approximate distant line wings for opacities,

2http://www.iram.fr/IRAMFR/GILDAS
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Fig. 2. Ground-based radio observatories observing the (nearly) infinite sky. At a given

frequency, small antennas have a wide beam, large antennas a fine beam, and interfer-

ometers wide individual beams but narrow synthesised beams.

and may use an empirical step in the refractive index calculation when they reach
the edge of their line database (15 THz for AM 7.2). For numerical values for the
refractive index in the radio range (without using a model code) see e.g. Hill &
Cliffort (1981). The dependency of the total refractive index on ambient tempera-
ture, dry pressure and partial vapour pressure can be taken into account over the
Smith - Weintraub equation (Smith & Weintraub 1953, see also Thompson et al.
1986).

Water vapour has several unusual physical properties. Under terrestrial condi-
tions it can change between its gaseous, liquid and solid states, act as an important
heat transfer medium, is lighter than dry air but stays in the lower atmosphere due
to the negative tropospheric temperature gradient. Other than most atmospheric
gasses, water vapour mixes badly with the dry atmosphere and tends to form
bubbles of some metres to kilometres in size. Those bubbles have a tendency to
merge but are opposed in this by the action of turbulence, which tends to create a
weather-dependent power law size distribution of the bubbles and their associated
refractive index perturbations that levels off to a constant high level when the
outer scale of turbulence is reached. This “phase screen” can move horizontally
with the wind, making wind speed an important parameter for phase noise even
when the total amount of precipitable water is low. The refractive index varia-
tions impact radio observations on two levels (Fig. 2). In single-dish telescopes, it
is known as “anomalous refraction” (see Altenhoff et al. 1987; Downes & Altenhoff
1990) and typically indicates that the single beam of a telescope seems to move
around the requested position. Large radio telescopes have a finer beam resolution
than small antennas at the same frequency, and are therefore more sensitive to
this phenomenon. In extreme cases this can perturb observations so much that no
meaningful data can be obtained: the beam can wander over neighbouring parts of
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an extended source, stay an unknown fraction of time off-source for an unresolved
target, and can cause severe errors during the pointing and focus calibrations.

For interferometers with their extended baselines, phase variations can be no-
ticed well before the beams of the individual antennas become perturbed (Fig. 3).
Also for the synthesised beam, the source seems to wander around slowly (Fig. 4);
but other than the single dish anomalous refraction that is sensitive to the total
fluctuation of the water vapour column, the phase on a baseline is only sensitive to
the difference of the fluctuations along the lines of sight of the connected antennas.
This distinction is advantageous for compact interferometer configurations under
summer conditions, when the outer scale of turbulence can be in the kilometre
range (PdBI baseline lengths in compact 6Dq configuration are 24− 97 m).

An important impact of phase noise on the integrated amplitude is expressed
in the formula ‖Vobs‖ = ‖Vreal‖·exp(−φ2/2) where φ is the phase noise in radians,
Vobs the observed integrated visibility, and Vreal the visibility in the absence of
atmospheric phase noise. As the phase noise scales to good approximation linearly
with observing frequency, observing conditions can be prohibitive for band 3 and 4,
marginal for band 2, and correct for band 1 (see Fig. 5 for the frequency ranges of
the bands). Telescopes that operate in service mode can choose the project that
is best adapted to meteorological conditions. But when only fixed telescope time
slots are offered to observers, this flexibility does not exist.

Statistically, atmospheric parameters like temperature, wind speed and refrac-
tive index variations can be treated as non-stationary random processes. This
means that not only individual measurement values but also their averages wan-
der around in time. Classical averages and their variations are in such a situation
ill defined. An elegant method to characterise those processes are structure func-
tions, and the view of turbulence as an energy transport mechanism from large to
small scales, where the continuously sub-dividing turbulent eddies become finally
small enough to dissipate their kinetic energy as heat (Tatarski 1961; Kolmogorov
1941a,b, 1991a,b).

3 Water vapour radiometry

The most reliable way to correct for the phase noise generated by turbulent water
vapour is real-time remote monitoring close to the observed line of sight, with a
time resolution of the order of telescope diameter divided by typical wind speed. A
radiometer is a receiver that is sensitive to the thermal emission of water vapour.
In order to distinguish between clouds and gaseous vapour, radiometers are em-
ployed that monitor the contrast between the cloud-generated continuum and a
water vapour line. The droplets in clouds contribute significantly to the detected
emission, but only little to the optical path; their rejection is therefore essential
for a meaningful phase correction in the presence of clouds. The increased opac-
ity on a water vapour line causes a stronger coupling to the vertical temperature
distribution in the atmosphere, and thus an increase in the power received by
the radiometer. Figure 5 shows how precisely the atmospheric emission needs to
be measured (in Kelvin) as a function of monitoring frequency to obtain a given
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Fig. 3. Amplitudes and phases on a strong point source during 495 s. The stability of

the amplitudes shows that individual antenna beams do not wander around on the sky.

The phases, however, move significantly.



194 New Concepts in Imaging: Optical and Statistical Models

Fig. 4. Top: pointing scan at the IRAM 30-m telescope under conditions of anomalous

refraction. The scan consists of two drifts in azimuth and elevation over Mercury. Bottom:

the amplitudes and phases of Figure 3 expressed as the movement of MWC 349 (time

sequence coded in grey levels) observed at 88.950 GHz. The 1-sigma error bar (rightmost

vertical trace) as a function of time shows that the movement is significant. The ideal

clean beam half-power contour is indicated by an ellipse.

path rms. Other criteria must also be taken into account: electronic components
of high stability, low price and ambient temperature operation are available for
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Fig. 5. Gradient ΔTsky/Δpath for 3 mm (dark grey) 5 mm (grey) and 8 mm (light

grey) total precipitable water, calculated as a function of monitoring frequency for a

fixed observing frequency of 90 GHz at Plateau de Bure (2550 m). The observing bands

1–4 of the interferometer are indicated.

lower frequencies while components for high frequencies may require cooling, or
need more elaborate calibration techniques to counter drifts in performance. The
smaller opacity τ at frequencies lower than the astronomical receiver bands al-
lows to measure the whole tropospheric line of sight under observing conditions,
while high monitoring frequencies might reach their τ = 1 layer not far from
the antennas and thus stay insensitive to an important fraction of the observing
band phase fluctuations. And finally, interference by satellite emitters or telecom-
munication relays is more common at lower frequencies, with a tendency to rise
over the years as main-stream technologies evolve and the requests for increased
communication bandwidth become more pressing. Each observatory must there-
fore carefully choose the type of radiometer that is adapted to its needs. For the
Plateau de Bure, the total power signal of the 1 mm astronomical receivers was
used between 1995 and mid-2004, after mid-2004 the system was fully switched to
dedicated 22 GHz radiometers with cloud correction. These radiometers use three
1 GHz large channels centred on 19.2 GHz, 22.0 GHz and 25.2 GHz and operate
at ambient temperature. Figure 6 illustrates the benefit of the radiometric phase
correction: The phase noise is not only lower, but also less dependent on baseline
length, which helps to conserve the angular resolution of the resulting map. In
2012, the radiometers on Bure were only perturbed by two satellite beacons, but
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Fig. 6. Baseline-specific phase rms for the observations in Figure 3 versus projected

baseline length, with and without 22 GHz radiometric phase correction. The vertical

dashed line indicates the approximate outer scale size of the turbulent water vapour cells

on that day.

it required extended negotiations and the goodwill of several telecommunication
operators to keep powerful ground-based signal relays in the 16–24 GHz range
away from the neighbourhood of the observatory.

4 Image formation in radio interferometry

Radio interferometry is one of the few domains in science where the Fourier trans-
form of a desired quantity is observed, and needs to be inversely transformed
(van Cittert-Zernike theorem, Fraunhofer diffraction). This subject has been
treated in depth in many excellent textbooks and conference proceedings (e.g.
Thompson et al. 1986; Perley et al. 1986; Taylor et al. 1989, 1999). Combining
radio telescopes into an interferometer requires a number of basic conditions:

• The antennas must observe the source simultaneously.

• The detected signal is a complex visibility vector that can be expressed as
an amplitude and phase, and which is baseline-specific. As a consequence,
both antennas must share a common frequency reference against which the
phase can be measured. This can be done by either distributing a signal from
one master reference to all antennas (connected element interferometer), or
to use frequency standards of sufficient stability on each antenna (e.g. very
long baseline interferometry (VLBI)).
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• Individual antennas have their primary beam that corresponds to a single
pixel detector, with a diffraction-limited resolution defined by the reflector
diameter. However, within this primary beam each combination of two an-
tennas can resolve details with a diffraction-limited resolution of the antenna
spacing. As each combination of antennas counts, the number of simultane-
ous baselines is given by Nbas = Nant · (Nant−1)/2, i.e. adding one antenna
to an array of five increases the number of simultaneous baselines by 50%. As
the astronomical source rises, culminates and sets, the apparent orientation
and projected length of each baseline changes and thus traces a curved line in
the Fourier plane, which is also called UV plane (Earth rotation synthesis).

• Antennas cannot be spaced closer than the average of their diameters, and
that means that the baseline “zero” that defines the integral flux cannot be
accessed. This is the so-called “zero spacing” problem.

The higher the observing frequency and the larger the observing bandwidth, the
more demanding become the technical requirements for the receivers, the signal
transport with its delay compensation, and the correlator that needs to process
the full spectral bandwidth of all baselines. The WIDEX wide-band correlator
currently in service on the Plateau de Bure has a capacity of 914 Tera-operations
per second (M. Torres, priv. com.).

5 Gridding and image restoration techniques

During the construction of a local interferometer, some effort has to be invested
into the planning of station positions (also called “pads”) where a mobile antenna
can clamp down, connect to the system and start observing (see e.g. Kogan 2000;
Boone 2001 & Cohanim et al. 2004). The Earth rotation synthesis tracks of each
baseline need to fill the UV plane as efficiently as possible for a variety of source
declinations, while the total cost for building and cabling the stations must stay
within reasonable limits. Over a year an interferometer will undergo a limited
number of configuration changes, with closer spaced antennas during turbulent
summer conditions and extended spacing during stable and dry winter conditions.
An observer can apply to observe his/her source in several configurations to study
it in different spatial resolutions, and to combine the result into a single map.

The resulting UV data are not regularly sampled and have no measurements
at the centre; also, they are limited in their maximum UV coverage. In order to
use fast Fourier Transform (FFT) methods, the observations need to be interpo-
lated to a regular grid. That is typically done by convolving the UV data with a
gridding function; the smoothing effect of the convolution is welcome because the
individual visibilities are noisy samples of a locally smooth distribution. In order
to avoid information loss, the grid spacing needs to be at least Nyquist sampled,
and preferentially by a factor of two finer (for a smoother gridded image). The
grid extend must be at least two times larger than the useful field of view to avoid
folding back part of the valuable image information onto itself.
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With the inverse Fourier transform, the image corresponding to the UV data
can be obtained. This image is called “dirty image” for a good reason: It shows
positive and negative structure, and an integral of zero. Clearly, this data needs
further treatment before it can be interpreted scientifically. One possibility is
the fitting of UV models to the visibilities; in this case a careful study of the
fit residuals is necessary but the resulting fit parameters have well-defined errors.
The alternative is image restoration: the image is deconvolved, but then convolved
again with an appropriate elliptical Gaussian beam.

In order to perform the deconvolution step, the instrumental point spread func-
tion (PSF) needs to be known. In radio interferometry this is the Fourier transform
of an ideal point source, seen through the UV tracks of the real observation and
thus precisely known. It has the same inconveniences as the observed image (zero
integral, positive and negative structure) and is therefore named “dirty beam”.
Numerous techniques exist to obtain a deconvolved solution.

The most popular algorithm for the deconvolution and restoration of interfer-
ometer maps is CLEAN (Högbom 1974). It decomposes the source into a number
of point-like components; its steps can be summarised as follows:

1. Deconvolution: First, set the residuals map to the dirty map, reset the list
of point source components to zero, and choose a loop gain γ = 0.1 ... 0.3
that stays the same during the following steps.

2. Identify the maximum absolute value ‖Imax‖in the residual map.

3. Add γ · Imax and its position to the list of point source components.

4. Subtract γ · PSF at this position from the residual map.

5. Go back to point (2) until the convergence criterion is reached. This can be
the maximum number of iteration, a relative noise level expressed in terms
of the maximum of the map, or an absolute noise level.

6. Restoration: The obtained result needs to be convolved with a clean beam,
which is defined by fitting an elliptical Gaussian to the central part of the
PSF. On scales smaller than the clean beam the deconvolution may create
artifacts (no free “super resolution”), and this convolution will remove them.

7. Add the residual map to the clean map. This step is essential to allow noise
estimates, and allows to reduce the effect if the cleaning was not deep enough.

It must be clearly stated that the result will be ambiguous and won’t have a well-
defined error estimate, but it will be closer to the real source structure than the
dirty image and therefore a better basis for scientific analysis.

An important feature is to allow negative point source components. They can
either appear as intermediate steps in the iteration, or can be a real part of the
source structure if there is an absorption against an extended background emission
(which may have been suppressed due to the spatial filtering). It is typically a
good idea to keep track of the cumulative flux of positive and negative point source
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Fig. 7. Top row: UV coverage of a 5-antenna configuration, and the resulting dirty image

of a point source. Bottom row: cleaned image (left) and residuals of a point source fit to

the phase centre.

components during the iterations: if it reaches a stable level it is a good indicator
that the deconvolution has converged. If it starts to oscillate strongly or diverges,
the convergence criteria need to be adjusted.

It is possible to observe sources with an interferometer that are more extended
than the primary beam of the individual antennas. In this case, the whole in-
terferometer observes repeatedly a grid of pointings called “mosaic” on the sky
(again, Nyquist sampling should be used). This technique allows to obtain several
fields of view under comparable conditions. In this case it is necessary to obtain
information on UV spacings shorter than the interferometer provides. This can
be done with single dish observations and (if possible) with observations by an
interferometer composed of smaller antennas, otherwise extended source structure
will be missed. Already if the source is larger than 1/3 of the primary telescope
beam, its interferometer map starts to be affected. Fortunately IRAM operates
not only an interferometer but also a large (30-m) single dish telescope that allows
to obtain zero spacing observations in an uncomplicated way.
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Variants of CLEAN exist that address particular problems, sometimes in the
context of overlapping multiple maps (Mosaics) or with an improved restoration of
extended structure (see Schwab 1984; Steer et al. 1984; Wakker & Schwarz 1988
and Cornwell 2008). Maximum entropy methods (see Richardson 1972; Lucy 1974;
Narayan & Nityananda 1986) are often not well adapted to cases where negative
values are present in the dirty map. Their use may only be attempted if the dirty
beam is nearly Gaussian.

6 Conclusion

Advances in signal transport, receiver and computer technology are important
cornerstones of today’s knowledge in millimetre astronomy. While the data ac-
quisition and interpretation are less direct than for optical observations and re-
quire some experience, modern radio observatories provide an important support
(pipeline-reduced data, local contact astronomers) for the scientists who want
to use these tools. Over the Internet sites of many observatories (in the case
of IRAM, http://www.iram-institute.org), astronomers can obtain the latest
information on the further evolving instrumental capabilities and download dedi-
cated data processing software. There still remain many secrets to be discovered
beyond our planet, sometimes they are just one large step in observing frequency
away.

The interferometric imaging, deconvolution and restoration sections of this article discuss mate-
rial that was presented in much greater depth by J. Pety and F. Gueth in the context of the 7th
IRAM Interferometry school (2010) (http://www.iram-institute.org/EN/content-page-212-
7-67-182-212-0.html).
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SMOS-NEXT: A NEW CONCEPT FOR SOIL MOISTURE
RETRIEVAL FROM PASSIVE INTERFEROMETRIC

OBSERVATIONS

Y. Soldo1,2, F. Cabot1,2, B. Rougé2, Y.H. Kerr1,2, A. Al Bitar1

and E. Epaillard1

Abstract. Present soil moisture and ocean salinity maps retrieved by
remote sensing are characterized by a coarse spatial resolution. Hydro-
logical, meteorological and climatological applications would benefit
greatly from a better spatial resolution. Owing to the dimensions of
the satellite structure and to the degradation of the instrument’s radio-
metric sensitivity, such improvement cannot be achieved with classical
interferometry. Then, in order to achieve this goal an original concept
for passive interferometric measurements is described. This concept
should allow to achieve a much finer spatial resolution, which can be
further improved with the application of disaggregation methods. The
results will then allow the integration of global soil moisture maps into
hydrological models, a better management of water resources at small
scales and an improvement in spatial precision for various applications.

1 Introduction

During the last decades the need for a global estimation with high temporal reso-
lution of key environmental variables such as soil moisture and ocean salinity has
grown greatly (Robock et al. 2000; Dai et al. 2004; Roemmich et al. 2000).

Satellites represent the best mean for satisfying such need, and several instru-
ments have been launched onboard European and American satellites with the
intent of retrieving large-scale soil moisture and ocean salinity maps.

These instruments are based on different principles. They may involve ra-
diometers (Njoku et al. 2003), scatterometers (Bartalis et al. 2007), interferomet-
ric radiometers (Kerr et al. 2001), or they may rely on both passive and active
elements (LeVine et al. 2007; Entekhabi et al. 2010).
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Fig. 1. Characterization of spatial and temporal scales for hydrological models and

disaggregated remote sensed data.

Although different technologies were adopted, all these instruments are limited
by a spatial resolution of few tens of kilometers.

In order to be able to make use of these data in hydrological models, and for
many other applications, like the survey of water resources at the scale of irrigated
zones, a better spatial resolution must be achieved, typically it should be improved
by an order of magnitude.

To assure continuous monitoring of soil moisture and ocean salinity, while at-
taining an unprecedented fine spatial resolution, an original concept was proposed
in Cabot et al. (2012) and Kerr et al. (2010), which aims at achieving a spa-
tial resolution of few kilometers while maintaining roughly the same radiometric
resolution.

2 The need for high spatial resolution

The management of water resources is already, and will be even more in the future,
a critical issue (Alcamo et al. 2000; Döll et al. 2003). Properly dealing with this
issue cannot be done without a deep understanding of the processes involved in
the water cycle, which are studied using hydrological models.

Temporal and spatial scales can vary significantly from one model to the
other depending on the processes they focus on. However, by improving the spa-
tial resolution, the interaction between remotely sensed global soil moisture maps
and hydrological models will be more effective and will result in an improved
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environmental knowledge. Figure 1 shows how disaggregation of SMOS-NEXT
retrievals will result in a better cooperation with hydrological models.

Combined with weather models, remotely sensed global soil moisture maps
can help achieve more accurate forecasting predictions, as well as to assess the risk
for fires or floods on specific areas. Storms or heavy precipitations are of course
more likely to cause floods over moist soils, and winds over very dry soils will
increase the risk for fires.

Over ocean, the salt content will be retrieved. Indeed, ocean salinity’s annual
and inter-annual variations are crucial for monitoring and understanding of climate
and climate changes, as they influence ocean currents and water evaporation from
oceanic surfaces. A better resolution will improve the capability to follow in more
details how currents vary with time as well as how river plumes interact with these
oceanic currents.

Other than the nominal uses, SMOS has proved to be a versatile satellite,
as its data has been used also for applications like wind speed estimation inside
tornadoes (Grodsky et al. 2012) or the monitoring of the extent of sea ice sheets
(Kaleschke et al. 2012). Naturally all these applications will benefit from a finer
spatial resolution.

3 Operating frequency and spatial resolution

The maximum sensitivity to both soil moisture and ocean salinity is close to
the protected 1400–1427 MHz band, and atmospheric disturbances are negligi-
ble at these frequencies (Wigneron et al. 2000), thus for a passive instrument
like SMOS-NEXT, this wave band is clearly the best choice in term of operating
frequency.

Even though artificial emissions are forbidden in this band to allow passive
observations of both Earth and sky (ITU Radio Regulations 1996), after the first
SMOS’ data retrievals, the presence of contaminating unlawful sources was noticed
(Anterrieu & Khazaal 2011), so a strategy has been developed to deal with these
radio frequency interferences that should provide a cleaner signal. The detailed
description of this strategy is out of the scope of this contribution.

Once the operating frequency has been fixed, there are only two other param-
eters that define the spatial resolution (Rs)

Rs =
Hλ

d
(3.1)

H , the satellite altitude, and d, the diameter of the equivalent real aperture an-
tenna, that in our case is equal to the maximum baseline (λ is the wavelength of
the central operating frequency).

The spatial resolution could be improved by reducing the altitude of the satel-
lite. However, the choice of altitude is also driven by constraints linked to the width
of the swath and to the density of the atmosphere which determines the fuel con-
sumption, and hence the weight at launch. All similar missions are orbiting, or
are planned to orbit, at altitudes of about 700 km, so it is safe to assume that a
similar value will be chosen.
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Fig. 2. Interdependence between spatial resolution and radiometric sensitivity; SMOS’

maximal baseline is already close to the optimal trade off.

Consequently, the only way to improve the resolution is to increase the length
of the baselines.

However, longer baselines means bigger surfaces of the equivalent real aperture
antenna, and that is detrimental to the radiometric resolution (ΔT ) (Camps et al.
1998) according to:

ΔT = A
TA + Trec√

Bti

√
NV (3.2)

where A is the pixel area, TA is the antenna temperature, Trec is the receiver
temperature, B is the spectral bandwidth, ti is the integration time interval and
NV is the number of points sampled by the array in the Fourier domain.

To improve the spatial resolution by an order of magnitude means to have
baselines ten times bigger. For SMOS this would lead to three 40 m long arms,
which represents obvious feasibility difficulties. Moreover, as the spatial resolution
vary linearly with d, the radiometric resolution is proportional to the square of d,
through NV (for a Y-shaped instrument NV = 6N2

el+6Nel+1, with Nel the number
of receivers per arm); hence longer baselines would lead to a loss of radiometric
sensitivity, which is unacceptable with respect to the very stringent requirements
for oceanic observations (Berger et al. 2002).

Because of this relation between spatial resolution and radiometric sensitivity,
this classical approach can hardly lead to the improvement of one without the
degradation of the other (see Fig. 2).
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Fig. 3. Principle of spatio-temporal aperture synthesis: the phase differences are due to

the difference in space and time between antennas.

4 Spatio-temporal interferometry

In order to improve the spatial resolution while maintaining roughly the same
radiometric resolution, an original solution was proposed in Cabot et al. (2012)
and Kerr et al. (2010). It consists in using observations made by a set of antennas
at different times. The temporal coherence of a signal with spectral bandwidth B
is defined as:

τ =
1
B
· (4.1)

With a fine filtering it is possible to select bandwidths as small as 100 Hz, which
results in coherence time of 0,01 s. At the orbital speed, the satellite travels, within
the coherence time, a distance of 75 m, i.e. more than what it is required for a
snapshot.

In this condition it is possible for the satellite to observe at two different times,
two signals that are coherent with one another. Based on this principle, that was
studied to depth in Braun 2011, SMOS-NEXT would be a 1-D interferometric
radiometer, whose second dimension is given by the movement of the satellite on
its orbit. In other words, signal acquired by the i− th elementary antenna at the
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instant t0 would be correlated (also) to the acquisitions of the same antenna at
later times t0 + Δt (Fig. 3).

In this way the relation between spatial and radiometric resolution is less
strict and it is possible to meet the requirements for both.

In fact with the elementary antennas along the arm and the satellite’s motion,
a set of both real and virtual antennas (i.e. real antennas at later times) is created,
and while the spatial resolution is assured by the baselines in the two directions
(along the satellite’s arm and along the movement of the satellite), the radiometric
resolution is only function of the real elementary antennas along the arm.

5 Preliminary design

SMOS-NEXT requires long physical baselines. But a satellite with three 40 m
long arms disposed in a Y-shape is not a technologically realistic solution for the
time being. Nevertheless it is possible to launch and deploy on orbit a single
40–45 m long arm. This is one of the two design options considered today, the
other solution consisting in two satellites flying in formation.

Both solutions represent technical difficulties but the second one would imply
a spatial resolution that depends on the relative distance between the satellites,
which shortens at high latitudes, when the orbital planes cross. So we will consider
only the first solution here on.

From the satellite’s altitude, we can calculate its mean velocity:

Vsat =
√

μ

a
(5.1)

where μ is the standard gravitational parameter equal to 398 600 km3 s−2, and a
is the semi-major axis of the orbit. For a circular orbit and an altitude of 700 km,
Vsat is roughly equal to 7500 ms−1.

The arm will be filled with elementary antennas spaced, as for SMOS, by
0,875 wavelengths. If the maximum redundancy configuration is chosen the total
number of antennas will be roughly 250.

Sampling frequency (Fs) will be such that the spacing between real and virtual
antennas (Δsantennas) is at least equal to the spacing between real antennas,
that is:

Fs ≥
Vsat

Δsantennas
=

7500 ms−1

0, 875λ
=

7500 ms−1

0, 875 · 0, 21 m
≈ 40 kHz. (5.2)

A snapshot is then defined as the sequence of acquisitions that the satellite makes
in a time interval corresponding to a displacement of about 45 m. The time interval
required for the satellite to cover this distance (0,006 s) must be lower than the
coherence time for the chosen bandwidth (0,01 s). Each snapshot will then be
composed by 240 or more acquisitions.



Y. Soldo et al.: SMOS-NEXT 209

6 Cross-correlations between antennas

The expression of an electromagnetic signal for a set of virtual and real antennas
can be expressed in function of time and space as in:

S0(s, ν)
ρ(s)

= e−2jπν(t− ρ(s,t)
c ) (6.1)

where S0 is the electromagnetic signal, ν is the signal’s frequency, ρ(s, t) is the
source-antenna distance, t is the time and s indicates the source’s position.

Under the assumption that sources are spatially incoherent the cross-correlations
between the two electromagnetic fields at the antennas’ positions can be written
as

〈S0(s, ν)S∗
0 (s, ν)〉e

−2jπν(t1− ρ1(s,t1)
c )

ρ1(s)
e−2jπν(t2− ρ2(s,t2)

c )

ρ2(s)
(6.2)

where indexes 1 and 2 indicate the two antennas.
Even though the source-antenna distance varies with time due to Earth’s

oblateness and orbital ellipticity we can consider it independent from time during
a snapshot.

If we consider the case in which 1 and 2 represent the same antenna at different
times, then we have:

〈S0(s, ν)S∗
0 (s, ν)〉e

−2jπν(t1− ρ1(s,t1)
c )

ρ1(s)
e−2jπν(t1+Δt− ρ2(s,t1+Δt)

c )

ρ2(s)
(6.3)

〈S0(s, ν)S∗
0 (s, ν)〉e

−2jπν(t1− ρ1(s,t1)
c )

ρ1(s)
e−2jπν(t1− ρ2(s,t1+Δt)

c )

ρ2(s)
e2jπνΔt· (6.4)

We have then obtained the expression of the van Cittert-Zernike theorem multi-
plied by an exponential term.

In fact the term 〈S0(s, ν)S∗
0 (s, ν)〉 is simply the intensity of the electromag-

netic radiation of the source, noted TB, and by applying the far field approximation
and the quasi monochromatic approximation, the product of the phase terms can
be expressed as a function of the direction cosines (ξ,η) as follows:

e−2jπν(t1− ρ1(s,t1)
c )ρ1(s)e−2jπν(t1− ρ2(s,t1+Δt)

c )ρ2(s)
ρ1(s)ρ2(s)

� e−2jπν
(d1ξ+d2η)

c · (6.5)

Integrating over the observation area we have:

V =
∫∫

ξ2+η2<1

TB(ξ, η)√
1− ξ2 − η2

e−2jπν
(d1ξ+d2η)

c e2jπνΔtdξdη = (6.6)

= e2jπνΔt

∫∫
ξ2+η2<1

TB(ξ, η)√
1− ξ2 − η2

e−2jπν
(d1ξ+d2η)

c dξdη (6.7)
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Aside from the term e2jπνΔt, in this expression the visibility (V ), corresponding to
the cross-correlation between antennas, is expressed as the two-dimensional Fourier
transform of the so-called modified brightness temperature map of the source,
which is the brightness temperature divided by the obliquity factor

√
1− ξ2 − η2

(Camps et al. 1998).
So far we only considered the central frequency of the signal. The integration

of (6.7) on the filter’s bandwidth (B) can be written dropping the double integral
since it is independent from frequency.

ν+B/2∫
ν−B/2

e2jπνΔt = e2jπνΔtsinc(B
uξ + vη

ν
) (6.8)

where
sinc(B

uξ + vη

ν
) = r̃(ξ, η) (6.9)

is called the Fringe Washing Function. By integrating 6.8 and 6.9 in 6.7 we obtain

= e2jπνΔt

∫∫
ξ2+η2<1

TB√
1− ξ2 − η2

r̃e−2jπν
(d1ξ+d2η)

c dξdη. (6.10)

As soon as we consider real antennas, their radiation patterns (F (ξ, η)) and their
corresponding solid angles (Ω) must be taken into account. In the case under study
(same antenna, different times) the final expression is then written as follows

V = e2jπνΔt

∫∫
ξ2+η2<1

F (ξ, η)∗F (ξ, η)
Ω(ξ, η)

TB(ξ, η)√
1− ξ2 − η2

r̃e−2jπν
(d1ξ+d2η)

c dξdη (6.11)

where F ∗(ξ, η) represents the complex conjugate of F (ξ, η).

7 Detemporalization

Previously we made the choice of selecting a 100 Hz band. Even though possible,
this solution represent technical difficulties, and in order to use wider range of
the protected band several bandwidths of this amplitude would be needed, thus
multiplying the quantity of information to be downlinked to the ground stations.

A different approach is therefore proposed. It consists in using larger band-
widths and applying a temporal shift to the signal received by one of the antennas.

This approach is called detemporalization.
This is implemented by multiplying by e−2jπνΔt the phasor describing the

electromagnetic field at time t2 that appear in the precedent expression. Follow-
ing the same development, we obtain hereafter the expression for the visibility
function:

V =
1
Ω

∫∫
ξ2+η2<1

F ∗F
TB√

1− ξ2 − η2
r̃e−2jπν

(d1ξ+d2η)
c dξdη. (7.1)
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That is the fundamental relationship between visibility and brightness temperature
used for SMOS, before considering the effects of antenna radiation patterns, and
before integration with respect to the frequency.

8 Disaggregation

This information on ground will then provide brightness temperature global maps,
and using several observations the soil moisture can be retrieved. The spatial
resolution of these maps will be, using the data explicated above:

Rs =
Hλ

d
< 4 km. (8.1)

This result represents a significant improvement with respect to the data available
for the time being, but still it is not sufficient for integration with the hydrological
models. In order to do so, this data needs to be downscaled further. Disaggre-
gation methods allow downscaling of soil moisture microwave measurements, by
making use of the knowledge of the evaporative fractions over specific areas, that
are retrieved by optical, near-infrared or thermal infrared measurements (Merlin
et al. 2008).

9 Conclusions

The objective of improving the spatial resolution of soil moisture and ocean salinity
maps by an order of magnitude can be achieved with the use of a long baseline
spatio-temporal interferometer.

The detemporalization technique was then introduced to ease the technical
constraints of such instrument.

The resolution obtained is not yet sufficient for the implementation in hydro-
logical models and in future weather models, in which the spatial resolution will
be improved. Then disaggregation methods can then be used to downscale further
space borne microwave soil moisture retrievals.

Theoretical studies have been conducted to study the principle of the spatio-
temporal aperture synthesis, and experimental campaigns are going to be carried
out in the near future.
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FORMATION, SIMULATION AND RESTORATION
OF HYPERTELESCOPES IMAGES

D. Mary1, C. Aime1 and A. Carlotti2

Abstract. This article first provides a historical and detailed introduc-
tion to the image formation models for diluted pupils array and their
densified versions called hypertelescopes. We propose in particular an
original derivation showing that densification using a periscopic setting
like in Michelson’s 20− foot interferometer, or using inverted Galilean
telescopes are fully equivalent. After a review based on previous refer-
ence studies (Tallon & Tallon-Bosc 1992; Labeyrie 1996; Aime 2008 and
Aime et al. 2012), the introductory part ends with a tutorial section for
simulating optical interferometric images produced by cophased arrays.
We illustrate in details how the optical image formation model can be
used to simulate hypertelescopes images, including sampling issues and
their effects on the observed images.

In a second part of the article, we address the issue of restoring
hypertelescope images and present numerical illustrations obtained for
classical (constrained Maximum Likelihood) methods. We also pro-
vide a detailed survey of more recent deconvolution methods based
on sparse representations and of their spread in interferometric image
reconstruction.

The last part of the article is dedicated to two original and numer-
ical studies. The first study shows by Monte Carlo simulations that
the restoration quality achieved by constrained ML methods applied
to photon limited images obtained from a diluted array on a square
grid, or from a densified array (without spectral aliasing) on a grid,
are essentially equivalent. The second study shows that it is possible
to recover in hypertelescopes images quasi point sources that are not
only far outside the clean field, but also superimposed on the replicas
of other objects. This is true at least for the considered pupil array
and in the limit of vanishing noise.
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1 Introduction

The History of Science is that of a continuous quest for a better understanding of
Nature. In particular, the history of Astronomy reflects the breakthroughs which
have lead to our modern conception of the Universe.

As researchers, the participants of the Fréjus School are probably all aware of
the uncountable efforts that must be spent on various tasks − huge bibliographical
studies, long and difficult theoretical calculations or ultra sensitive, and thus ultra
irritating instrumental experiments − in order to obtain a single useful, correct
and well understood result. These efforts constitute an invisible but necessary
sand, which is paved by the bright success stories published in the official History
of Sciences.

Success stories often exert on researchers the ambiguous attraction of perfect
things: their essence is so bright, exemplary and rare that it appears often dis-
couraging, not to say ridiculous, to imagine any comparison between such major
achievements and research of its own. On the other hand, these stories tell us that
research efforts need to sum up substantially before major works really happen to
culminate. Besides, past successes constantly diffuse, as a constant background
Moon for research groping in the darkness, a faint light of scientific glory that
shines down into the deepest and most obscure offices of every research labora-
tory. We start with two such stories, which are connected to the topics of this
article, Hypertelescopes.

One of the fundamental concern of Astronomy, of which we can find traces in
Mesopotamian, Egyptian, Greek and Arabic Astronomy, is that of high angular
resolution. A higher resolution of celestial objects means that the objects can
be better understood because they are better seen. High resolution once allowed
Mankind to discover that the celestial objects change and move. But Mankind had
to wait a very long time before it was able to prove by observations that planets do
not move in perfect circles, and that stars are not fixed on an hypothetic celestial
sphere beyond which, as Aristotle once wrote, nothing shall exists, not even space
or time. This brings us to our first story.

Probably because his own observations of the stars’ positions relatively to each
other did not match those of his predecessors, and because he had guessed that
stars’ positions and magnitudes could be variable3, the Greek astronomer and
mathematician Hipparchus (2nd Century BC) collected the positions and apparent
magnitudes of about a thousand stars. This catalogue, which constitutes one of the
most audacious legacy to future research, was transmitted to Arabic and European
astronomers via copies of the Almagest of Ptolemy.

This major book4 was written four centuries after Hipparchus’ time, in the 2nd

Century AD. After the prestigious, several-century-old Library of Alexandria was

3According for instance to Halley (1715).
4Ptolemy’s geocentric model of the Universe, using spheres and epicycles, was based on pre-

vious models from Eudoxus of Cnidus (4th Century BC), Appolonius of Perga (3rd Century BC)
and Hipparchus. This model constituted the standard model and was continuously made more
complex until N. Copernic (1473-1543).
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definitively destroyed, the Almagest was copied, studied and enriched in various
places and epochs during one millenium, from the new capital Constantinopolis of
the Orient Roman Empire, through Arabic observatories as Maragha or the active
translation centers of Andalousia.

Quite a few years after Hipparchus’ times − in the 1710 s − the British as-
tronomers Halley and Flamsteed could show, by comparing their observations to
those of Hipparchus, that the position of Sirius in the sky had moved (by proper
motion) of an angle of about one lunar diameter since the Hellenistic period (as well
as Arcturus and Aldebaran (Mignard & Martin 1997)). After almost 2000 years,
Hipparchus had won his bet: his observations had finally served his successors in
proving facts he could only suspect. Patient and repeated high angular resolution
observations eventually forced the minds to open on a Universe totally different
from what the most brilliant scientists of the Antiquity could imagine.

The history of Hipparchus’ catalog is not a success, it is an absolute and multi-
ple triumph. First, contributing to the observational evidence that stars could be
moving and variable was bringing strong arguments against the old vivid idea that
they were inherently immobile and ever lasting; this discovery had deep, cosmo-
logical and philosophical implications about the size and nature of the Universe.
Second, the careful attention paid by each link of this long chain to the knowl-
edge of his predecessors (Hipparchus to the Mesopotamian tables, Ptolemy to
Hipparchus, Al-Tusi, many other Arabic astronomers, Halley and Flamsteed to
Ptolemy) examplifies how new science may succeed in building carefully on the
experience of the past. Third, the project realized by Hipparchus with his cat-
alogue comes as a striking remembrance that research thought in the long term
(several centuries in this case) is not necessarily wasted research.

The second story is also about breakthroughs in experimental high angular
resolution and about progressive accumulation of knowledge. It starts one day
of 1868, at the Academy of Sciences in Paris, where H. Fizeau reports about a
treatise on the “directions of ether vibrations in polarized light”.

At the end of his reading, Fizeau mentions that interference fringes can arise
from two interfering apertures only if the source has a very small angular dimen-
sion. “Hence”, Fizeau pursues, “to mention this briefly, we might hope that by
using this principle, and by forming, for instance by means of two large separated
slits, interference fringes in the focal plane of instruments aimed at observing stars,
it might become possible to obtain some new insights on the angular diameter of
these stars”5 (Fizeau 1868). The name of the author of the treatise reported by
Fizeau was covered, and it is not reported in the Comptes-Rendus of the Academy.
The treatise was deposed under the title: Sine experientia nihil sufficienter sciri
potest − without experience, nothing can be known sufficiently.

Five years later, in a letter to Fizeau communicated by the same Academy,
É. Stephan (1874) textually recalls Fizeau words quoted above, in which he rec-
ognizes “a totally new path that might lead to results otherwise inaccessible to

5The english translation is ours.
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the methods currently available in Astronomy”. He formalizes the principle of the
corresponding experiment and reports the first tentative measurements of the di-
ameter of Sirius (undertaken at Marseille). The following year, in 1874, Stephan re-
ports to the same assembly extensive measurements from which he concludes that
all observed stars have diameter (much) less than 158 milliarcseconds (158 mas,
Stephan 1874). These experiments were achieved by placing two slits on an 80 cm
aperture telescope. Fizeau’s 1868 comment had lead to the first generation of
stellar interferometers.

As early as in the 1880 s, A. Michelson had used an interferometer of Fizeau’s
type to measure the diameters of four satellites of Jupiter (≈100 mas, Michelson
1891). But according to Michelson later on, the method was not tested on stellar
objects for the thirty following years, probably for two reasons. First, the success of
such experience was supposed to require ideal seeing conditions. Second, diameters
of the order of 10 mas would have required a distance between the apertures of
10 meters or more − a size entirely out of question at that time (Michelson 1920).

In 1919 however, A. Michelson discovers by tests that fringes can be obtained
even with bad seeing conditions (Michelson 1920); and J. Anderson manages in
1920 to measure the separation of two components of Capella’s system (54 mas)
on a 100−inch (2.5 m) reflector (Anderson 1920). Stimulated by these results,
Michelson proposes in the same article to use a setting that is similar to that of
Fizeau, but where a periscopic mounting is introduced. In this Michelson stellar
interferometer, the holes or slits of the Fizeau-Stephan mask are replaced by aper-
tures that can be moved on the same mounting, allowing much larger separations
than Fizeau’s setting. The apertures’ beams are redirected on a smaller telescope,
in the focal plane of which the interferences fringes appear.

The experimental discovery that relatively steady fringes could be obtained,
along with the successes of the experiments of 1920 led to the building of the famous
20−foot (about 6 m) Michelson stellar interferometer at Mount Wilson. This
second generation interferometer allowed to determine the diameter of Betelgeuse
as 47 mas, within 10% (Michelson 1921).

About 50 years later, at the Observatory of Nice, a third generation of in-
terferometers appeared when A. Labeyrie obtained for the first time, using two
independent telescopes separated by 12 m, optical interference fringes on Vega
(Labeyrie 1975). This experimental success ignited the modern developments of
optical high angular resolution interferometry, whose most exploited instruments
are today the Very Large Telescope Interferometer (VLTI) in Chile and the Cen-
ter for High Angular Resolution Astronomy (CHARA) array at Mount Wilson.
These systems allow to create interference fringes from 4 to 6 independent tele-
scopes, which are cophased pairwise.

The high angular resolution optical systems described in this paper inherit from
the characteristics of the stellar interferometers mentioned above, of which they
constitute a further evolution. These systems use a possibly very large number
of apertures (an array), which are simultaneously cophased. The interference
pattern of the whole array is recorded so as to allow direct imaging of the objects.
They can be used either in Fizeau mode (in which case the array can be seen
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as a huge masked aperture) or in Michelson mode (where the relative size of the
apertures is changed with respect to their separation by the periscopic setting, a
process called subpupil densification). Densification can also be obtained by using
inverted Galilean telescopes. Hypertelescopes (Labeyrie 1996) refer generically to
densified interferometers.

Our second story, which started in 1868, is thus not over yet. Actually, it even
reaches a critical point because next generation high angular resolution interfer-
ometric arrays are currently subject to in in depth comparative studies. These
studies will allow to choose which observing technology should be pushed in the
next decades.

Three main types of next generation optical interferometric arrays emerge, the
apertures’ number and configurations of which will tend to be similar to current
radioastronomical arrays (see M. Bremer’s article on radiointerferometry in these
proceedings). First, a direct extension of the VLTI system: few (possibly ex-
tremely) large telescopes that remain relatively compactly disseminated (in the
102 m range). Second, few relatively large (8 m) telescopes separated by kilo-
metric distances. Third, a large number (in the hundreds) of small telescopes
disseminated on kilometric distances.

In the three cases, such optical systems are expected to reduce our uncertainty
and maybe to solve questions whose cosmological and philosophical implications
are comparable to those evoked at the beginning of this Introduction. The first of
those is the existence of life in distant stellar systems, but many other fields can
reveal important discoveries, like stellar physics (through spatio-spectral studies
of their atmospheres), or Active Galactic Nuclei (see on these issues the articles
of A. Labeyrie, D. Mourard, M. Hadjara and J. Kluska in these proceedings).

The paper continues with issues and topics that are also echoed in several other
articles of this volume. Section 2 describes more precisely the differences in the
optical models of Fizeau and hypertelescopes configurations. We address in this
section Michelson’s periscopic interferometer. The Appendix derives the densifi-
cation operated by inverted Galilean telescopes, and uses for that purposes results
from the theory of light propagation that are detailed in the article of Aime in
this Volume. Section 3 can be seen as a tutorial to numerically simulate these
systems. Section 4 turns to methods aimed at improving the images recorded in
the focal plane of such instruments, and proposes a survey of restoration methods
based on sparse representations. Articles of these proceedings connected to op-
timization issues arising in image restoration are those of M. Bertero, C. Theys,
and É. Thiébaut. A substantial part of A. Bijaoui’s article is in addition dedicated
to methods based on sparsity. Section 5 proposes a comparison of Fizeau versus
hypertelescopes configurations in a specific case. Section 6 presents original sim-
ulations aimed at detecting an object that is small, faint, and far from a central
object. The last section summarizes and concludes the paper.

2 The Fizeau and hypertelescopes configurations

In a Fizeau configuration, the ratio between the distance between any subpupil
and their diameter is the same for the input and the output pupil (input and
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output pupils are homothetic). In hypertelescopes this ratio is allowed to change.
This is illustrated in Figure 1. In the hypertelescope configuration using inverted
Galilean telescopes, the diameter of the output pupils is magnified relatively to
their separations, which remain unchanged. In the “periscopic Michelson” hyper-
telescope configuration, the diameters are unchanged but the relative separation
is smaller. Indeed, all three configurations are unchanged by applying a global
arbitrary scaling factor.

Fig. 1. Illustration of Fizeau (top) and hypertelescopes (bottom) configurations.

We will consider in this paper that the subpupils are all the same: circular, with
diameter D. We will also consider that the atmospheric turbulence is negligible,
and that the plane wave is monochromatic with wavelength λ.

We shall now see for both systems how we model the intensity distribution
in the focal plane (the Image) that is obtained from a given celestial scene. The
perfect (geometric) image of the celestial scene is called the Object. This section
considers the continuous model (spatial and frequency variables are continuous).
The discrete setting comes into play when images are sampled, and in numerical
simulations of optical systems. Discretization will be addressed in Section 3.

The synthesis proposed below is a summary of Tallon & Tallon-Bosc (1992),
Aime (2008) and Aime et al. (2012), papers to which we refer for a detailed
treatment of the periscopic Michelson mode. The hyperterlescope mode using
inverted Galilean telescopes is detailed in the Appendix and leads to the same
results.

2.1 Fizeau configuration

The image formation mechanism in Fizeau mode is described by the general and
standard equations of convolutional optics. The Point Spread Function
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(PSF, denoted by R) in its normalized form (i.e., summing to one) can be written
as a function of the angular coordinates β(βx, βy) on the sky as:

R(β) =
1

Sλ2

∣∣∣∣P̂ (
β

λ

)∣∣∣∣2 , (2.1)

where superscript ̂ denotes the Fourier Transform (FT), P̂ (β
λ ) is the scaled FT

of the telescope aperture transmission P (r) with r(rx, ry) the vector of position,
λ is the light wavelength, S is the total surface of the telescope aperture. As
for classical (monolithic) telescope, the cophased optical system acts as a linear
(bandpass) filter in the Fourier space. The transfer function T of this filter is the
FT of the PSF. By the Wiener-Kintchine theorem, T corresponds to the spatial
autocorrelation function of the input diluted pupil. If we denote by u(u, v) the
angular frequency vector, the normalized optical transfer function (OTF) T (u) is
defined by

T (u) =
1
S

∫ ∫
P (r)P ∗(r − λu)dr. (2.2)

The Object-Image relation, relating the object O to the image IF in the Fizeau
mode, is a convolution in the direct space

IF (β) = O(β) � R(β)︸ ︷︷ ︸
Angular Convolution

, (2.3)

and a multiplication in the Fourier space

ÎF (u) = Ô(u) T (u) .︸ ︷︷ ︸
Frequency Filtering

(2.4)

Let us have a close look at the structure of the transfer function in the case of a
diluted pupil composed of K subpupils of diameter D. In this case, the normalized
OTF of each subpupil T0(u) (see Eq. (7.8)) corresponds to the autocorrelation
function of a disk, which is sometimes called a “chinese hat” function. The support
of T0(u) is a disk of diameter 2D/λ.

Let the centers of the K subpupils be at spatial positions rk, k = 1, . . . , K.
The autocorrelation function of the centers defines a set of central frequencies
ukl = (rk − rl)/λ. The optical system composed of the diluted pupil samples
frequencies located within a disk of radius 2D/λ around the central frequencies
ukl. The transfer function of the diluted pupil can thus be written as

T (u) = T0(u) +
1
K

K∑
l=1

K∑
k �=l

T0(u− ukl), (2.5)

where the double sum collects the contributions around the frequencies ukl, k �= l.
The Fizeau image has frequency content

ÎF (u) = Ô(u)T (u) = Ô(u) T0(u) +
1
K

K∑
l=1

K∑
k �=l

Ô(u) T0(u− ukl). (2.6)
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The image IF formed in the focal plane of a Fizeau interferometer is the inverse
FT of (2.6). Clearly, a lot of information about O is missing in IF because a
lot of frequencies are zero in ÎF (u). While for monolithic telescopes the missing
frequencies are the high frequencies (at low frequencies, the transfer function has
no “hole” or zero value), for a diluted pupil the Fourier coverage may present
voids in any frequency region. In the Fourier space, the transfer function may be
seen as an “archipelago of emerged islands” in the middle of a black sea where no
measurement is available (see Fig. 2, bottom images).

Here appears an aspect that is crucial for the comprehension of this problem:
we see precisely what IF is missing to be O. This calls for five remarks.

– 1. For a given frequency sampling (i.e. for a given pupil array) the problem
of recovering O is both an interpolation and an extrapolation problem in
the Fourier space. This suggests that the image restoration methods can be
designed, or least interpreted, as methods controlling the way the voids of
the Fourier space are filled in, while preserving the observed frequencies.

– 2. The restoration quality will be object- and sampling- dependent. To see
this, imagine two objects observed via the same pupil array (fixed sampling).
Assume the first object has the most energetic part of its frequency content
in the support of T (u), while the most energetic part of the second object
falls in the “sea” (that is, outside the support of T (u)). Clearly, this array is
good for the first object but bad for the second, or the first object is good for
this sampling but not the second object. This dependance is true in general
but fortunately, it cannot be arbitrarily uncontrollable. The reason is that
most natural objects have their frequency contents mostly located at low
frequencies. Hence, ensuring a fair coverage at low frequencies guarantees
that at least some useful information will be sampled for most objects.

– 3. To best sample the object we would like to maximize the Fourier coverage
of the pupil array (or, to refer back to our image, to minimize the area of
the black sea). Hence, for a fixed number K, we would like to maximize
the frequency support of T (u) (ignoring the effects of noise). This leads to
configurations that are called non redundant (Kopilovich & Sodin 2001): no
spatial frequency is sampled more than once (expect from the 0 frequency).

– 4. How many objects have the same frequency contents as that of IF ? Re-
mark that any object that has, outside the zero frequency, frequency content
only “in the sea”, that is, outside the support of T (u) create a totally flat
(constant) image. Stated differently, this means that not only O leads to
the observed image IF , but also scaled versions of O plus any object that
has frequency content outside the support of T (u). This shows another very
important point regarding the restoration we can hope to make from IF : if
we make no additional assumption on the geometrical properties of O, we
can construct infinitely many different instances of objects that create the
image IF . Using the sole knowledge of IF , the object remains thus unknown.

– 5. The informative frequency content that has been collected by T (u) is
(2.6), and the image that we obtain is the inverse FT of it. How many
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Fig. 2. Illustration of the Fizeau and hypertelescopes imaging properties in Fourier space.

Top left (resp., right): absolute value (resp. phases) of the Fourier spectrum of the object.

The white circles represent the boundaries of the elementary transfer function T0, i.e.,

the zones inside which the spectral information is sampled by both systems. Middle left:

the Fourier content of the Fizeau image. In the black region, no frequency is available.

The centers of the circles are located at spatial frequencies ukl (see text). Middle right:

the Fourier content of a Michelson image (i.e., densified by a factor γ, full spectral

densification is shown). The frequency content of each sampled disk of the Fizeau image

has been translated by block, phases and moduli untouched. The centers of the circles

are now located at spatial frequencies u′
kl = ukl/γ. Bottom: the frequency sampling

obtained with densification using inverted Galilean telescopes is a dilated (and thus fully

equivalent) version of the Michelson mode with periscopic densification.

images contain the same contents of information about O as IF ? To answer
this, imagine that the frequency contents of IF is modified in a reversible way,
which preserves hermitian symmetry (thus ensuring that the corresponding
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image is real) and which is further such that the resulting image is posi-
tive. For instance, appropriately permute the contents of some “islands”,
or attribute the content of such island to an empty zone, and set the cor-
responding frequency content of the island to 0. There is a large number
of such transformations: all transformations resulting in an OTF which is
an autocorrelation function will work. From all the corresponding images
(which will be very different from each other), we can take the FT (opti-
cally or numerically) and then numerically undo the transformation. We
recover by doing so the originally sampled spectrum, and we can reproduce
the image IF . The Michelson densification by a factor γ in periscopic mode
is one among such transformations: it leads to an image IP

γ that is differ-
ent from IF , but the informational contents is the same, and the image IF

can be recovered from IP
γ (at least for values of γ that are not too large).

The Appendix shows that the densified image IG
γ obtained using inverted

Galilean telescopes has the same property.

2.2 Michelson configuration: Hypertelescopes

The Michelson configuration corresponds to a “densification” of the pupil because
the diameters of the subpupils can be increased relatively to their separation.
The degree of densification can be quantified by a densification factor called γ
(Labeyrie 1996). We consider here the periscopic mode, in which the diameter of
the subpupils D is fixed (see the Appendix for the case where the densification is
obtained by dilation of the subpupils by a factor γ). The densification factor can in
this case be defined as the ratio of the minimal distance between the subapertures
before and after the densification: γ = d/d′. In the extreme case of maximal
densification, some subpupils touch each other and are thus separated by a distance
of d′ = D, in which case γ = d/D.

The image formation model for the Michelson stellar interferometer in periscopic
mode has been analyzed by Tallon & Tallon-Bosc (1992). The most important dif-
ference with the Fizeau configuration is that the image formation model is not a
convolution anymore. In the Fourier space, the Michelson configuration involves
a filtering corresponding to the diluted aperture before densification, followed by
a translation of the frequency contents corresponding to the densification. Dur-
ing this translation, the spatial frequencies that are sampled by the input diluted
aperture in a disk of width 2D/λ around frequency ukl are subsequently carried
away, phase and modulus untouched, into a disk of same diameter but centered
around the lower center frequencies u′

kl = ukl/γ (see Fig. 2).
The Fourier spectrum of the densified image IP

γ is now (compare to (2.5)
and (2.6))

ÎP
γ (u) = Ô(u) T0(u) +

1
K

K∑
l=1

K∑
k �=l

Ô(u− u′
kl + ukl) T0(u− u′

kl), (2.7)
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where the term T0(u) is, as in Section (2.1) the elementary transfer function cor-
responding to one subaperture and K is the total number of subapertures. Each
term of the double sum corresponds to the filtering, by the elementary transfer
function centered at frequency u′

kl = ukl/γ, of the object’s spectrum translated
by u′

kl − ukl.
Again, the description in the Fourier space makes some important issues very

clear:

– 1. We see that this frequency translation is a perfectly revertible transform6

as long as the zones around the new frequencies u′
kl do not intersect. Hence,

the Fizeau and Michelson images are actually equivalent. One difference
arises however in presence of sampling: as visible in Figure 2, the densified
image has a lower cut-off frequency than the Fizeau image. Hence, by the
Shannon theorem, it may be sampled with less pixels than the Fizeau image.

– 2. When the translated frequency zones intersect, several frequencies melt
into a single one at each point of the intersection zone. In this case, the
transformation is not invertible, since there not a one-to-one mapping from
the initial to the final frequency content. Because the disks corresponding
to T0 around ukl have width 2D/λ, the lower center frequencies u′

kl cannot
be separated less than 2D/λ to avoid frequency overlap (aliasing). This
means that the minimum separation d′ between two subapertures in the
densified pupil must not be less than 2D (d′/λ ≥ 2D/λ⇔ d′ ≥ 2D) to avoid
information loss. The limiting case d′ = 2D is called FSP for Full Spectrum
Densification in the literature. The case d′ = D (subpupils touching each
other) is called FAD for Full Aperture Densification. This case indeed leads
to frequency aliasing.

3 Numerical simulations of Fizeau and hypertelescopes interferometric
images

3.1 Discretization and periodicity

Sampling and numerical simulations involve discrete approximations of continuous
phenomena. We provide here a description of sampling issues which mostly relies
on handy notions of Fourier analysis. A rigorous description of sampling theory
requires to use distributions and Lebesgue integration, see e.g. Chap. 2, 3 and 5
of Mallat (2008).

The physical reference object is considered as constant (or sufficiently slowly
varying) in time and as a continuous function of its space (or angle) variables.
This object is of infinite resolution (the size of the smallest details in the object is
vanishingly small).

6Hypertelescopes are an instance of transformations conserving the positivity while changing
the image. Studying general properties of such transformations is an interesting point which is
left out of the scope of this article.
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In simulation, the discrete reference object we will consider is an approximation
of this ideal reference. We shall assume that the discrete reference object has been
obtained by a fine regular sampling from the reference. Let τr be the spatial
sampling step. The discrete object is the multiplication of the continuous object
by a Dirac comb of period τr. The numerical representation of the object assigns
one number to each sampling cell τr × τr, which is the pixel size. The discrete
object is thus often represented as a “staircase” version of the ideal reference
object, although a continuous version of the discrete object is indeed possible
using other standard interpolation functions. This is illustrated in Figure 3.

a) Moon b) Moon HR c) Moon HR: Zoom

Fig. 3. The discrete reference object (middle) is represented as a staircase (pixel) version

of the ideal (continuous) reference (left). The approximation is visible when zooming

(right): no detail smaller than the pixel size can be distinguished.

The discretization has indeed very deep implications on the image represen-
tations and processing. Let us think of the Fourier spectrum of the continuous
reference object. This spectrum possess arbitrarily high frequencies because the
smallest spatial structures can be arbitrarily small. Now let us consider the dis-
crete reference object, obtained by multiplication of the continuous object with a
Dirac comb. What is the Fourier spectrum of this object? By the convolution the-
orem, multiplication in one space translates to convolution in the dual space. The
spectrum of the sampled object is the convolution of the true (infinite resolution)
spectrum by the FT of the spatial sampling comb, that is, a Dirac comb of period
Tν = 1/τr. The Fourier spectrum of the discrete object is periodic, its frequency
period is Tν = 1/τr.

At this point we see that a discrete object has a continuous Fourier spectrum
that is periodic. But, of course, this continuous spectrum cannot be stored as
such in a numerical environment: it must be sampled. Well, the same reasoning
as above can be applied to the periodic continuous spectrum. This spectrum is
sampled with a step τν in frequency, so it undergoes a multiplication by a Dirac
comb with period τν . What is the image corresponding to the resulting discrete,
periodic spectrum? The multiplication by a Dirac comb in frequency results in a
convolution by a Dirac comb in space, with period Tr = 1/τν . Hence, if we consider
discretization obtained by regular sampling, we end up with images and spectra
that are periodic. Each period is sometimes called the “principal interval” (see
Fig. 5). The Discrete FT (DFT) and its inverse compute the representations of
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a) Moon: image and Fourier spectrum b) Moon HR: image and Fourier spectrum

Fig. 4. a) Continuous-space reference object and corresponding continuous-frequency

spectrum. The spectrum of the reference object is represented only for frequencies u(u, v):

|u| < Tν/2, |v| < Tν/2 although of course the spectrum spreads at much higher frequen-

cies. The discretized object and the corresponding (continuous) spectrum are shown in

b). The spectrum is periodic: the Fourier space is paved with squares of size Tν ×Tν that

replicate the same continuous spectrum. Note that the continuous spectra in each such

period are not equal to the continuous reference spectrum of the left figure, because the

replicas on the right are obtained by superimposition of the spectrum of the left. Since

the reference spectrum has no reason to be band-limited in a square of size Tν (i.e. to

be zero outside this square), higher frequencies contaminate the replica in the spectrum

of the right (this is another instance of aliasing). If Tν is high enough however, the

continuous object will have little frequency content beyond Tν , so that the replica of the

periodic spectrum will be a good approximation of the reference spectrum at frequencies

lower than Tν . In all figures, the origin (0, 0) in space and frequency variables are at the

center of the image.

the object in both principal intervals. The DFT assumes that the discrete object
and its spectrum are periodic, with a period of N points along each axis. The Fast
FT (FFT) allows to compute the DFT in O(N log2 N) instead of N2 additions
and multiplications for monodimensional signals.

3.2 Numerical simulations of Fizeau and hypertelescopes images

The distinction made above between the continuous and discrete cases requires
to differentiate the corresponding notation. In the following, a function that is
continuous in its variable will be denoted by f(t), and a discrete function by f [n].

The first step is to choose a reference object. As we have seen above, this
object must be discrete to be numerically manipulated, and is consequently an ap-
proximation of the corresponding continuous object. Anyhow, this discrete object
(say, O) will become our reference. This object is composed of N ×N pixels, with
N = 1024 in all experiments below.

We now turn to the simulation of Equations (2.5) and (2.6) in the Fizeau
mode, and of (2.7) in the Michelson (hypertelescope) mode7. To do this, we need
to choose the subpupils of the array. They will be circular, with some diameter D.

7The numerical setting detailed here is essentially the same as that of Aime et al. (2012).
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Principal interval in image space Principal interval in Fourier space

Fig. 5. The principal interval of a discrete reference object in the direct (left) and Fourier

(right) space. Discrete objects of finite spatial and spectral extensions are made periodic

when both spaces are related by the DFT. The size of the square cell in the direct space Tr

is related to the numerical resolution in frequency (sampling step): Tr = 1/τν . The size

of the square cell in the Fourier space Tν is related to the numerical resolution in space

(sampling step): Tν = 1/τr . The number of points N along each axis is N = Tr
τr

= Tν
τν

.

The center positions of the subpupils in the array are shown in Figure 7, along
with their autocorrelation function which gives the central frequencies ukl defined
in Section (2.1). In the Fourier domain, we have seen that the spectra are sampled
on a square grid of step-size τν . The transfer function of an elementary circular
pupil is the continuous-frequency function T0(u). When sampled at step-size τν ,
this function becomes a set of weighted discrete Dirac. In the present case, the
support of T0 spreads essentially over 9 samples (Fig. 7, bottom).

In the considered space-continuous array, the centers of the subpupils are lo-
cated on the nodes of an integer grid, so the spatial frequencies ukl defined in
Section (2.1) remain, once sampled, on a regular grid. While this may generally
not be the case in practice, this setting makes the modeling of the densification
easy.

Figure 8, top row, shows the locations where the Fourier samples of images are
nonzero in Fizeau mode (left), in Michelson mode with full spectral densification
(subpupils’ centers are at least separated by 2D), and in almost full aperture
densification (some subpupils are almost touching each other). All samples are
located on a 2-dimensional square grid with step-size τν . A white sample means a
nonzero sample. A fully white map would indicate that the N2 samples of the DFT
are available, so that the discrete reference object would be perfectly recovered by
direct Fourier inversion.

Figure 8 is an illustration of what Equations (2.5)-(2.6) and (2.7) become in
our setting. This Figure shows the discrete equivalent of Figure 2. The top left
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Fig. 6. Top: example of a (zoomed) reference object O[α]. Bottom, left: moduli of Ô[u].

Bottom, right: phases of Ô[u].

figure shows the support of T (u) in Equation (2.5), once sampled. The sampling
“islands” discussed in Section 2.2 for the Fizeau mode are visible in the figures of
the second row, as little light squares in the middle of a dark sea of zero samples.
These islands correspond to the frequencies sampled around the frequencies ukl

and u′
kl by the elementary OTFs (disks, which once sampled give rise to sets of 9

samples).
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Fig. 7. Top, left: position of the centers of the subpupils in the array. These centers are

all located at nodes of an integer grid. Top right: autocorrelation function of the centers

of the subpupils. This function gives the central frequencies ukl defined in Section 2.1.

Bottom: sampled OTF T0[u] of an elementary aperture.

In the Michelson mode (hypertelescopes), the nonzero frequency contents are
moved block-wise towards the frequency origin, and the center frequencies ukl

become u′
kl = ukl/γ. In the considered Fizeau mode the minimum separation be-

tween two center frequencies ukl is 7τν . In the FSD mode, for which the translated
contributions of the elementary transfer function touch each other, the minimum
separation in frequency between the u′

kl is 3τν , so γ = 7/3. If we increase the
densification, the contributions of the elementary transfer function overlap. In the
considered (quasi)FAD case, γ = 7/2. The densification factors can easily been
translated in terms of subpupilar distance. In the FSD mode, d′ = 2D and in the
(quasi)FAD mode d′ = 4/3D (some subpupils almost touch each other). Figure 9
summarizes the principle for simulating the formation of hypertelescope images.

We see that starting on integer grid for the Fizeau configuration allows easily
to obtain the frequency content for a set of Michelson configurations by simply
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Fizeau FSD (quasi) FAD

Fig. 8. Top row: compared locations of the nonzero Fourier samples that create the

observed images in the three settings (Fizeau: left column; Michelson FSD: center column;

Michelson FAD: right column). Middle row: zooms of the central parts of the top images.

Bottom row: response to a point source on the optical axis (PSF).

removing the appropriate lines and columns of zeros. In the FSD example, the
frequency content in each interval of the FSD image is obtained by removing 3
consecutive lines out of 7, and this process is repeated periodically in the rows [u]
and the columns [v] with a period of 7. The outer region of each interval is then
zero-padded so that the total number of N2 samples is conserved. The samples of
the densified image are thus again on an integer frequency grid (of same frequency
resolution τν).

3.3 Worked-out examples

Examples of images corresponding to the three considered sampling schemes are
shown in Figure 10.
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Fig. 9. Simulation of hypertelescope images. The discrete FT of a discrete reference

object (left: moduli and phases, principal intervals are shown) is multiplied by the transfer

function of the pupil array. The densification leads to the frequency contents (moduli

and phases) shown on the right. The corresponding images are obtained by inverse DFT.

Fig. 10. Examples of images formed in the focal plane for 25 pupils on a grid. Left:

Fizeau configuration. Middle: Michelson FSD. Right: Michelson quasi FAD.

There are several important aspects to be noted here.

– 1. First, all images are darker in the outer region. This is caused by the
elementary contribution of each subaperture (which are all the same here).
Let us consider the Fizeau image. In the Fourier space, the transfer func-
tion T is obtained by convolving the autocorrelation function of the pattern
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created by Dirac impulsions (Fig. 7, top right) with the elementary transfer
function T0. This convolution acts in the image space as a multiplication by
the FT of T0, that is, by the PSF of the subapertures. What we see here is
the diffraction envelope corresponding to the subapertures: imaging is done
inside the pupils’ PSF.

The width of this diffraction envelope defines the total field, which is a
disk with diameter about 2.4λ/D. In the Michelson mode this diffraction
envelope is obviously visible as well.

In the numerical modeling/sampling, the principal interval should thus
have extension Tr = 1/τν that is about this size, 2.4λ/D, since this is the
zone we are interested in.

– 2. A striking particularity of these images is the presence of replicated pat-
terns that resemble the reference object. The reason is that the pupils centers
are located on a grid. The elementary OTF are in turn located on nodes
of the frequency grid, which are here separated by 7 units, that is, by 7τν .
If there were not 25 but many more pupils, so that all these nodes would
correspond to the center of an elementary OTF, the sampling function would
consist in a Dirac comb (of period 7τν) convolved by the elementary OTF T0.
We see that the effect of this system would be, in the image space, to convolve
the object intensity distribution with a Dirac comb of period 1/(7τν) = Tr/7
(and the diffraction envelope would further tapper the result). The effect of
this convolution would be to create, in a zone of extension Tr×Tr, 7 replicas
in both horizontal and vertical dimensions. This is essentially what we see
in the Fizeau image of Figure 10. The difference is that for the Fizeau mode
there are only 25 pupils. In this case, the Fizeau sampling function can be
seen as the previous one multiplied by a function of ones and zeros which
kills the frequencies where Fizeau’s transfer function has no contribution,
and leaves the others unchanged. This function is shown of Figure 8, top
left, where the 1 are in white and the 0 in black. It has no regular shape.
The Fizeau image is the convolution of the 7 replicas (the image obtained
with the full grid) by the inverse FT of this function. The convolution by
this “halo function” leads to an irregular and diffuse halo which explains the
fuzziness of the Fizeau image. This halo blurs the image and removes some
frequency contents (essentially the high frequencies, but also low frequencies
in the voids of the sampling function).

– 3. Let us now turn to the Michelson configuration images. Densification
translates frequencies block-wise, and thus performs a frequency modula-
tion. This operation is not equivalent to downsampling. Downsampling by a
factor k (i.e., keep every kth other sample) contracts the frequency axis uni-
formly. Each spatial frequency u is moved to the frequency u/k, so that the
object whose spectrum is subsampled appears zoomed (and possibly aliased)
by a factor k. In densification, the frequency axis is not uniformly contracted.
Only the center frequencies u′

kl = ukl/γ are contracted by a factor γ. For
all other frequencies, the result of the translation is only approximately a
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contraction by γ. Densification is equivalent to downsampling (followed by
lowpass filtering) only in the limit of point pupils: in this case T0 tends to a
Dirac impulsion and only central frequencies u′

kl are sampled. The densified
image is not a zoomed version of the Fizeau image. It may be considered as
a zoom only in a first approximation (by neglecting the spatial extension of
the pupils). This effect nevertheless explains why the replicas appear larger
in densified images.

The magnification performed by densification is visible in the FSD image:
in the Fourier space, 3 samples out of 7 are kept in the [u] and [v] frequency
directions (see Fig. 8), resulting in a magnification of approximately 7/3
(≈2.3) of the size of the replicated pattern. Needless to say, this magnifica-
tion zoom comes with no gain in resolution at all (the frequency information
about the reference objet is the same in both cases, as visible in Figure 2,
and in Figure 8, middle left and middle center figures).

The number of replicas is decreased by the same amount γ = 7/3, be-
cause the nodes of the grid on which the frequencies u′

kl = ukl/γ fall are
now γ = 7/3 closer than in the Fizeau case (they are separated by 3τν in-
stead of 7τν). Thus, the corresponding periodicity in the image space is now
1/(3τν) = Tr/3: 3 replicas are visible in the vertical and horizontal direc-
tions. As in the Fizeau case, the sampling does not yield elementary OTF
centered at all the nodes of the frequency grid of step 3τν . Hence, the repli-
cas are convolved by the inverse FT of the 0/1 function shown Figure 8, top
middle. This function is not a scaled (contracted) version of the correspond-
ing Fizeau sampling function, unless the subpupils have negligible diameter.
So, we see that the densification by a factor γ yields an image which, only
in the limit of very small subpupil diameters, corresponds in the diffraction
enveloppe to a zoomed (magnified) version of the Fizeau image.

– 4. In the FAD image finally, mainly one replica is visible in the center
(actually two halves exist in the borders). This case seems to be a straight-
forward limiting case of the middle image: increased densification, larger
magnification of the center replica, almost total disappearance of off-axis
replicas. This is however not the case. The frequency contents in FAD mode
has been modified (reduced) because of the too strong spectral densification
(Fig. 8, right). During the FAD operation, some frequency cells have col-
lapsed. Overlapping spatial frequencies have been melted, and the overall
support size is smaller in the FAD than in the Fizeau/FSD cases. This op-
eration is not invertible. Because of these reasons, it seems better for both
purposes of direct imaging and of image restoration to stop the densification
at the FSD limit. For direct imaging, FAD and quasi FAD produce images
of reduced fidelity with respect to the object. For restoration purpose, FAD
increases the difficulty of the inversion, because it adds un-invertibility to
the imaging system.

– 5. The left figure in Figure 10 is the convolution of the reference object
(Fig. 6) by the PSF shown in Figure 8, bottom left. However, as discussed
in Section 2.2, the FSD and quasi FAD images are not the convolution of the
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reference object by the PSF shown in Figure 8, bottom center and bottom
right. A convolution may be retrieved in the FSD mode only in the limit
of vanishingly small diameters (infinite fields of view). This suggests two
regimes for densification (hypertelescopes), depending on wether the diam-
eter D is much smaller than the smallest subpupil separation d or not. For
hypertelescopes made of very large bases (in the kilometer range) and of
many small telescopes (centimeters), D << d, and a convolution model may
be a good approximation, at least close to the optical axis. For VLTI-like
hypertelescopes, made of moderately large bases (in the hundreds of meter)
and of a few large telescopes (in the tens of meters), D ≈ d, and the image
formation models strongly departs from convolution.

3.4 Noise

Real images will be affected by several perturbations. Effects caused by perturba-
tions on the phase and by chromaticity are not addressed here. We consider two
types of noise: Poisson noise (the number of detected photons in a pixel receiving
a constant light flux is Poisson distributed), and Gaussian noise (which usually
models the detector read-out noise, or approximates the Poisson distributed in
the limit of larges fluxes). The Figure below shows examples of simulated noisy
data images that would be obtained for a hypertelescope. The image in FSD mode
(left) is sampled on a 1024×1024 pixels CCD detector. The average flux falling on
each pixel corresponds to 0.8 photons. The middle image is what the detector sees
with Poisson noise (the recorded number of photons in a pixel is the realization of
a Poisson process having for mean and variance the noiseless flux on this pixel).
In this case the detector noise is negligible with respect to the photon noise. On
the other hand, the right image is an instance of what the detector records with a
zero mean Gaussian noise having a standard deviation of 1 photon.

Fig. 11. Left: noiseless FSD hypertelescope image. Middle: corresponding photonized

image. Right: noisy image with Gaussian noise.

Clearly, the data images in these cases are quite degraded versions of the noise-
less image. However, this visual quality loss is partly illusory, because the noise
component in the middle and right images have frequencies in the whole Fourier
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space − while we know that our imaging system has measured only the frequencies
that belong to the support of the transfer function T . Hence, we can safely (and
numerically) filter out all the frequencies outside this support without any degra-
dation of the astrophysical information. This is simply achieved by a DFT (or
FFT) of the noisy image, multiplication the result by the corresponding indicator
function of Figure 8, top row, and inverse FFT. We obtain the images of Figure 12.

Fig. 12. Top row, left: filtered version of the photonized FSD hypertelescope im-

age of Figure 11, middle. Top row, right: corresponding numerically rediluted image.

Bottom row, left: filtered version of the FSD hypertelescope image with Gaussian noise

of Figure 11, right. Bottom row, right: corresponding numerically rediluted image.

Clearly, the noise is much less adversarial than suggested by the data image.
Note also that a numerical post-processing allows to create, from densified im-
age, images that would have been obtained (up to the noise realization) with the
corresponding Fizeau imaging setting. This is simply achieved by computing a
FFT, translating back the frequency samples to the location they occupy in the
Fizeau sampling, and computing an inverse FFT. This is interesting because now
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the model relating the object to the rediluted data is again a convolution, and this
allows to use classical deconvolution algorithm even in the densified case.

This example shows that the image quality (i.e., its closeness to the object)
can be improved by post-processing. This is the topics of the next Section.

4 Restoration algorithms

This section focuses on methods aimed at improving the estimation of the object
from the image. What we want to do here is to infer from the data image, and from
the mathematical model of the image-object relation, which object has generated
the data. The process of finding back O from IF , IP

γ or IG
γ is sometimes given the

catchy name of “inverse crime” in the literature.
We first describe the inversion problem, and then illustrate three classical de-

convolution algorithms. The last part proposes a review of a particular class of
restoration methods that have received an increasing amount of attention in the
last decades. These methods use the notion of sparse representations.

4.1 Inversion

Because restoration algorithms involve digital data and filtering techniques, we will
consider from now on a fully discrete model. In this model, let us write the data
image and the unknown reference object as vectors y and o respectively. These
vectors are simply vectorized versions of the discrete arrays containing the intensity
values in each pixel of the image and reference object. Considering principal
intervals, the reference object and the image have N pixels, and their discrete
Fourier spectra have N frequencies. In the case of subpupils placed on an integer
grid, the sampled spatial frequencies are also on a grid. The noiseless image
formation model in the Fizeau case becomes

yf = F†TF o = Hf o, (4.1)

where F is the matrix form of the DFT, superscript† denotes conjugate transpose,
T = diag{T [1, 1] . . . T [N, N ]} is the diagonal matrix representing the transfer func-
tion of the diluted array, and Hf is a discrete circular convolution operator (a cir-
culant matrix, because the considered discrete images and spectra are N -periodic).
As we have now understood, the inversion is impossible because the solution is not
unique: an infinity of objects can lead to the data, because of the zeros of the trans-
fer function. In addition, the transfer function may be nonzero but very small at
some frequencies, and the frequency content of the object at some sampled fre-
quencies may be very small relatively to noise. In such cases, the data samples
contain essentially noise. Inverting the transfer function at such frequencies leads
in the image to fake oscillatory components that can have large amplitudes, a
phenomenon called noise amplification. For these reasons, our inversion problem
is said to be ill-posed, and the illness indeed comes from the instrument, not from
the mathematical formulation.
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The principal problem of the restoration can be seen as filling “cleverly” the ze-
ros of the transfer function. Cleverly means that the recovered frequencies should,
in some sense that remains to be defined, be close to the original frequencies of
the object.

The noiseless image formation model in the case of hypertelescopes without
spectral overlap (i.e., for densification up to FSD or less) becomes

yFSD = F†MFSDTF o, (4.2)

where T is the Fizeau transfer function, and MFSD is the operator implementing
the spectral densification (frequency modulation). This operator is a permutation
matrix whose 1 specify the positions to which the frequency samples of the input
(Fizeau) image are assigned in the Michelson image. This operator is linear, non
diagonal (each column and each row of MFSD have exactly one 1 and N−1 zeros)
and obviously invertible (M−1

FSD = Mt
FSD: transposing yields the inverse). The

operator F†MFSDTF does not correspond to a convolution because MFSD is not
diagonal (convolution is diagonalized by the Fourier transform).

If, however, we redilute the densified image

yredil = F†M−1
FSDF yFSD = F†M−1

FSD FF†︸︷︷︸
I

MFSDTF o = Hf o, (4.3)

from which we see that rediluting allows to retrieve the convolution model (4.1).
In the case of a hypertelescope with spectral overlap (or aliasing), that is, in

the range of densification from FSD to FAD, the model is

yFAD = F†MFADTF o = HFAD o, (4.4)

where MFAD is not a permutation matrix and is not invertible anymore. HFAD

is not a convolution operator, and we cannot redilute this image because MFAD

is not invertible. In the following, we consider only cases that can be described
by a convolution: the Fizeau configuration, and spectrally densified images, with-
out aliasing, and further rediluted. This model will be generically denoted by
y0 = H o, and we will consider perturbations on y0 caused by Gaussian and
Poisson noises.

We now turn to some standard methods aimed at estimating o from noisy data
y. In estimation theory, the Maximum Likelihood (ML) method is a systematic
method aimed at building estimators of parameters considered deterministic. The
likelihood of the data is assessed using the model (image-object relationship in our
case), and is defined as the probability of observing the data conditioned to the
parameters. The (unconstrained) ML method looks for the value of the parameters
(the object, in our case) that is the most likely given the data. Unconstrained ML is
extremely popular in the context of multiple measurements of the same parameter,
because it is often asymptotically (in the number of measurements n) unbiased8

8This means that if θ denotes the parameter of interest and θ̂MV [n] its ML estimate using n

measurements, limn→∞ Eθ̂MV [n] = θ.
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and consistent9. In addition, if an estimator that achieves the Cramer-Rao lower
bound10 exists for a finite number of measurements, the ML finds it.

In the framework of images however, the problem is not posed in terms of
multiple measurements (if the data image size increases, the number of parame-
ters increases as well). Moreover, the unconstrained ML leads generally, for non
invertible operators H, to dramatic noise amplification. Consequently, the sought
solution must somehow be constrained for the inversion to be possible. The most
obvious constraint is to impose that the object o is non-negative (∀i,oi ≥ 0). The
two following methods use this constraint, for Poisson and Gaussian data likeli-
hoods respectively. They are relatively popular in the astronomical and optical
communities where they have been published, and are synthetically exposed be-
low. A detailed and unified treatment of regularized maximum likelihood methods
with non-negativity constraint can be found in Lanteri et al. (2002a,b).

4.2 Richardson-Lucy algorithm (1972, 1974)

In the case of Poisson noise, the statistical model is y = P(Ho). The likelihood
of the data y is

L(y;o) =
N∏

i=1

([Ho]i)yi

yi!
e−[Ho]i , (4.5)

where the product comes from the independence of the components, guaranteed
by that of the noise realization from one pixel to another. By using Stirling’s
formula, maximizing the likelihood above leads to minimizing

JPoisson(o) =
N∑

i=1

[Ho]i − yi ln[Ho]i, subject to ∀i,oi ≥ 0, (4.6)

which leads to the iterations

RL: o(k+1) = o(k) ·Ht y
Hok

· (4.7)

In these iterations, the division of y by Hok is made element-wise. The results
is left multiplied by Ht (which in practice is implemented in the Fourier space
using the structure of H in (4.1)), and the multiplication by the previous estimate
o(k) is again element-wise. The question of deciding when to stop the iterations
is a difficult one, as RL (and ISRA) do not possess a natural stopping criterion.
Stopping the iterations to some number performs a kind of regularization, although
non explicit. Pseudo-codes for RL and ISRA below can be found in Thiébaut
(2005).

9i.e., limn→∞ E{θ̂MV [n] − θ}2 = 0.
10i.e., the smallest Mean Square Error that is achievable by any unbiased estimator, and that

is caused the uncertainty inherent to the stochastic perturbations.



238 New Concepts in Imaging: Optical and Statistical Models

4.3 Image space reconstruction algorithm (1986)

When the data are spoiled by a Gaussian noise that is pixel-wise independent but
possibly non identically distributed, the model is y = Ho + b, b ∼ N (0,Σ), with
Σ =diag[σ2

1 . . . σ2
N ]. The ISRA algorithm (Daube-Witherspoon & Muehllehner

1986) produces the non-negative solution that is the most likely according to the
noise model. The likelihood of the data y is

L(y;o) = P ([y1 . . .yN ]t;o) =
N∏

i=1

(2πσ2
i )−

1
2 e
− (yi − [Ho]i)2

2σ2
i . (4.8)

Maximising this function on non-negative o is equivalent to minimize

JGauss(o) =
1
2
||y−Ho||2Σ−1 =

1
2

∑
i

(yi −Hoi)2

σ2
i

, subject to ∀i,oi ≥ 0. (4.9)

This leads to the iterations

ISRA: o(k+1) =
o(k)

HtΣ−1Ho(k)
·HtΣ−1y, (4.10)

where the division and multiplications are elemen-twise. In practice however, some
data may be negative, in which case the iterations above do not guarantee the non-
negativity of o(k) over the iterations. To overcome this problem, one should work
on a data image y′ that is shifted by its minimum value m = mini(yi) (Lanteri
et al. 2002b). If we denote by d the vector with entries di = −m, ∀i, then
y′ = y + d is non-negative and the ISRA iterations become

o(k+1) = d +
o(k) − d

HtΣ−1Ho(k)
·HtΣ−1y′. (4.11)

When the iterations are stopped at some iteration number kstop, the estimated
object is ô = o(kstop) − d.

4.4 Numerical illustrations

The following example (Fig. 13) illustrates what can typically be achieved by such
algorithms. This example shows some results of the RL deconvolution algorithm
as a function of the iterations. The considered reference object is that of Figure 6,
and the data image is a photonized version of the FSD hypertelescope (Fig. 11,
middle). Before deconvolution, we first redilute (Fig. 12, top right). We can also,
before starting the restoration, filter out the noise. This is not necessary, because
the first iteration of the RL algorithm will do it; but seeing the filtered image
indicates that the situation is not as bad as visually suggested by the data image
(Fig. 11, middle). This helps realizing that some merit should indeed be attributed
to the restoration algorithm, but not too much.
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Fig. 13. Top: best (in the euclidean distance sense) recovered object for the RL algo-

rithm. The companion is not reproduced. Bottom, left: data approximation error vs.

iteration number. Bottom, right: error with respect to the reference object vs. iteration

number.



240 New Concepts in Imaging: Optical and Statistical Models

The restored object in Figure 13 is, with respect to the true object, quanti-
tatively and qualitatively inaccurate in the details, but rather fair in the overall
shape. The companion is not recovered, and the surface intensity on the main
planet has extremely high values. The overall flux of the solution is the same as
the flux in the data, because RL iterations structurally preserve the flux. This flux
is very close the flux of the reference object, because the 0 frequency is measured
by the optical system: the flux is thus known up to the measurement error caused
by the noise.

The two lower figures represent the data approximation error
(||y−Ho(k)||2/||y||2) and the distance with respect to the object (measured here
as ||o−o(k)||2/||o||2). The data approximation error continuously decreases. This
behavior always happens for ISRA (since ISRA iteratively reduces the convex cri-
terion JGauss(o(k))), and usually for RL as well. On the other hand, the distance of
o(k) to o decreases and then increases: the best solution in the euclidean distance
sense, which is shown in the top figure, is here obtained for an iteration number
of k ≈ 1000. The best iteration number is always impossible to know in practice,
because the object is not known. The behavior exhibited by these curves is very
general.

This example illustrates important characteristics that share RL and ISRA al-
gorithms. The positivity constraint is easily imposed (and any support constraint
could be possibly imposed as well, owing to the multiplicative form of this al-
gorithms), and their implementation is easy. On the other hand, the number of
iterations to reach an acceptable solution can be large (slow convergence), and it
is difficult to know when to stop the iterations in practice. Finally, the interpola-
tion and extrapolation that are performed in the Fourier space are very difficult
to formalize.

An uncountable number of inversion methods can be found in the literature. A
large class of those injects an explicit regularization term in the criterion coming
from the likelihood. This term reflects a priori information about the solution.
Explicitly regularized methods allow to put well defined constraints on how the
missing frequency content should be added to the data during the iterations, or
at least, to impose that the solution exhibits specifically desired properties (e.g.
smoothness, piecewise constant aspect, etc.). Another set of approaches uses the
concept of sparse representations, and a survey is proposed below.

4.5 Deconvolution based on sparse representations

4.5.1 CLEAN and sparsity

Long before the optical interferometry era, radio astronomers had devised various
techniques to recover estimates of o from y in convolution models. The ancestor of
sparsity-based techniques in the radioastronomical community is the CLEAN al-
gorithm, which is used routinely in radioastronomy since almost 40 years now. Nu-
merous variants have been developed (see Cornwell 2008), and in practice CLEAN
remains a benchmark method in radioastronomy. It is worth detailing a bit on
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this algorithm, as it can directly be applied to the deconvolution of hypertelescope
images, and because of its link with sparsity.

CLEAN was proposed by Högbom (1974), and was related to earlier methods
in Scharz (1978). See also Cornwell (2009) for a description of the wide impact
of CLEAN on Astronomy and beyond. CLEAN can be seen as a method which
essentially models o as a collection of a few (relatively to the number of pixels)
point sources. The image y is thus in turn modeled as a collection of shifted and
scaled PSFs. The algorithm subtracts iteratively scaled and shifted PSFs from the
image residual, until a stopping criterion is reached. Högbom recommended in its
1974’s paper a threshold on the maximum value of the residual. This threshold
forces a limited number of iterations, and thus a limited number of detected point
sources − this is where sparsity comes in.

This iterative process is very similar to the Matching Pursuit algorithm, which
is widely used in the signal processing community (Mallat & Zhang 1993). With
a difference, yet: at the end of the iterative deconvolution process of CLEAN,
the residual is added back to the synthesized detection map. As a matter of fact,
CLEAN works very well when only a few points sources constitute o, and thanks
to the residual trick, it remains also relatively efficient even for extended sources,
despite the apparent irrelevance of its sparse model for such sources.

The excessive simplicity of CLEAN’s “point source” model for general astro-
physical sources was nevertheless worked out in the 80 s by several researchers, who
looked for more elaborated models of extended sources. Several methods based on
multiresolution approaches followed the works by Wakker & Schwarz (1988). An
overview of CLEAN’s evolutions is given in Rau et al. (2009).

4.5.2 Analysis and synthesis sparsity

Sparse representations in dictionaries are ubiquitous in a large number of modern
signal processing methods. The reason for this is perhaps double: first, they rely
on simple (linear) statistical models; second, they naturally operate a dimension
reduction, by focusing on subspaces of reduced dimension where the information
of interest actually lies.

Sparse representations can be seen as a generalization of CLEAN’s model. In
the synthesis model, which is the most intuitive and has historically benefited from
more efforts, the object o is assumed to be well modeled by a linear combination
of a few elementary shapes (not just point sources), called atoms.

Promoting sparsity relatively to appropriate dictionaries offers a straightfor-
ward way to fill the missing frequency contents caused by the zeros of the transfer
function. Indeed, sparse methods essentially detect which atoms are present in
the data using the measured frequencies: some missing frequencies are then auto-
matically filled with the frequencies of the detected atoms.

Let us now describe in more detail the differences between analysis and synthe-
sis sparsity (Elad et al. 2007). We consider the object-image model y = Ho + n,
with n ∼ N (0, I) for simplicity. In the synthesis approach, the unknown intensity
distribution o (of size N × 1, say) is assumed to be sparsely synthesizable by a
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few atoms of a given full rank dictionary S of size N × L. Hence, we write o
as o = Sηηη, where ηηη (the synthesis coefficients vector) is sparse. This assumption
is widely used in data modeling for denoising, compression, pattern recognition
or inpainting applications for instance, because natural signals and images are
approximately sparse in appropriate spaces (Mallat 2008).

A synthesis-sparse solution to the deconvolution problem posed by y = Ho+n
can be obtained by solving:

o∗
S = S

{
argmin

ηηη

1
2
‖ HSηηη − y ‖22 +μp ‖ ηηη ‖pp

}
, (4.12)

where μp is a hyper parameter that tunes the desired sparsity degree, and ‖ ηηη ‖pp=∑
i |ηi|p, 0 ≤ p ≤ 1, is a function favoring zero values.
The solution o∗

S is also interpretable in the Bayesian framework as a Maximum
A Posteriori (MAP) solution, in which case μp is related to the parameters of a
Generalized Gaussian prior on ηηη. The �0 quasi-norm (which counts the number of
nonzero coefficients in ηηη), obtained for p = 0, is the most natural sparsity measure.
To ensure the convexity of the resulting cost function, it is often replaced by the
�1 norm || · ||1, which still promotes sparsity (and correspond to a Laplacian prior
on ηηη).

In contrast, the analysis approach consists in finding the solution o that is not
correlated with some atoms of a dictionary A of size N × L: AT o is sparse. An
analysis-sparse solution can be obtained by solving:

o∗
A = arg min

o

1
2
‖ Hx− y ‖22 +μp ‖ ATo ‖pp . (4.13)

Note that the synthesis prior is on the synthesis coefficients ηηη, while the analysis
one is on the projection a = AT o of the signal on the analysis dictionary A.

While both approaches are equivalent when A and S are square and invertible,
with A = S−1, they yield in general different solutions for overcomplete dictio-
naries (N < L). Such dictionaries are required for efficient image modeling (see
next Subsection). Since natural images can often be approximated by few atomic
elements in such dictionaries, the synthesis approach is considered as more intu-
itive. Its design simplicity (in greedy approaches like CLEAN11) has also made it
more popular in image processing applications. However, the synthesis solution is
restricted to a column subspace of the synthesis dictionary, and the significance
of each selected atom is important. On the other hand, the analysis approach
may be more robust to “false detections” since the signal is not built from a few
number of atoms. Besides, note in Equation (4.12) and (4.13) that the number
of unknown in the synthesis case (the number of atoms in the dictionary) can be
much larger than in the analysis case (where it remains in the number of pixels).

11The greediness of CLEAN is visible in the atom’s (shifted PSF) selection rule: select the
atom that is the most correlated with the data, that, is, the one that most decreases the norm
of the residual.
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Thus, analysis-based optimization strategies can be computationally much more
efficient for large dictionaries. The comparison of both models is a very active
field of research in fundamental signal processing (see the references in Gribonval
et al. 2009, 2012).

Once a sparsity promoting model is chosen, we still need to choose an appro-
priate dictionary to perform the deconvolution.

4.5.3 Dictionaries

The sparsity is expressed via dictionaries, which correspond to representation
spaces. Dictionaries express geometrical features that are likely to describe the
unknown object. In synthesis, the columns of the dictionary are simply the atoms.
In analysis, the rows may be atoms as well, or operators (gradient for instance,
leading with �1 norm to the total variation regularization). These dictionaries can
be orthonormal transforms (corresponding to orthonormal bases), or more gen-
erally redundant (overcomplete) dictionaries. A large variety of representations
has been elaborated in the image processing literature, e.g., canonical basis in-
deed (corresponding to point-like structures), Discrete Cosine Transform (DCT,
2-D plane waves), wavelets (localized patterns in time and frequency), isotropic
undecimated wavelets, curvelets, ridgelets, shapelets and many others, see Mallat
(2008) and Starck et al. (2010) for detailed reviews.

The choice of a dictionary is made with respect to a class of images. In
Astronomy, wavelets dictionaries are widely used, but they are known to fail rep-
resenting well anisotropic structures. In such cases other transforms can be used,
that have been designed to capture main features of specific classes of objects.
Among them, curvelets sparsify well curved, elongated patterns such as plane-
tary rings or thin galaxy arms for instance; shapelets sparsify well various galaxy
morphologies, etc. All these dictionaries have shown empirical efficiency for some
specific types of images.

In order to model efficiently complex images with various and different features,
several authors have proposed to concatenate dictionaries into a larger dictionary
(Chen et al. 1998; Gribonval et al. 2003). However, the efficiency of a dictionary
also critically depends on its size and on the existence of fast operators, without
which iterative algorithms cannot run in reasonable time. This is especially true in
radiointerferometry and in (possibly polychromatic) optical interferometry where
the number of Fourier samples and of pixels can be of the order of hundreds of
thousands.

4.6 CS and sparsity in astronomical deconvolution

Since the Compressed Sensing (CS) theory has emerged, providing exciting and
beautiful mathematical results about sparse recovery in various cases, the sparsity
ideas have benefited from considerable new strengths in the fields of signal and
image processing (Donoho 2006; Candès et al. 2006).

In the context of the image restoration problem posed by interferometric mea-
surements, the CS theory has provided theoretical proofs that, in idealized
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situations, exploiting sparsity is indeed useful. For instance, the CS theory ex-
plains why a few point sources may be recovered from random Fourier measure-
ments that are in number far less than specified by the sampling theorem. Of
course, this possibility is exploited and implemented in long-existing restoration
methods like CLEAN for instance; sparse methods have grown and evolved on
their own before CS. They have lead to several types of elaborated sparsity-based
algorithms, whose use evidences decades of empirical success.

As in many other applicative fields, references to CS have started hatching
in quite a few recent publications about astronomical deconvolution. Yet, one
key ingredient in that matter − sparsity − is exploited since at least Högbom’s
time. Besides, the theoretical CS proofs invoked in the introduction of many such
publications turn not to help much in the subsequently proposed restoration meth-
ods. This poses the question of the real benefits brought by CS to astronomical
deconvolution.

Let us consider the question from an operational point of view, that is, with
the concern of better estimating o from the data y. The benefits from CS with
this respect are real but indirect, and they appear to be the following. First,
CS clearly drained an increased research effort in fundamental models for sparse
representations, like those of Equations (4.12) and (4.13). This in turn lead to
improved reconstruction methods, through more elaborated statistical data mod-
els. Second, a lot of efficient optimization strategies have been designed to solve
problems of the type (4.12) and (4.13), thanks to the new strengths in this field
brought by the appealing theoretical results of CS.

In the recent years, sparsity promoting methods were used in interferometry
by Wiaux et al. (2009a,b), using Basis Pursuit DeNoising (Chen et al. 1998) with
wavelets dictionaries, and by Vannier et al. (2010), with Matching Pursuit algo-
rithms in unions of bases (wavelets/Dirac). Li et al. (2011) adopted a synthesis
approach with an IUWT (Isotropic Undecimated Wavelet Transform) synthesis
dictionary, and solved a Basis Pursuit synthesis criterion through the ISTA min-
imization algorithm (Iterative Soft-Thresholding Algorithm) and its fast version,
FISTA (Fast Iterative Shrinkage-Thresholding Algorithm, Beck & Teboulle 2009).
Carillo et al. (2012) applied a reweighted �1 analysis algorithm promoting aver-
age signal sparsity over multiple redundant dictionaries, and relying on convex
optimization techniques. Dabbech et al. (2012) have proposed an hybrid analysis-
by-synthesis approach: o is modeled using sparse synthesis priors as a sum of few
objects which, as opposed to classical synthesis-based priors, are unknown. These
atoms are iteratively estimated through analysis-based priors, the analysis being
based on an IUWT dictionary.

Note that in optical interferometry, the 2012 international Beauty Contest also
witnessed an increasing number of sparsity based methods (Baron et al. 2012).
Finally, in polychromatic optical interferometry, Thiébaut et al. (2012) proposed
to favor spatial sparsity and spectral grouping of the sources through an alternating
direction method of multipliers, a method also issued from the convex optimization
literature (see the Article of É. Thiébaut in these proceedings).
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We will not include numerical results about restoration algorithms exploiting
sparsity in this paper. Examples of results obtained with sparsity promoting meth-
ods (comparison of CLEAN, MP and BP) in the case of diluted apertures (Fizeau
configuration) can for instance be found in Section 4 of Vannier et al. (2010).

To conclude this part, we see that numerous techniques are emerging. They
offer sophisticated alternatives to the more traditional and robust constrained ML
methods. Indeed, most of these methods comply with the non-negativity con-
straint. The algorithms described above rely on recent progresses in sparse rep-
resentations and convex optimization techniques. They allow to solve large scales
optimization problems involving complex image models, and they are becoming
increasingly popular in interferometry.

We now turn to simulations results aimed at illustrating the effect of densi-
fication in the presence of photon noise. We then investigate the possibility of
recovering small objects that are far from the optical center.

5 To densify, or not to densify

Of course, the ambition of this section is not to provide a general answer to this
question, as many factors should be accounted for (for instance the number of
detector pixels, the noise level and its statistical nature, the subupil configurations,
etc.). As already emphasized, the FSD densified and the Fizeau images contain
the same frequency information. Since the densified image has a lower frequency,
it needs less detector pixels to be properly sampled than its Fizeau counterpart.
This should be an advantage of hypertelescopes, which will not be illustrated here
as this is a straightforward consequence of the sampling theorem. See for instance
Lardière et al. (2007) for useful insights on these issues.

The question on which we focus here is the following. We are given a reference
object o (the one of Fig. 6) and two sampling schemes (the previously described
Fizeau and Michelson FSD configurations, Fig. 8), leading to one-million-pixel
images that are contaminated by photon noise (Fig. 11). In these conditions,
which scheme leads statistically to the best restored images using a RL algorithm?

We propose to answer this question empirically, by running Monte Carlo sim-
ulations. We generated 50 photonized Fizeau images and the same amount of
photonized FSD images. The images of the latter set were numerically rediluted
so that the object-image model is a convolution. The difference between the two
sets of images is in the noise statistics. While it is Poissonian for the first set, this
is not the case for the set of rediluted images. These images can (and actually
do) exhibit negative values. Thus the RL algorithm, seen as a ML method, is not
justified any more because both the image positivity and the Poisson statistics
are lost. However, RL can be (as ISRA) simply taken as a deconvolution method
which minimizes some loss function between the data and convolved model (the
Kullback-Leibler divergence for RL, and the quadratic error loss for ISRA). If non-
negative restored objects are expected, care must be taken in this case that the
data images are non-negative. This is achieved by setting to 0 the negative values
of the rediluted images. We observed for the considered noise level that negative
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data values in the rediluted images are very few (typically 5 out of 106) and close
to 0 (typically less than 0.01 in absolute value). So this non-negativity precaution
causes a negligible information loss.

Fig. 14. Left: empirical distributions of the best reconstruction errors obtained by RL

for photonized Fizeau images (top) and rediluted photonized FSD images (bottom),

for 50 realizations. The average photon noise in the data images corresponds to

0.72 photon/pixel, and the images have 1024 × 1024 pixels. The vertical line shows

the empirical mean of the distribution (which is also indicated in the titles of the figures

along with the observed dispersion). Right: empirical distributions of the iteration num-

ber leading to the best reconstruction (vertical line: empirical means; values for means

and standard deviations are indicated in the titles).

The results are presented in Figure 14. It is clear from this experiment that the
results are essentially equivalent in terms of the quality of the reconstruction error
and of the optimal number of iterations. The equivalence in terms of information
that holds between Fizeau and FSD configurations appears conserved in images
affected by photon noise.

6 Noiseless recovery of a small object outside the “clean” field

6.1 Introduction: Objectives and simulation parameters

We are interested here in the restoration of noiseless images obtained in the Fizeau
configuration, or in any densified configuration without spectral aliasing. The
objective of this study is to investigate whether a quasi-point source which is
located outside the “clean” field (see below) can or not be restored by the RL
algorithm. The noise is not considered in order to focus on the effects of the
sampling.
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The “clean” field (Lardière et al. 2007) is the central zone of the image of
dimension λ/s, where s is the smallest spatial distance between two subpupils.
The global field corresponds to the diffraction envelope of the elementary pupils.

The considered sampling is the same as described in Section 3: 25 non re-
dundant circular apertures on an integer grid. These apertures have the same
diameter D, and the principal lobe of the diffraction envelope defines the global
field, which has diameter 2×1.22λ/D. For the considered array, the centers of the
elementary OTF in the Fizeau sampling are separated by 7τν . Thus, the central
part of the Fizeau image is essentially replicated 7 times in each direction, and
λ/s corresponds to 1024/7 ≈ 146 pixels (cf. Fig. 15, bottom left).

The object we consider is presented in Figure 15. The flux ratio between the
central planet and the satellite is ≈4.8 × 10−3, which corresponds to a difference
in magnitude of ≈5.8.

6.2 Recovery without spatial aliasing

In this first simulation, the small object is not located on a replica of the main
object, but it is quite far from the center (close to the limit set by the global field),
and thus highly attenuated. This source is centered around the pixel coordinates
(x = 140, y = 513), and is 373 pixels away from the centre (x = 513, y = 513) of
the object. This angular distance represents ≈ 2.5× λ/s, or ≈ 0.73× 1.22λ/D.

Figure 16 illustrates the evolution of the deconvolution along the iterations.
Interestingly, we see that the algorithm first reconstructs a satellite close to the

central object, and then transfers the flux from this position to the left by discrete
jumps of λ/s (i.e., the clean field), to finally reach the good position:

– Iteration 100: the central planet appears, the replicas and the halo have
almost disappeared. No satellite yet.

– Iteration 3500: the central planet starts being fairly well estimated, and a
quasi-point source is restored in the vicinity of the planet, at pixel
(x = 432, y = 513), i.e. at 2λ/s right of the real position of the satellite
(432 = 140 + 2× 146).

– Iteration 4500: a second point source appears at pixel (x = 286, y = 513),
i.e. at λ/s right of the real position. The flux of the first (fake) quasi-point
source has decreased with respect to iteration 3500.

– Iteration 5800: The first fake satellite at (x = 432, y = 513) has disappeared.

– Iteration 7800: A third satellite at the right position (x = 140, y = 513)
appears. The flux of the second satellite at (x = 286, y = 513) decreases.

– Iteration 30 000: The second fake satellite (x = 286, y = 513) has almost dis-
appeared. The algorithm has (almost) converged to a correct reconstruction
of the central planet and of its satellite.
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Fig. 15. Top: reference object (planet-satellite). Bottom, left: same object with the

fields shown. The global field represents 1024 pixels in each direction, and the clean field

146 pixels. The quasi-punctual source contributes flux in 28 pixels. It is 373 pixels away

from the centre, which corresponds to ≈2.5λ/s. Bottom right: image obtained with the

considered diluted pupil.
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Fig. 16. Snapshots of restored object for some iterations of the RL algorithm. In lexi-

cographic order k = 100, 3500, 4500, 5800, 7800, 30 000.
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The satellite reconstruction by jumps of extension λ/s can be followed in the
Fourier space. As illustrated below, the RL algorithm fills the Fourier space by
progressive interpolation of the spectrum around the available samples. The mod-
uli of the frequency samples where information is available are represented in
Figure 17, left, and the total spectral information to be recovered is in Figure 17,
right. Figure 18 shows the same for the phases. The satellite information appears
essentially as a modulation on the moduli and on the phases of the central planet’s
spectrum.

Fig. 17. Zoom on the moduli of the Fourier spectra. Left: available moduli (the missing

samples are in black). Right: moduli of the spectrum of the considered planet-satellite

system.

Fig. 18. Same as Figure 17, but for the phases.

As the iterations go, the “holes” at low frequencies are progressively filled, and
the high frequencies are then estimated, as illustrated in Figure 19.
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Fig. 19. Zoom on the moduli of the estimated objects for the iterations of the RL

algorithm shown in Figure 16 (in lexicographic order k = 100, 3500, 4500, 5800, 7800,

30 000).
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After 30 000 iterations, the object restored by the algorithm is relatively close
to the original, at least as far as the satellite position is concerned. The Figure 20
presents a zoom on the central planet (left column) for the reference object (top,
left) and on the deconvolved object (middle, left). Similarly, the right column
shows a zoom on the satellite of the reference object (top, right) and deconvolved
(middle, right). The total flux of the deconvolved satellite is about 60% of the
total flux of the reference satellite. Of course the deconvolution is not perfect
(and in cannot be, as too many frequency are lost by the sampling). But the
result is comparable to the direct image that would be produced by a monolithic
Extremely Large Telescope having the same diameter as the largest base of the
hypertelescope12 (Fig. 20, bottom row).

The important thing is that the point source is fairly recovered, a point which
was not obvious considering the ambiguity posed by the sampling scheme. This
result is encouraging, efforts for the quest of high angular resolution do not seem
to be vain. We may pause here to think that some day in the future, the detection
of such a faint little point in the dark corner of a real hypertelescope image might
be the origin of a great discovery for the Human civilization.

Enough dreams for now, sine experientia nihil sufficienter sciri potest: let us
come back to the prosaic reality of simulations and try a more difficult recovery.

6.3 Recovery with spatial aliasing

The considered object is still of the planet-satellite type but the satellite replicas
are superimposed on the replicas of the central object in the data image, see
Figure 21.

The point source is now at coordinates (x = 213, y = 513), which is 300 pixels
away from the centre (x = 513, y = 513). This represents ≈ 2λ/s. As visible
in Figure 21 right, this is a clear case of spatial aliasing. The results of the
deconvolution for some iterations are presented in Figure 22.

– Iteration 100: the planet starts being well restored. No satellite in the
vicinity. Note that a bright spot, of about the satellite size, is created on
the central planet. This spot comes from the spatial aliasing (replica of the
satellite superimposed on the planet).

– Iteration 3000: the reconstruction seems to stabilize on an object without
satellite, with a surface spot at the place of the satellite. It is unclear whether
the algorithm will be able to distinguish between a satellite to be placed
further away, and a bright surface spot.

– Iteration 5000: a satellite appears around pixel (x = 359, y = 513), that is,
at λ/s right of the real position. In the same time, the bright artifact at the
center is less visible than in the previous iterations.

12This ideal telescope is called “Metatelescope” in Aime et al. (2012).
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Fig. 20. Zoom on the central planet (left colum) and on the satellite (right column).

Top row: reference object. Middle row: deconvolved object after 300 000 RL iterations.

Bottom row: Image of a monolithic ELT having the same high frequency cut-off as the

diluted array.

– Iteration 40 000: a second satellite appears at the real position. The flux
attributed to the first fake satellite decreases, and the artifact at the centre
of the planet is almost not visible anymore.
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Fig. 21. Case where the satellite “falls” in a replica of the central planet. Left: considered

system planet-satellite. Right: image produced by the diluted array. The light circles

evidence the spatial aliasing on some replicas (it is the case for all of them).

– Iterations 80 000 et 200 000: the flux is progressively transferred from the
first to the second satellite, but the convergence is very slow. Figure 23
zooms on the object deconvolved at iteration 200 000: zoom on the central
planet (left) and on the satellite position (right). The flux estimated for the
satellite at the real position is still insufficient (compare to Fig. 22).

We see that although the convergence is slow, the algorithm is on the way to
find the right configuration. Figure 24 presents, for each estimated object o(k) at
iteration k, k = 1, . . . , 200 000, the normalized error in approximating the data
(left), and the normalized error with respect to the true object (right).

We see that the convergence is very slow. Note also that the error with respect
to the object is not constantly decreasing. An intermediate solution corresponding
to a local maximum (k ≈ 8000) corresponds to an estimated object with one
satellite that is too close to the planet. But this solution does not perfectly explain
the data. Some flux then starts being injected at the right position, so that the
error decreases again. These results suggest that the right configuration can be
recovered, even if the flux is not perfectly estimated, at least with negligible noise.

How is the algorithm able to find out, from data where the satellite is every-
where superimposed on the surface of the central object, that there is satellite,
and that the surface has no bright spot? The reason is that the if the central
planet had a bright surface spot, this spot should be less bright in replicas that
are further away from the center (because of the diffraction envelope). But this
is not the case for the replicas of the satellite: the brightest replicas are the ones
that are close to the true position of the satellite. This discrepancy makes the
algorithm to eventually inject the flux at the right position. In other words, it is
the diffraction envelope which saves the reconstruction here.

A last remark. To see to which solution the algorithm would eventually con-
verge, and how accurate the recovery would be in this case, there should be several
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Fig. 22. Estimated objects for some iterations of the RL algorithm. By lexicographic

order: k = 100, 3000, 5000, 40 000, 80 000, 200 000. At iteration k = 40 000 a source

starts being visible at the right position.

hundred thousands iterations more. This is very time consuming: 200 000 RL it-
erations on 1024×1024 images represent ≈80 h on a standard laptop. This clearly
illustrates the importance of designing fast algorithms for image restoration.
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Fig. 23. Deconvolved object in the case of spatial aliasing by RL after 200 000 iterations:

zoom on the central planet (left) and on the satellite position (right).

Fig. 24. Normalised error in approximating the data ||y−Ho(k)||2
||y||2 (left), and normalized

error with respect to the true object ||o−o(k)||2
||o||2 (right) as a function of the iteration

number.

7 Summary and conclusions

This article tried to provide a detailed introduction to the description of the im-
age formation models for diluted pupils array and their densified versions called
hypertelescopes. These optical systems represent one of the main promises for the
next generation of high angular resolution instruments.

The introduction underlined using historical elements how essential have been
high angular resolution observations, transmission of knowledge, and reliance on
long term research projects to our current representation of the Universe.
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A substantial part of the paper was devoted to the explanations of sampling
issues, of their effects on the observed images, and of possible settings that can be
used to simulate hypertelescopes images.

In the Fizeau mode (no densification), the image model is a convolution. The
densified mode corresponds to hypertelescopes and can be done using either a
periscopic setting or inverted Galilean telescopes. We showed in the Appendix
that both settings are fully equivalent. In the densified case, convolution generally
disappears because frequencies are modulated (translated block-wise), and FAD
yields information loss while FSD does not. A convolution may be retrieved in
the FSD mode only in the limit of vanishingly small subapertures (infinite fields
of view).

This suggests two modeling regimes for densification (hypertelescopes), de-
pending on whether the diameter D is much smaller than the pupil separation
d or not. For hypertelescopes made of very large bases (in the kilometer range)
and of many small telescopes (centimeters), D << d, and a convolution model
may be a good approximation, at least close to the optical axis. For VLTI-like
hypertelescopes, made of moderately large bases (in the hundreds of meter) and
of a few large telescopes (in the tens of meters), D ≈ d and the image formation
models strongly departs from convolution.

We also addressed the issue of restoring such images, and presented classical
methods of constrained ML for Gaussian and Poisson noises (RL and ISRA). Faster
and regularized deconvolution algorithms should be preferred to RL and ISRA. We
provided a detailed survey of such recent methods based on sparse representations.

The two last sections of the paper were dedicated to original studies.
The first study showed that the restoration quality achieved by constrained

ML from photon limited images obtained from a diluted array on a grid, or from
a densified (but free from spectral aliasing) array are essentially equivalent. We
still expect a gain of densified w.r.t. Fizeau images because of the relatively lower
cutoff frequency of the former, although we did not provide results supporting this
assertion.

The second study (last section) showed that it is possible to recover or at least
to “detect” in hypertelescopes (or more generally, interferometric) images quasi
point sources that are not only far outside the clean field, but also superimposed
on the replicas of other objects. This is true at least for the considered pupil array
and in the limit of no noise. Further studies should investigate the effect of noise
on the recovery, and of the magnitude difference for the satellite to be recoverable.

Appendix: Densification using Galilean inverted telescopes and recovery
of former periscopic expressions

The densification of hypertelescopes can be operated in two ways: using a periscope
as in Michelson’s stellar interferometer, or using Galilean inverted telescopes. In
the first case, the distance between the subapertures is reduced in the output
pupil with respect to the input pupil, while their diameter remains fixed. In
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the second case, the relative distances between the subapertures is conserved but
their diameter is magnified. In practice of course, the images are rescaled in both
settings. We show here, by treating in detail the image formation model of Galilean
inverted telescopes, that these two settings are equivalent.

Let us consider a monochromatic plane wave of amplitude A(β) coming from
an angular direction β (βx, βy) on the sky, and emitted by an object of intensity
O(β) = |A(β)|2. This wave produces at position r (rx, ry) in the plane of the input
pupil of a telescope an amplitude A(β) exp(2iπβ.r/λ), where the phase factor
accounts for the tilt of the wavefront and the bold dot means scalar product.

The wave Ψ1(r, β) in the input pupil plane of an interferometer made of an
array of K cophased identical apertures P0(r) centered at spatial positions rk can
thus be written as

Ψ1(r, β) = A(β)
K∑

k=1

P0(r− rk) exp
(

2iπ
β.r
λ

)

= A(β)
K∑

k=1

P0(r) exp
(

2iπ
β.r
λ

)
� δ(r− rk) exp

(
2iπ

β.rk

λ

)
, (7.1)

where the last form was first used by Tallon & Tallon-Bosc (1992) to treat the
effect of the periscopic transformation in Michelson interferometry. This form
explicits the separation between the positions and the geometry of the elementary
apertures.

For a hypertelescope, the densification using the periscopic mode basically
consists of translating the apertures images from the positions rk to the new
positions r′k = rk/γ, where γ is called the densification factor (Labeyrie 1996).
These aspects have been presented in several papers (Tallon & Tallon-Bosc 1992;
Labeyrie 1996; Lardiere et al. 2007; Aime 2008; Aime et al. 2012) and will not be
further detailed here.

In contrast to these papers, we present here the formalism for the densification
using inverted Galilean telescopes, and show that it leads to results that are iden-
tical to the periscopic technique. From a physical point of view this is expected
since the two images of the resulting apertures are identical, up to an irrelevant
magnifying factor. Nevertheless, the presentation of the theory for the inverted
Galilean telescope approach is of interest, at least from a pedagogic point of view.

Using inverted Galilean telescopes for densification amounts to applying a mag-
nification by a real factor γ > 1 of the wave on each elementary aperture, leaving
unchanged the center positions rk. In this operation the amplitude of the light
is divided by the factor γ, to keep unchanged the energy. In Equation (7.1) this
aperture reshaping consists in applying the dilation factor γ to the first term of
the convolution. Let us denotes Ψγ(r, β) this amplitude:

Ψγ(r, β) =
A(β)

γ

K∑
k=1

P0

(
r
γ

)
exp

(
2iπ

β.r
γλ

)
� δ(r− rk) exp

(
2iπ

β.rk

λ

)
. (7.2)

For γ = 1 we obviously recover the original wavefront Ψ1(r, β) of Equation (7.1).
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Now let Aγ(α, β) denote the complex amplitude of the wave in the focal plane
of the telescope, at angular position α(αx, αy) in this plane. This wave is obtained
by a scaled Fourier transform of Ψγ(r, β) (see Aime et al. in these proceedings):

Aγ(α, β) =
1
iλ

∫ ∫
Ψγ(r, β) exp

(
−2iπ

r.α
λ

)
dr

=
γA(β)

iλ

K∑
k=1

P̂0

(
γα− β

λ

)
exp

(
−2iπrk.

(
α− β

λ

))
. (7.3)

The factor γ appears now at the numerator after a change of variable in the
2D integral. The elementary intensity in the case of inverted Galilean telescopes
IG
γ (α, β) produced by the point source coming from the direction β at position α

in the focal plane can therefore be written as:

IG
γ (α, β) = |Aγ(α, β)|2 = Aγ(α, β)A∗

γ(α, β)

= O(β)
γ2

λ2

K∑
k=1

K∑
l=1

∣∣∣∣P̂0

(
γα−β

λ

)∣∣∣∣2 exp
(

2iπ(rk−rl).
(

α− β

λ

))
, (7.4)

where superscript ∗ denotes complex conjugate. IG
γ (α, β) is indeed real (the imag-

inary parts of the complex exponentials involving rk − rl and rl − rk cancel by
pairs); the notation with complex exponentials will later evidence a Fourier trans-
form that will be used in Equation (7.7).

The image in the focal plane IG
γ (α) is obtained by summing all contributions

coming from the object:

IG
γ (α) =

∫ ∫
IG
γ (α, β)dβ. (7.5)

Taking the Fourier transform of IG
γ (α), we also have:

ÎG
γ (u) =

∫ ∫
ÎG
γ (u, β)dβ, (7.6)

where u is the angular frequency associated to α.
Using the notation ukl = (rk − rl)/λ in Equation (7.4), the expression of

ÎG
γ (u, β) can be written as:

ÎG
γ (u, β) =

∫ ∫
IG
γ (α, β) exp(−2iπu.α)dα

= O(β)
K∑

k=1

K∑
l=1

exp(−2iπ
β

γ
.(u+(γ−1)ukl)

∫ ∫
|P̂0(ξ)|2 exp(−2iπξ.

1
γ

(u−ukl))dξ

(7.7)

If we denote by S the telescope area and by T0(u) the normalized optical transfer
function (OTF) defined by

T0(u) =
1
S

∫ ∫
P (r)P ∗(r− λu)dr, (7.8)
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Equation (7.7) becomes

ÎG
γ (u, β) = O(β)

K∑
k=1

K∑
l=1

exp
(
−2iπ

β

γ
.(u + (γ − 1)ukl

)
ST0

(
1
γ

(u− ukl)
)

.

(7.9)

Substituting this expression into Equation (7.6), we obtain:

ÎG
γ (u) =

K∑
k=1

K∑
l=1

Ô

(
1
γ

(u + (γ − 1)ukl)
)

ST0

(
1
γ

(u− ukl)
)

. (7.10)

This expression depends on the collecting surface of the telescope. We can get rid
of this surface by dividing by KS, which finally leads to:

ÎGγ (u) =
1

KS
ÎG
γ (u)

=
1
K

K∑
k=1

K∑
l=1

Ô

(
1
γ

(u + (γ − 1)ukl)
)

T0

(
1
γ

(u− ukl)
)

ÎGγ (u) = Ô

(
u
γ

)
T0

(
u
γ

)
+

1
K

K∑
k=1

K∑
l �=k

Ô

(
1
γ

(u + (γ − 1)ukl)
)

T0

(
1
γ

(u− ukl)
)

.

(7.11)

We see that the sampling in this case operates on a dilated version of the spectrum
Ô(u

γ ) using transfer functions that are dilated as well. Performing the change of
variable ν = u/γ, we recover the periscopic mode:

ÎP
γ (ν) = Ô(ν) T0(ν) +

1
K

K∑
k=1

K∑
l �=k

Ô

(
ν + ukl −

ukl

γ

)
T0

(
ν − ukl

γ

)
, (7.12)

which shows that images obtained by densification in periscopic mode or using
inverted Galilean telescopes are the same (compare to Eq. (2.7) and see Fig. 2).

In both cases, if we take γ = 1 we indeed recover the Fizeau mode of
Equation (2.6):

ÎG
1 (u) = ÎP

1 (u) = ÎF (u) =
K∑

k=1

K∑
l=1

Ô(u)T0(u− ukl). (7.13)
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INTRODUCTION TO THE RESTORATION OF
ASTROPHYSICAL IMAGES BY

MULTISCALE TRANSFORMS AND BAYESIAN METHODS

A. Bijaoui1

Abstract. The image restoration is today an important part of the as-
trophysical data analysis. The denoising and the deblurring can be
efficiently performed using multiscale transforms. The multiresolution
analysis constitutes the fundamental pillar for these transforms. The
discrete wavelet transform is introduced from the theory of the approxi-
mation by translated functions. The continuous wavelet transform car-
ries out a generalization of multiscale representations from translated
and dilated wavelets. The à trous algorithm furnishes its discrete re-
dundant transform. The image denoising is first considered without any
hypothesis on the signal distribution, on the basis of the a contrario de-
tection. Different softening functions are introduced. The introduction
of a regularization constraint may improve the results. The application
of Bayesian methods leads to an automated adaptation of the soften-
ing function to the signal distribution. The MAP principle leads to
the basis pursuit, a sparse decomposition on redundant dictionaries.
Nevertheless the posterior expectation minimizes, scale per scale, the
quadratic error. The proposed deconvolution algorithm is based on a
coupling of the wavelet denoising with an iterative inversion algorithm.
The different methods are illustrated by numerical experiments on a
simulated image similar to images of the deep sky. A white Gaussian
stationary noise was added with three levels. In the conclusion different
important connected problems are tackled.

1 Introduction

The astrophysical images observed by modern instruments are today currently
enhanced by digital processing. In particular, many efforts are done for their
denoising and their deblurring. These operations are often coupled in a global
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image restoration. Generally the problem is written as:

Y = AX + N; (1.1)

where Y, X, A and N are respectively the observed image, the image to be
restored, the blurring linear operator and the noise image.

The inversion is conditioned by two features: the matrix singularities and the
noise level. In the case of a regular blurring matrix and a signal without noise, the
inversion is unique, the problem being only to minimize the number of operations.
In general, the noise level and the matrix singularities lead to inconsistency and
instability. Statistical rules are needed to define the correct solution. A regularity
constraint is also required to select the best one from a given criterion.

In this context, the image representation plays an important part. In the
general case of a space invariant Point Spread Function (PSF), the matrix product
corresponds to a convolution in the direct space and a filtering in the Fourier
one. Thus, the matrix singularities are associated to the frequency holes. Thus, a
method based on the Fourier transform can not fill these holes without a constraint.
In the case of a representation different from a Fourier series, this filling becomes
possible. This is the case for the CLEAN algorithm (Högbom 1974) based on the
consideration that the information consists in sparse Dirac peaks.

The representation plays an important part for the denoising. Its quality de-
pends on the efficiency to concentrate the information into the minimum number
of coefficients; these coefficients being obtained by a suitable transform.

Multiscale transforms were early developed and applied for the image process-
ing (Starck et al. 1998; Mallat 1998). The Multiresolution Theory developed in
80’s is a beautiful framework to get multiscale representations (Mallat 1989). It
leads to the Discrete Wavelet Transform (DWT). Closely related redundant trans-
forms, connected to the continuous wavelet transform (CWT) (Morlet et al. 1982)
carried out better results (Raphan & Simoncelli 2008). Nevertheless a correct
CWT development needs the multiresolution theory.

The present paper constitutes an introduction to this large topic. In Section 2,
the multiresolution theory is developed in the context of the approximation theory
from translated scaling functions. In Section 3, the CWT is then described. It
is shown that the use of scaling functions unifies DWT and CWT. The denoising
is examined in Section 4 from different thresholding rules. In Section 5, a first
Bayesian approach, derived from the Maximum a Posteriori (MAP), leads to the
Basis Pursuit (BP). The Bayesian posterior mean is applied in Section 6. In
Section 7, an application to a deconvolution problem is developed. Finally, in the
conclusion, different uncovered problems are scanned.

2 The multiresolution theory and the DWT

2.1 The approximation by translated functions

The Shannon interpolation. The Shannon interpolation theorem was a milestone
in the signal processing progress (Shannon 1948). A function f(x) ∈ L2(R) is
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interpolated from regularly spaced samples thanks to the relation:

f0(x) =
+∞∑

k=−∞
f(kh)sinc

(x

h
− k

)
; (2.1)

where sinc(x) is the sine cardinal function ( sin πx
πx ) and h the sampling step. The

interpolation is perfect (f0(x) ≡ f(x)) if h ≤ h0, h0 being the Nyquist-Shannon
step:

h0 =
1

2ν0
; (2.2)

where ν0 is the cut-off frequency of the function f(x). In practice, this theorem is
not directly applied due to the slow convergence of the sine cardinal function. It
introduced the idea of interpolations based on translated functions that played a
fundamental part for the building of the multiresolution theory.
The L2 approximation by translated functions. We set now (Schoenberg 1946;
Strang & Fix 1971):

f0(x) =
+∞∑

k=−∞
a(k)ϕ(x − k). (2.3)

Compared to Equation (2.1), the sampling step is set to 1, the sine cardinal func-
tion is changed to the ϕ one, the values at the interpolation mesh f(nh) are
changed to the a(k) coefficients. The goal is not to get f0(k) ≡ f(k). Here, we
search the coefficients a(k) such that the distance between the functions f(x) and
f0(x) is minimum in the L2(R) space, i.e.:

R =
∫ +∞

−∞
|f(x)− f0(x)|2dx (2.4)

is minimum. Taking into account Equation (2.3) we get:∫ +∞

−∞
ϕ(x− k)[f(x)−

+∞∑
l=−∞

a(k)ϕ(x− l)]dx = 0. (2.5)

The following equation is derived:

c(k) =
+∞∑

l=−∞
a(l)A(k − l); (2.6)

with:

A(k − l) =
∫ +∞

−∞
ϕ(x − k)ϕ(x− l)dx; (2.7)

and

c(k) =
∫ +∞

−∞
f(x)ϕ(x − k)dx ≡< f(x), ϕ(x − k) > . (2.8)
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Equation (2.6) is a discrete convolution which can be solved by the application of
the Fourier transform:

ĉ(ν) = â(ν)
+∞∑

n=−∞
Â(ν + n); (2.9)

with Â(ν) = |ϕ̂(ν)|2. The inversion is possible if:

Ŝ(ν) ≡
+∞∑

n=−∞
|ϕ̂(ν + n)|2 �= 0. (2.10)

ϕ(x) is called the scaling function. c(k) is a weighted mean of f(x) around k.
f0(x) is the projection of f(x) into a subspace V0 of L2(R).
Duality and orthogonal scaling functions. If Ŝ(ν) = 1 a(k) = c(k), the approxima-
tion is easily computed from the scalar products c(k).

If, more generally, Relation 2.10 is satisfied for all frequencies, we can derive a
new scaling function ϕ̄(x) from the Fourier transform of the initial one (Daubechies
et al. 1986):

ˆ̄ϕ(ν) =
ϕ̂(ν)√
Ŝ(ν)

. (2.11)

The set {ϕ̄(x − k)} is an orthonormal basis of the V0 subspace. Here the a(k)
coefficients are identical to the c(k) ones. The same scaling function is used for
the analysis (c(k)) and the synthesis (a(k)). This is the case for the Shannon
interpolation, the sine cardinal function being an orthogonal scaling function.

In the case of a non orthogonal scaling function, it is also convenient to intro-
duce the dual scaling function:

ˆ̃ϕ(ν) =
ϕ̂(ν)
Ŝ(ν)

. (2.12)

In this framework, it results that:

f0(x) =
+∞∑

k=−∞
c(k)ϕ̃(x − k). (2.13)

Here the c(k) coefficients are also identical to the a(k) ones. But it is not the same
scaling function used for the analysis (c(k)) and the synthesis (a(k)).
Normalization of the scaling function. In Equation (2.3) the scaling function is
considered without normalization. The orthonormal scaling functions associated
to Equation (2.11) have, by construction, their square integral equal to 1. This is
the general setting in the framework of the multiresolution theory. Nevertheless,
it could be also convenient to choose the integral equal to 1. In this case the
approximation coefficients are local means, weighted by the scaling function.
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The Shannon scaling function. It is easy to show that the shifted sine cardinal
functions with integers are orthogonal. The scaling function is here:

ϕ(x) =
sinπx

πx
· (2.14)

The corresponding V0 subspace is the one of the functions having a frequency sup-
port in [−0.5, 0, 5]. The approximation for a function belonging to V0 corresponds
to the Shannon interpolation. It can be noted that this approximation is invariant
by translation.
The Haar scaling function. The characteristic function, H(x) = 1 for x ∈ [0, 1]
and null outside this interval, is called the Haar scaling function. The functions
shifted with integers are orthogonal. The corresponding V0 subspace is the space
of the staircase functions. Note that this approximation is only invariant by an
integer shift.

2.2 The pyramid of resolution

Scale modification and the dilation equation. The scaling function is dilated by a
factor a, the approximation coefficients become:

c(a, k) =< f(x),
1
a
ϕ
(x

a
− k

)
> . (2.15)

The factor 1
a is introduced to keep constant the integral of the dilated scaling

function. In the case of an orthonormal scaling function, the factor becomes 1√
a

in order to keep the square integral equal to 1.
There is a linear relation between c(k) and c(a, k) if the scaling function satisfies

to the dilation equation (Strang 1989):

1
a
ϕ(

x

a
) =

+∞∑
n=−∞

ha(n)ϕ(x − n). (2.16)

It results that

c(a, k) =
+∞∑

n=−∞
ha(n)c(ak + n). (2.17)

In this framework, the function f(x) has to be known only by its approximation
coefficients c(k). Note that the number of coefficients (for a finite set) is reduced
by a factor a. Most often a = 2, this leads to the so-called dyadic analysis. The
resulting approximation fa(x) belongs to a subset Va which is embedded in V0.
The resolution pyramid. The dilation of the scaling function may be iterated,
leading to the approximations f0(x), fa(x), fa2(x), ... These functions constitute
the pyramid of resolution associated to this analysis. The functions belong to the
subsets V0 ⊃ Va ⊃ Va2 . . .. For a finite initial number of approximation coefficients,
their number is divided by a at each iteration step.
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Examples of scaling functions. It is easy to show that the sine cardinal function
obeys to the dilation equation, whatever the integer a. The generated subspace
corresponds to the functions with a frequency bandwidth 1, 1

a , 1
a2 , ...

The Haar scaling function obeys also to the dilation equation:

Ha(x) =
1
a
[H(x) + H(x− 1) + . . . + H(x− a + 1)]. (2.18)

The B-spline functions (Hou & Andrews 1978) generalize the Haar one. Its cen-
tered version is defined by its Fourier transform:

B̂l(ν) = sincl+1(ν). (2.19)

The Fourier transform of its dilated version is:

B̂l,a = sincl+1(aν). (2.20)

Its quotient with Bl(ν) is:

ĥl,a(ν) =
sincl+1(aν)
sincl+1(ν)

· (2.21)

It is easy to show that it is a 1-periodic function. In particular, for a = 2 we get:

ĥl = cosl+1(ν); (2.22)

which leads to:

hl(n) =
1

2l+1
C

l+1
2 −n

l+1 . (2.23)

The cubic B-spline is often used (Starck et al. 1998). Its coefficients are:

h3(n) =
1
16

C2−n
4 . (2.24)

Case of an orthonormal scaling function. From Equation (2.12) we derive:

+∞∑
n=−∞

|ϕ̂(ν + n)|2 = 1. (2.25)

That leads directly to:
+∞∑

n=−∞
|ϕ̂(2ν + n)|2 = 1. (2.26)

The dilation equation in the Fourier space is written as:

ϕ̂(2ν) = ĥ(ν)ϕ̂(ν). (2.27)
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We have:
+∞∑

n=−∞
|ϕ̂(2ν + n)|2 =

+∞∑
n=−∞

|ϕ̂(2ν + 2n)|2 +
+∞∑

n=−∞
|ϕ̂(2ν + 2n + 1)|2 = 1 (2.28)

Relation 2.27 is applied:

+∞∑
n=−∞

|ĥ(ν + n)|2|ϕ̂(ν + n)|2 +
∣∣∣∣ĥ(

ν + n +
1
2

)∣∣∣∣2 ∣∣∣∣ϕ̂(
ν + n +

1
2

)∣∣∣∣2 = 1 (2.29)

Taking Relation 2.25 and taking into account the periodicity of the function ĥ(ν)
it results finally:

|ĥ(ν)|2 +
∣∣∣∣ĥ(

ν +
1
2

)∣∣∣∣2 = 1. (2.30)

2.3 The 1D multiresolution analysis

The complementary subspace. As V1 ⊂ V0, we can write:

f0(x) = f1(x) + g1(x); (2.31)

where f0 ∈ V0 and f1 ∈ V1. g1 is a function of the complementary subspace W1 of
V1 in V0, i.e. V0 = V1 + W1.
The wavelet basis. g1(x) can be written as:

g1(x) =
∞∑

k=−∞
w(1, k)ψ̃

(x

2
− k

)
. (2.32)

The detail coefficients w(1, k) are obtained by projection on a translated set:

w(1, k) =< f,
1
2
ψ
(x

2
− k

)
> . (2.33)

The w(1, k) computation from the c(k) ones, requires that:

1
2
ψ
(x

2

)
=

∑
n

g(n)ϕ(x − n); (2.34)

i.e. that 1
2ψ(x

2 ) belongs to V0. That leads to the relation:

w(1, k) =
∑

n

g(n)c(2k + n). (2.35)

Orthogonal wavelets. In this case we have:

+∞∑
n=−∞

|ψ̂(ν + n)|2 = 1. (2.36)
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Equation (2.34) is equivalent to:

ψ̂(2ν) = ĝ(ν)ψ̂(ν). (2.37)

Thus, it is derived that:

|ĝ(ν)|2 + |ĝ
(

ν +
1
2

)
|2 = 1. (2.38)

The subspace V1 and W1 being orthogonal we have:∑
n

ϕ̂(ν + n)ψ̂∗(ν + n) = 0. (2.39)

The following relation is derived:

ĥ(ν)ĝ∗(ν) + ĥ

(
ν +

1
2

)
ĝ∗

(
ν +

1
2

)
= 0. (2.40)

Filters h and g satisfying Relations 2.30, 2.38 and 2.40 generate conjugate orthog-
onal scaling and wavelet functions. For a given filter h obeying to 2.30, we can
associate the filter g given by the relation:

ĝ(ν) = e−2iπν ĥ∗
(

ν +
1
2

)
(2.41)

h and g are called Quadrature Mirror Filters (QMF) (Esteban & Galland 1977).
Reconstruction. Any V0 basis function ϕ(x− k) can be written as a sum of V1 and
W1 base functions:

ϕ(x− k) = 2[
∑

l

h(k − 2l)ϕ1(x− 2l) + g(k − 2l)ψ1(x− 2l)]. (2.42)

That leads to get the approximation coefficients by projection:

c(k) = 2[
∑

l

h(k − 2l)c(1, l) + g(k − 2l)w(1, l)]. (2.43)

The multiresolution analysis. From the approximation coefficients c(1, k), it is
possible to iterate by a new dilation of the scaling and of the wavelet functions.
By iteration we obtained a set of details w(i, k) such that the function f(x) can
be written as:

f(x) =
∞∑

i,k=−∞
w(i, k)ψ̃

( x

2i
− k

)
(2.44)

for any function of the L2(R) space (Mallat 1989).
The recurrence formulae and the filter bank. The previous developments are sum-
marized as:
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Approximation c(i, k) =
∑

n h(n)c(i− 1, 2k + n);

Wavelets w(i, k) =
∑

n g(n)c(i− 1, 2k + n);

Reconstruction c(i, k) = 2[
∑

l h̃(k + 2l)c(i + 1, l) + g̃(k + 2l)c(i + 1, l)].]

In the case of orthogonal scaling and wavelet functions, h̃(n) = h(−n) and g̃(n) =
g(−n). The resulting algorithm flow-chart is drawn in Figure 1. This algorithm
is known as the filter bank one (Vitterli 1986). The data vector inputs at the top
left. It is convolved with the two filters H (low passband) and G (high passband).
The resulting vectors are decimated, by removing every other point. The smoothed
values are convolved again, and so on, up to get one value. The restoration consists
to introduce a 0 between two approximation or two detail coefficients. We start
from the bottom right, and progressively the signal is restored from the largest
scale to the smallest one. The convolutions are done with the filter H̃ and G̃.

H HH

2

G G G GGG

2 2 2

22 2

2 2 2

2

H
~

G
~

G
~

G
~

H
~

H
~

2

H
~

22

G
~

++ + +2

Fig. 1. Flow-chart of the filter bank algorithm.

The algorithm was developed from the multiresolution theory. But it is more
general. The restoration is perfect only if the filters h, h̃, g and g̃ satisfied the
following conditions called perfect reconstruction and antialiasing conditions:

ĥ(ν)ˆ̃h(ν) + ĝ(ν)ˆ̃g(ν) = 1; (2.45)

ĥ(ν)ˆ̃g(ν) + ĥ

(
ν +

1
2

)
ˆ̃g
(

ν +
1
2

)
= 0. (2.46)

The Daubechies wavelets. The Haar transform is associated to the filters:

h(0) = h(1) =
1√
2

h(n) = 0 n �= (0, 1). (2.47)
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The corresponding high pass filter is

g(0) =
1√
2

g(1) = − 1√
2

h(n) = 0 n �= (0, 1). (2.48)

The algorithm is very fast. K operations are required for the transform and its
inverse for a signal with K elements.

Daubechies (1988) generalized the Haar transform with compact filters. They
are widely applied in modern signal processing. Later on in this paper, Daubechies’
filters of length 8 are applied.

2.4 The 2D multiresolution

The 2D approximation by translated scaling functions. The concept of approxima-
tion by translated scaling functions in L2(R) is easily extended to 2 (and more)
dimensions. If f(x, y) is the function to be approximated and ϕ(x, y) the scaling
function, the approximation coefficients are:

c(0, k, l) =< f(x, y), ϕ(x − k, y − l) > . (2.49)

The corresponding approximation is:

f0(x, y) =
∑
k,l

c(0, k, l)ϕ̃(x− k, y − l) (2.50)

where ϕ̃(x, y) is the dual scaling function. This function exists if:∑
n,m

|ϕ̂(u + n, v + m)|2 �= 0. (2.51)

The approximation is a f(x, y) projection on the V0 subspace of L2(R2).
The 2D dilation equation. The approximation for a scaling function dilated by a
factor a in each direction can be computed from the c(0, k, l) coefficients if:

1
a2

ϕ(
x

a
,
y

a
) =

∑
n,m

h(n, m)ϕ(x− n, y −m). (2.52)

Most often the variables are separated:

ϕ(x, y) ≡ ϕ(x)ϕ(y) (2.53)

where ϕ(x) satisfies the 1D dilation equation.
The wavelets. Taking into account the variable separation the V0 subspace is
divided in four subspaces:

V1 the subspace corresponding to the approximation at scale 2. It is computed
with the filter h(n)h(m). The scaling function is 1

4ϕ(x
2 )ϕ(y

2 ).
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W1,h associated to the horizontal details. The wavelet coefficients are computed
with the filter g(n)h(m). The wavelet function is 1

4ψ(x
2 )ϕ(y

2 ).

W1,v associated to the vertical details. The wavelet coefficients are computed with
the filter h(n)g(m). The wavelet function is 1

4ϕ(x
2 )ψ(y

2 ).

W1,d associated to the diagonal details. The wavelet coefficients are computed
with the filter g(n)g(m). The wavelet function is 1

4ψ(x
2 )ψ(y

2 ).

In this framework, the 2D filter bank algorithm is easily deduced from the 1D one.

3 The continuous wavelet transform

3.1 Generalities

Definition and main properties. The Morlet-Grossmann definition of the continu-
ous wavelet transform (Grossmann & Morlet 1984) for a 1D signal f(x) ∈ L2(R)
is:

W (a, b) = N(a)
∫ +∞

−∞
f(x)ψ∗

(
x− b

a

)
dx; (3.1)

where z∗ notes the complex conjugate of z, ψ∗(x) is the analyzing wavelet, a (> 0)
is the scale parameter and b is the position parameter. Grossmann & Morlet set
N(a) = 1√

a
, but it is often convenient to set N(a) = 1

a . The transformation is
linear, covariant under translations and under dilations. The last property makes
the wavelet transform very suitable for analyzing hierarchical structures. It is like a
mathematical microscope with properties that do not depend on the magnification.
Inversion. Consider now a function W (a, b) which is the wavelet transform of a
given function f(x). f(x) can be restored by using the formula (Grossmann &
Morlet 1984):

f(x) =
1

Cψ

∫ +∞

0

∫ +∞

−∞

1√
a
W (a, b)ψ

(
x− b

a

)
da.db

a2
; (3.2)

where:

Cψ =
∫ +∞

0

|ψ̂(ν)|2
ν

dν. (3.3)

The reconstruction is only available if Cψ is defined (admissibility condition). This
condition is generally true if ψ̂(0) = 0, i.e. the mean of the wavelet function is 0.

3.2 The discrete wavelet transform

The transform sampling. The image sampling is generally made according to the
Shannon theorem. The discrete wavelet transform (DWT) can be derived from
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this theorem. If the wavelet function has no cut-off frequency, the transform cut-
off frequency is the signal one, whatever the scale. So if K is the number of signal
elements and I the number of scales the transform has KI elements.

In the case of a wavelet function having the cut-off frequency 1
2 , at each dyadic

scale the cut-off frequency is divided by two. Thus, the sampling step can be
multiplied by a factor 2. The total transform length becomes about 2K.

Generally the scales are sampled according to a 2i law. Nevertheless it is not
guaranteed that all the information on the CWT is kept by this sampling.
Direct transformations. The DWT can be obtained directly by convolution, using
a compact wavelet function. As the scale increases, the CPU time increases in
proportion. So, in practice this method is not easy to use.

It is possible to work in the Fourier space, computing the transform scale by
scale. The number of elements for a scale can be reduced for a wavelet having a
cut-off frequency. Here, the CPU time is proportional to K log(K).
The transform from the filter bank. In fact, in the previous section, beyond the
multiresolution theory, we examined a fast DWT algorithm based on the filter
bank. The transform size is K and the computing time is proportional to K.

3.3 The wavelet approximation and the à trous algorithm

The sampled wavelet function at scale 1. Let us consider a real wavelet func-
tion which can be written as an approximation from translated scaling functions
(Eq. (2.34)). Let us admit that we know the sampled approximation coefficients
c(0, k) =< f(x), ϕ(x − k) >. The sampled continuous wavelet function at scale
a = 2 can written as (N(a) = 1/a):

w(1, k) =
∑

n

g(n)c(0, k + n). (3.4)

This expression is similar to 2.3, but the array is not decimated, the factor 2 being
not present. Note that in the following, the scale of the wavelet transform will
design the exponent i of the true scale a = 2i.
The recurrence expressions. We want to compute w(2, k) using a similar formula.
The scaling function ϕ(x) is chosen to satisfy the dilation Equation (2.16). In this
framework, we have for the approximation coefficients:

c(i + 1, k) = < f(x),
1

2i+1
ϕ
( x

2i+1
− k

)
> = < f(x),

1
2i

∑
n

h(n)ϕ
( x

2i
− k

)
>;

(3.5)
which leads to:

c(i + 1, k) =
∑

n

h(n)c(i, k + 2in). (3.6)

Similarly we get:
w(i + 1, k) =

∑
n

g(n)c(i, k + 2in). (3.7)
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The interpolation and the wavelet coefficients are computed with a linear operation
similar to a convolution but we jump a set of 2i − 1 points. For that reason, this
algorithm is called the à trous algorithm (algorithm with holes) (Holschneider
et al. 1989). The flow-chart of this algorithm is drawn in Figure 2. A set of
K log2 K values of the wavelet transform is obtained, with a number of operations
proportional to K log2 K.

Fig. 2. Flow-chart of the à trous algorithm.

The inversion. Here, the transform is undecimated. Thus we get a transform size
larger than the input signal one. The inverse system is over-determined. If the
{w(i, k)} set is a wavelet transform, it is easy to restore the approximation scale
by scale using dual filters h̃ and g̃ which have to satisfy the relation:

ĥ(ν)ˆ̃h(ν) + ĝ(ν)ˆ̃g(ν) = 1. (3.8)

The filters choice is large. A simple algorithm consists in making the difference
between two approximations (Bijaoui et al. 1994):

w(i + 1, k) = c(i, k)− c(i + 1, k). (3.9)

Here the inversion is obvious.
The inversion of a modified wavelet transform. If the {w(i, k)} set is not the
wavelet transform of a given signal, nevertheless a signal {c(0, k)} will be obtained
by inversion. But its wavelet transform {ws(i, k)} can be different from {w(i, k)}.
This point is important for image restoration. In this framework most often a
softening rule is applied on the wavelet coefficients. There is a duality between
the wavelet transform and the signal for the orthogonal DWT. But this duality
vanishes for the redundant undecimated wavelet transform (UDWT) associated
to the à trous algorithm. Some cautions have to be taken for the inversion. A
classical solving method consists to obtain the orthogonal projection of {w(i, k)} in
the space generated by the wavelet transforms of all the signals. That corresponds
to get the set {c(0, k)} such that its wavelet transform {ws(i, k)} has the minimum
distance to the input set {w(i, k)}. Obviously the inversion algorithm is slowed.
The shift-invariant wavelet transform. Coifman & Donoho (1995) introduced a
variant of the à trous algorithm based on the orthogonal wavelet transform. The
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transform becomes shift invariant by removing the decimation of the coefficients
(approximation and wavelet). The inversion is done by taking into account the
coefficient interleaving generated by the lack of decimation. A same pixel is thus
many times reconstructed, the mean is done in the proposed algorithm. This
algorithm has the advantage to inverse from the filter bank.
The pyramidal transform. The undecimated wavelet transform may correspond
to a too important data array for large images. At each step of the algorithm
the approximation coefficients can be removed without decimating the wavelet
array. We get a pyramidal set of values. The number of data is now 2N and the
number of operations is proportional to N . The inversion is based on an orthogonal
projection, obtained by an iterative algorithm.

3.4 The two-dimensional continuous wavelet transform

General definition. The wavelet dilation is not necessarily isotropic, i.e. identical
whatever the direction. But it can be seen as a dilation in two orthogonal direc-
tions. The reference frame can be also rotated with a θ angle. That leads to the
coordinate transform:

R(x, y, ax, ay, θ) =

(
1

ax
0

0 1
ay

)(
cos θ − sin θ
sin θ cos θ

)(
x
y

)
. (3.10)

The wavelet transform becomes:

w(bx, by, ax, ay, θ) = N(ab) < f(x, y), ψ∗(|R(x− bx, y − by, ax, ay, θ)|) >; (3.11)

where |R| designs the module of the vector R. The resulting transform is thus a
5D function. Its sampling rules are not evident, especially for the angular variable.
The isotropic 2D CWT. Most often the 2D CWT is applied in its simplified
isotropic version:

w(bx, by, a) = N(a2) < f(x, y), ψ∗
(x

a
,
y

a

)
> . (3.12)

The two dimensional à trous algorithm. The à trous and the pyramidal algorithms
can be easily transposed in two dimensions taking into account the use of a scaling
function which satisfies to the 2D dilation equation. The algorithms are simplified
in the case of a variable separation (ϕ(x, y) ≡ ϕ(x)ϕ(y)). The à trous computation
of the approximation coefficients is obtained with the expression:

c(i + 1, k, l) =
∑
n,m

h(n)h(m)c(i, k + 2in, l + 2im); (3.13)

while the wavelet coefficients are computed with:

w(i + 1, k, l) =
∑
n,m

g(n, m)c(i, k + 2in, l + 2im). (3.14)
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The wavelet function is not necessarily separated in the two directions. For exam-
ple, the wavelet associated to the difference between two successive approximations
is not separable.

Quasi isotropic scaling functions. For the coherence of the method it would be
convenient to process the data with an isotropic scaling function. The Gaussian
is the single function which is separable and isotropic. But this function does not
satisfy the dilation equation.

The centered B-splines tends for an increasing index to the Gaussian. Thus,
its use allows a quasi isotropic analysis with fast computations, for the à trous and
for the pyramidal algorithms.

4 Image denoising from significant coefficients

4.1 The significant coefficients

The quality criterion. Let us consider a discrete noisy signal Y = X+N. X is the
true signal vector and N its associated noise. The signal denoising consists into
the operation O(Y) → X̄ such that this vector is the closest to X. The distance
criterion depends on the noise statistics. The case of a stationary white Gaussian
noise is only examined in the present paper. Some methods adapted to other
noise statistics are indicated in the conclusion. For this statistical distribution,
the Euclidian distance is the universal criterion. It is converted into the Signal to
Noise Ratio (SNR) defined as:

SNR = 10 log10

|X̄−X|2
|X|2 · (4.1)

The distribution of the transform coefficients. Let us admit that an orthonormal

transform is applied on Y. That corresponds to apply a rotation in the signal
space. Thus, the noise is still Gaussian, stationary and white. This operation
seems to be useless. But the transform can deeply modify the signal statistics. For
example, let us consider a signal which is spatially quite uniformly distributed.
Even if the pixel distribution law seems to do not depend on the position, its
Fourier transform at the lowest frequencies correspond generally to the highest
coefficient values; while the values at the highest frequencies can appear very faint
compared to the noise deviation. The Wiener denoising (Wiener 1949) is a filtering
based on the ratio between the signal and the noise at each frequency. This filter
takes thus into account the information content.

This separation between the low and the high frequencies comes at the cost
of a space delocalization. At the contrary of the Fourier transform, the DWT
allows both a space and a frequency (scale) representation. Even if there is no
global information detected at small scales, few coefficients could be significant. A
wavelet denoising would restore this information while the Fourier filtering would
remove it.
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The best transform for the denoising is the one which optimizes the separation
between the signal and the noise. That depends on the considered images; but
many experiments showed that the DWT is well-adapted for the astronomical
images.
Mean coefficient property. Let us consider a DWT coefficient, it can be written
as:

w(i, k, l) =
∑
n,m

gi(n, m)c(k + n, l + m); (4.2)

where {c(k, l)} is the discrete signal and gi(n, m) is the discrete wavelet filter at
scale i. The filter is a pass-band one, thus we have:∑

n

gi(n, m) = 0. (4.3)

By consequence the mean DWT coefficient is also equal to 0 whatever the image
background. The distribution of the wavelet coefficients is centered at each scale.

Now, if the signal is constant on the support of the filter (admitted to be
compact), the wavelet coefficient is null. Due to the noise, the distribution of the
observed coefficients would be a centered Gaussian with a deviation equal to the
noise deviation σ for an orthonormal transform.
Significant coefficients. Let us consider a coefficient w(i, k, l). If its value is posi-
tive, we consider the probability p = Prob[W > w(i, k, l)], where W is the stochas-
tic variable associated to the noise distribution of the wavelet coefficient. p < ε
means that the probability of getting the value from a constant signal is fainter
that the significance level ε. That leads to introduce a threshold T (ε) such that:

Prob(w(i, k) > T ) < ε or Prob(w(i, k) < −T ) < ε. (4.4)

For a Gaussian distribution, the significance ε is translated into a factor of the
noise deviation (T = κσ). Note that, if the image has 1000 × 1000 pixels and
ε = 0.001, statistically 1000 positive coefficients (false alarms) appear significant
for a noisy uniform image. 1000 negative coefficients also appear significant. The
false alarm rate is identical to the significance threshold. Here this threshold is
equal to 3.09σ, σ being the standard deviation of the Gaussian noise distribution.

4.2 Denoising from thresholdings

The material for the experiments. The restoration tests were done on a simulated
image (Mel1) composed as a sum of 2D Gaussian functions. Their amplitudes are
distributed according to a power law, in order to get an image like astronomical
ones. A white Gaussian noise at the levels 0.007, 0.07 and 0.7 was added. In
Figure 3 the simulated 256×256 images are displayed. Their SNRs are respectively
14.73, −5.27 and −25.27 dB.
Hard thresholding (HT). The basic method consists into the image reconstruc-
tion from only the significant coefficients, according to the threshold T (Starck &
Bijaoui 1994).
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Fig. 3. The simulated images used for the tests by lexicographic order: reference and

noisy images with increasing noise level b1, b2 and b3.

Soft thresholding (ST). The images restored with the previous method display some
punctual defaults due to the discontinuities introduced by the hard thresholding.
Donoho (1995) proposed to soften them with the following rules

w(i, k, l) > T w̃(i, k, l) = w(i, k, l)− T ; (4.5)
w(i, k, l) < −T w̃(i, k, l) = w(i, k, l) + T ; (4.6)
|w(i, k, l)| < T w̃(i, k, l) = 0. (4.7)

Modified soft thresholding (MST). In previous rules the coefficients are modified
even if they are largely significant. In a modified softening we proposed rules with
two thresholds to keep them (Bijaoui et al. 1997).

|w(i, k, l)| ≥ T2 w̃(i, k, l) = w(i, k, l); (4.8)
|w(i, k, l)| ≤ T1 w̃(i, k, l) = 0; (4.9)

T1 < |w(i, k, l)| < T2 w̃(i, k, l) = w(i, k, l)
|w(i, k, l)| − T1

T2 − T1
· (4.10)

The thresholds. The denoising depends on the chosen κ parameter. In the pre-
sented experiments, we set different values, often the same for the whole scales.
In the two thresholds case, we set κ1 = 3.5 and κ2 = 4.5. The corresponding false
alarm rates are respectively 4.710−4 and 6.7.10−6, taking into account the two
signs.

Donoho & Johnstone (1994) introduced a thresholding rule (DST) based on the
minimum risk leading to a threshold depending on the number K of independent
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wavelet coefficients (which is the case for an orthogonal DWT):

κ =
√

2 log2(K). (4.11)

As K decreases with the scale by a factor 4 in 2D, the threshold decreases with
it. A similar rule was also applied to the à trous algorithm with MST (SMST).
The experiments. In Figure 4 The Haar transform of the Mel1 and the b1 images
are plotted. That shows the effect of the noise with the scales. At right of the
figure, the denoised b1 image seems quite good. A faint block effect can be identi-
fied on this image. On Figure 5 the denoised images obtained for b2 (left) and b3
(right) are displayed. The best images were selected on the different thresholding
methods. The block effect largely increases with the noise. This is due to the fact
that the noise increasing more and more coefficients become insignificant. The im-
ages are thus reconstructed by less and less coefficients, displaying the staircases
associated to the Haar scaling function.

Fig. 4. The Haar transform of the Mel1 and b1 images. At right, the denoised image

with the Haar transform and a hard thresholding at 3σ.

In Figure 6 the best denoised images obtained for b1 (left), b2 (middle) and b3
(right) with the Dauchechies 8 transform are displayed. There is no block effect,
but a ringing appears around the bright objets. Due the reduction of the number
of coefficients, these objects are characterized by peaks in the wavelet transform.
Their reconstruction corresponds to the wavy wavelet pattern.

In Figure 7 the wavelet transform obtained with the à trous algorithm on b1 is
displayed on 6 scales. The noise is clearly identified at the first scale. In Figure 8
the best denoised images obtained for b1 (left), b2 (middle) and b3 (right) with
the à trous algorithm are displayed. There is no block effect, neither ringing. Some
faint holes appeared around bright objects.

In Table 1 the SNRs obtained from different experiments are given. We can
note that the denoisings obtained from the Haar transform are generally the worst
ones. The effect of the thresholdings depends on the transform, the threshold
and the initial SNR. The application of the redundant à trous algorithm seems
to improve the denoising; but for a low SNR the Dauchechies 8 transform carries
out the best result. Thus, the analysis shows that the choice of the best method
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Fig. 5. The best denoised images for b2 and b3 with the Haar transform.

b1 D8 Hard 4 b2 D8 Hard 4 b3 D8 Soft 4

Fig. 6. The best denoised images with the Daubechies 8 transform.

Table 1. SNR obtained on the three different images with different algorithms.

Method b1 b2 b3
Haar HT κ = 3 19.49 6.06 −11.18
Haar HT κ = 4 18.77 7.82 −0.60
Haar ST κ = 3 17.25 7.06 0.37
Haar ST κ = 4 15.89 5.94 1.09

Daubechies 8 HT κ = 3 24.26 7.12 −10.78
Daubechies 8 HT κ = 4 24.46 9.33 −0.19
Daubechies 8 ST κ = 3 21.28 8.03 0.52
Daubechies 8 ST κ = 4 19.72 6.69 1.23

AT MST 26.46 12.25 −0.53
AT SMST 28.22 13.83 −2.96

depends on the input SNR. The adaptation needs to implement a thresholding
algorithm taking into account the prior signal distribution, i.e. an algorithm
based on a Bayesian statistics.
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Fig. 7. The à trous wavelet transform of the b1 image.

Fig. 8. The best denoised images with the à trous algorithm.

4.3 The regularization and the thresholding

Relation between close coefficients. In the previous methods the denoising was
based on a local approach, the pixels were thresholded independently of each
other. The environment played a role only in the computation of the wavelet co-
efficient. There are different ways to exploit the correlation between close wavelet
coefficients. Here, a simple method based on the regularization is presented.
Values of non significant coefficients. In the HT case the wavelet coefficients
are separated in two classes according to their values compared to the threshold.
The raw reconstruction consists into the application of the inverse transform with
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setting 0 for the non significant coefficients. Some artifacts, like block effects for
the Haar transform, appeared in the restoration. In reality, the true value of a
non significant coefficient is not null but faint.

Instead of inversing with null values we search to get a function f(k, l) which
minimizes a given objective function C(f). The problem can be written as: de-
termine f(k, l) such that C(f) is minimum and wf (i, k, l) = w(i, k, l) for each
significant coefficient.
The application of the Tikhonov objective criterion. We set (Bobichon & Bijaoui
1997):

C(f) ≡ |Dk(f)|2 + |Dl(f)|2; (4.12)

where Dk(f) and Dl(f) are respectively the derivatives on the k and l directions.
The C(f) minimization is equivalent to:

L(f) = 0 (4.13)

where L is the image Laplacian. The Van-Cittert algorithm (see Sect. 7.2) leads
to an iterated solution:

f (n+1) = f (n) + α[0− L(f (n))] = f (n) − αL(f (n)). (4.14)

where α is an adapted factor. For significant wavelet coefficients, we set:

wf(n+1)(i, k, l) = w(i, k, l). (4.15)

This operation allows the reduction of the block effects for the Haar transform.
The restoration is also improved for the other DWT. Few iterations are generally
needed.
Case of a softening function. Here, the wavelet coefficients are softened by a
relation:

w̃(i, k, l) = �w(i, k, l) with � = S(w(i, k, l)). (4.16)

Here S(w) is called the softening function. It takes values in the interval [0, 1].
The application of the regularization can be done by considering � as a weight.
So after applying 4.14, we set (Jammal & Bijaoui 2004):

w̃fn+1(i, k, l) = �w(i, k, l) + (1 −�))wfn+1(i, k, l). (4.17)

For the highly significant coefficients, � � 1, no modification is done. While,
for non significant ones � � 0, the algorithm furnishes the values given from the
regularization.
The experiments. In Figure 9 the best denoised images obtained for b1 (left),
b2 (middle) and b3 (right) with the à trous algorithm with regularization are
displayed. There is no block effect, neither ringing. Some faint holes appeared
around bright objects.

In Table 2 the results obtained with the application of the regularization, with
the à trous algorithm are given. 10 iterations were applied. The regularization
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Fig. 9. The best denoised images with the à trous algorithm and Tikhonov regularization

of the image.

Table 2. The SNRs obtained after regularization with the Tikhonov constraint.

Method b1 b2 b3
AT-HT 28.29 11.67 −5.48
AT-ST 27.27 10.85 −7.70

AT-DST 24.67 12.55 1.2

allowed a gain in the SNR for the hard thresholding at high SNR level. The gain
is less clear at low SNR.

The method was applied to a deconvolution in order to examine the possibility
to restore images compressed with the Haar transform (Bobichon & Bijaoui 1997;
Jammal & Bijaoui 2004; Dollet et al. 2004).

5 Image denoising from the maximum a posteriori

5.1 The Bayesian estimations

The posed problem. Let us consider a statistical variable x. It is observed with a
noise having a dispersion law q(y|x). The denoising needs to answer the question
of what we can say about x knowing y. In the previous sections, only significant
coefficients were kept, possibly after a softening. The signal distribution was not
taken into account. It was noted that the method carrying out best results depends
on the signal-to-noise ratio. Thus, it is necessary to take into account the prior
distribution px(x). That leads to apply the Bayes rule to get the conditional
posterior PDF:

px|y =
px(x)q(y|x)

py(y)
; with py(y) =

∫ +∞

−∞
px(x)q(y|x)dx. (5.1)

From the observation y, knowing the dispersion and the x prior PDF, we get
the x posterior PDF. As it is irrelevant to furnish this law for each observed value,



A. Bijaoui: Image Restoration from Multiscale Transforms 287

a simple estimate is derived. The maximum of the posterior PDF (MAP) is the
most often furnished estimate.
The MAP and the regularization theory. The MAP estimate can be written as:

x̂ = Arg minx[− log(q(y|x)) − log(px(x))]. (5.2)

This expression is similar to the one introduced in the regularization theory. The
first term corresponds to the data attachment J2(y, x); the second one to the objec-
tive function J1(x) = − log(px(x)). In the general case of the regularization theory,
the objective function can be formalized independently of a prior distribution.
The case of a Gaussian white noise. From Equation (5.2) we get directly:

x̂ = y + σ2 ∂ log(px(x̂))
∂x

; (5.3)

where σ is the standard deviation of the Gaussian noise distribution. Thus, x̂ is
obtained by solving an equation which may have many roots. That depends on
the prior signal law. This law could be determined from the observed y PDF, by
solving a deconvolution equation. This operation is delicate due to the histogram
fluctuations.
The generalized Gaussian function and the Lq regularization. Experiments on
natural images have been carried to model the out PDFs of their wavelet coeffi-
cients with extended tails. The prior PDFs were fitted with generalized Gaussian
(Moulin & Liu 1998):

px(x) = ae−
|x|q

b . (5.4)

Coupled to Equation (5.2) that leads to the relation:

x̂ = Arg minx

[
(y − x)2

2σ2
+ λ|x|q

]
. (5.5)

In this relation λ = 1/b In the Gaussian case (q = 2), with a signal with a variance
s, we get the Wiener filter (Wiener 1949):

x̂ =
s2

s2 + σ2
y. (5.6)

In the case of a Laplacian distribution (q = 1) of parameter b, the solution is the
soft thresholding with the threshold σ2

b . For a lower exponent, the filter tends to
become a hard thresholding.

5.2 The basis pursuit

Principles. Chen et al. (1998) posed the restoration problem as:

Y = AΨZ + N (5.7)
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where Ψ is a set (dictionary) of atoms and Z the related coefficients allowing the
restoration of the image X = ΨZ. In this section, only the case A = I is examined.
An image atom is a given function, generally, but not necessarily, with a null mean.
It can be obtained by translation and dilation of a generative function, like for the
wavelet transform. A dictionary may be the union of primary dictionaries. A
dictionary can be redundant, in which case the Gram matrix computed with these
atoms is singular. In this case, a selection has to be done in order to restore the
image with few atoms. There are many atom combinations leading to restore the
same signal. The basis pursuit consists into the application of the MAP principle.
That leads to search the atoms such that:

|Y −ΨZ|2 + λ|Z|q (5.8)

is minimum. q = 0 corresponds to minimize the number of atoms (�0). Chen
et al. (1998) proposed q = 1 which furnishes also a sparse representation. λ is the
Lagrangian parameter. Its value results from the respect of the data attachment
constraint.
The matching pursuit algorithm. In the �0 case, Equation (5.8) can be approxi-
matively solved through a matching pursuit algorithm (Mallat & Zhang 1993). It
is a greedy algorithm which progressively identifies the different atoms. Whatever
the algorithm used to solved 5.8, generally it can not be proved that the minimum
number of components is reached. Nevertheless, the matching pursuit algorithms,
and specifically the orthogonal matching pursuit (OMP) (Pati et al. 1993) algo-
rithms are very popular (Tropp 2004).
The �1 case. Let us consider the case of an orthogonal wavelet dictionary.
Equation (5.8) leads to:

ΨT Y − (ΨT Ψ)−1Z− λsign(Z) = 0. (5.9)

ΨT Y is the image wavelet transform W. ΨT Ψ is the identity matrix. Thus we
write:

Z = W− λsign(Z). (5.10)

The algorithm corresponds to a soft thresholding; λ being chosen to satisfy the
data attachment condition.

In the case of redundant dictionaries, the basis pursuit algorithm allows the
minimization with a sparse representation. Different optimization algorithms were
proposed. In particular the Block-Coordinate Relaxation (BCR) method (Bruce
et al. 1998) leads to fast computations (Starck et al. 2004).
The Morphological Component Analysis (MCA). (Starck et al. 2004) This method
was developed from the use of different transforms, such as the wavelet, the ridgelet
(Candès 1998), the curvelet (Candès & Donoho 1999) and DCT (Ahmed et al.
1974) ones. BCR (Bruce et al. 1998) was used for obtaining the optimal represen-
tation. MCA was developed both with the �0 and the �1 norms.
The matching pursuit with the à trous algorithm. Instead of using dictionaries of
orthonormal bases, it is possible to develop a sparse representation from the à
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trous or the pyramidal algorithms (Bijaoui 2008). The corresponding atoms are
progressively identified taking into account a threshold which decreases at each
iteration. It is not guaranteed that the minimum number of atoms is reached with
this greedy algorithm.

In Figure 10 the denoised images obtained for b1 (left), b2 (middle) and b3
(right) with this algorithm are displayed. The atoms are identified with the à
trous wavelet transform using a matching pursuit algorithm A hard thresholding
is performed with a threshold equal to 4. Thanks to the representation, the images
appear very clean, without noise. Nevertheless the SNRs are not the best ones,
26.17 for b1, 12.07 for b2 and −1.09 for b3. The number of pyrels are respectively
702, 149 and 25. Compared to the number of pixels (65736) that corresponds to
a high compression factor (94, 441 and 2629).

Fig. 10. The images resulting from the matching pursuit algorithm.

6 Image denoising from the posterior mean

6.1 The posterior mean

The minimum mean square estimator. MAP takes into account only the posterior
distribution around its maximum which does not characterize the whole distri-
bution. The expectation minimizes the mean square error (MMSE). Its value is:

x̂ =
∫ +∞

−∞
x

px(x)q(y|x)dx∫ +∞
−∞ px(x)q(y|x)dx

· (6.1)

The MMSE evaluation. From Equation (6.1) we note that the evaluation of x̂
needs to know the dispersion law q(y|x) and the prior one px(x). In this paper, it
is admitted that the noise is white and Gaussian. As for the MAP estimation we
have to evaluate the prior distribution.

Since Robbins’ seminal work (Robbins 1956), it is known that the MMSE can
be determined directly from the observed posterior distribution py(y) for different
dispersion PDFs. This is the case for the Gaussian one.
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The Miyasawa relation. Taking into account that:

q(y|x) =
1√
2πσ

e−
(y−x)2

2σ2 ; (6.2)

we get:

x̂ = y +
1√
2πσ

∫ +∞
−∞ (x− y)px(x)e−

(y−x)2

2σ2 dx

py(y)
· (6.3)

As:
∂py(y)

∂y
=

1
σ2

∫ +∞

−∞
(x− y)px(x)q(y|x)dx; (6.4)

we get the Miyasawa relation (Miyasawa 1961):

x̂ = y + σ2 ∂ log py(y)
∂y

· (6.5)

Note that the estimate depends only on the distribution of the observed variable
y. We can also note the similarity between the Equations (5.3) and (6.5). But in
the first case (MAP) the estimate is the solution of an equation which requires the
knowledge of the prior PDF, while for the MMSE the estimate is directly furnished
by a relation which takes into account the PDF of the observed variable.

6.2 Application of the Miyasawa relation

Application to the denoising with the DWT. Here, it is set that the variable y is the
wavelet coefficient at a given scale. Thus, each wavelet plane is analyzed separately.
It exists some correlation between the coefficients at the different scales, even for
an orthogonal DWT. Thus, even if the MMSE is obtained at each scale, that does
not guarantee that it is globally reached.
The estimation of the coefficients distribution. Relation 6.5 appears at the first
glance very easy to exploit. However, the estimate depends on the derivative of
the logarithm of the PDF, which is hard to correctly estimate. It is posed that the
image is the realization of a stationary process. Thus, the coefficient histogram is
the empirical p(y) statistics. Its noise results from a Bernoulli distribution. That
leads to very bad estimations for the distribution tails. Different approaches were
proposed to improve the estimation (Bijaoui 2006, 2009):

• The Parzen method based on a sum of shifted windows (Parzen 1962). This
method gives bad estimation for the tails. The window size has to be adapted
to the event frequency.

• A denoising based on the wavelet transform (Bijaoui 2006). The Bernoulli
noise increases the difficulty.

• A PDF model based on truncated distributions. Raphan & Simoncelli (2007)
proposed exponentials. The use of Gaussians leads to easier computations
(Bijaoui 2009).
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• In the case of astronomical images, the PDF of the observed wavelet coef-
ficients may be fitted by a Voigt function (Garćıa 2006), a convolution of a
Gaussian with a Lorentzian function (Laplace PDF).

• The PDF can be approximated by a sum of Gaussians (Bijaoui 2002). The
EM algorithm can be applied to determine the parameters (Bijaoui 2011).
A simple mixture model furnishes a nice approximation to compute the soft-
ening filter (Bijaoui 2002).

A simple model for a MMSE estimation. First experiments showed on astronomi-
cal images that two Gaussian functions were extracted from the histogram of the
wavelet transform at small scales: i/the Gaussian corresponding to the noise, ii/ a
second one larger which corresponds to the sum of a signal with the noise. Thus,
the PDF can be written as:

p(y) = (1− a)G(y, N) + aG(y, S + N); (6.6)

where G(y, V ) is a centered Gaussian with a variance V .
The noise variance N is supposed to be known. Only a and S have to be

determined at each scale. These parameters can be estimated from the variance
M2 and the 4th-order moment M4:

M2 = (1 − a)N + a(S + N); (6.7)
M4 = 3(1− a)N2 + 3a(S + N)2. (6.8)

Thus:

S =
M4
3 −N2

M2 −N
; (6.9)

a =
(M2 −N)2

M4
3 −N2

· (6.10)

If M2 − N < 0 or if M4 < 3N2, S and a are set to 0. If a > 1, a is set to 1 and
S is estimated only from the variance. We used these simple rules for estimating
the model parameters at each wavelet scales.

Experimentations. In Figure 11 the denoised images obtained for b1 (left),
b2 (middle) and b3 (right) with this algorithm (FONDW) are displayed. The
SNRs are respectively 28.38, 13.15 and 1.84. The softening function is scale/scale
determined by an algorithm free of tuning parameter. It is automatically adapted
to the SNR.

At this experimentation level, the redundant à trous algorithm with MMSE
carried out the best denoisings.
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Fig. 11. The images resulting from the algorithm based on a scale/scale posterior ex-

pectation.

7 Application to astronomical image deconvolution

7.1 Image deconvolution using the wavelet transform

The direct inversion. The trivial image restoration would consist to denoise the
image and to inverse the result (Starck & Bijaoui 1994). This method furnishes
correct solutions for a regular blurring operator; but, it is not adapted to the case
of a PSF with frequency holes.
The application of iterative inversions. Instead to inverse using the FFT, it is
possible to apply an iterative scheme. Necessarily, the number of iterations is lim-
ited. This number plays a regularization role. For example, two classical iterative
algorithms, the Van-Cittert and the Landweber ones are further presented. The
information is not similarly restored for each frequency. If the modulation transfer
function (MTF) is high the convergence is very fast; in contrast, the convergence
is very low for the smallest MTF values. The number of iterations allows the
obtention of a frequency filter depending of the MTF.

Many other iterative algorithms were proposed, such that the Richardson-Lucy
one (Lucy 1974); which is very popular in the astronomical laboratories, due to
its tendency to carry out images with point-like structures.
The wavelet-vaguelette decomposition. The multiresolution analysis carries out
a linear representation with wavelet functions. The inversion is a linear opera-
tion so that the previous wavelet representation can be directly translated into a
vaguelette decomposition; the vaguelettes being the wavelet functions deconvolved
with the PSF (Donoho 1992). This is also convenient for a regular operator, but
not adapted to a singular one.
The mirror wavelet. Among the different proposed methods, Kalifa et al. (2003)
proposed first to deconvolve the image and then to denoise taking account a soft
thresholding with mirror wavelet bases. This decomposition is a specific wave
packet (Coifman & Wickerhauser 1992) for which the frequency band is decom-
posed like a mirror compared to the wavelet decomposition. This property allowed
them to improve the signal localization both spatially and in frequency.
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The multi resolution CLEAN. Wakker et al. (1988) proposed a restoration method
for aperture synthesis images based on a two-stages CLEAN algorithm, with iden-
tification of Dirac peaks and extended Gaussians. Starck et al. (1994) developed
this idea in the framework of the wavelet transform. The algorithm is similar to
the matching pursuit one, with specific wavelet functions.
The application of the basis pursuit. In the previous method, the goal was to
represent the image with few wavelet patterns. The basis pursuit algorithm allows
the obtention of a solution, with an �1 minimization (Daubechies et al. 2004).

7.2 The Van Cittert and the Landweber iterative inversions

The basic relation. Let us consider the classical inverse problem without noise
Y = AX. Van Cittert (1931) introduced a simple iterative inversion algorithm.
The idea consists into writing B = I −A; where I is the identity matrix. Thus,
the solution is written as:

X = [I−B]−1Y. (7.1)

If all the B eigenvalues are in the open interval ]−1, +1[, it can be derived that:

X = [I + B + B2 + . . .]Y. (7.2)

The development is limited at the order n:

X(n) = [I + B + B2 + . . . + B(n)]Y. (7.3)

That leads to:

X(n) = Y + B[I + B + B2 + . . . + B(n−1)]Y; (7.4)

Or:
X(n) = Y + BX(n−1) = Y + [I−A]X(n−1). (7.5)

Thus, finally:
X(n) = X(n−1) + [Y −AX(n−1)]. (7.6)

The convergence factor. It is also possible to accelerate the convergence by the
introduction of a convergence factor αn:

X(n) = X(n−1) + αn[Y −AX(n−1)]. (7.7)

Its best value is reached for the minimum norm of R(n) = Y −AX(n):

αn =
R(n−1)AR(n−1)

|AR(n−1)|2 · (7.8)

The distance minimization. With the previous algorithm, the algorithm does not
converge if A is singular, i.e. it exists null eigenvalues (λp = 0). In the direction
of the corresponding eigenvectors the equation is written as Yp = λpXp = 0. If
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Yp �= 0 the equation is not consistent. Thus, the problem is modified by writing
r = |Y−AX|2 is minimum. That leads to:

AT [Y −AX] = 0; (7.9)

which is written as:
AT Y = AT AX. (7.10)

For λp = 0, we get 0 = 0. The system is now underdetermined but consistent. A
unique solution can be obtained by regularization. A classical constraint consists
into setting Xp = 0 for λp = 0 (minimum energy).
The Landweber algorithm. The Van-Cittert algorithm is applied to Equation (7.10).
That leads to:

X(n) = X(n−1) + αnAT [Y −AX(n−1)] = X(n−1) + αnAT R(n−1). (7.11)

This relation is known as the Landweber algorithm, which can be directly devel-
oped from a gradient descent (Landweber 1951). αn is computed as it is upper
indicated for the Van Cittert The previous approach allows the comparison be-
tween the two algorithms for the convergence. In Relation 7.10 the data are
smoothed by the joint matrix. For an eigendirection p, the left value is λpYp. If
λp = 0, its value becomes also null in this direction. The eigenvalue of AT A is
λ2

p, always positive or null. If we consider a non null eigenvalue, the convergence
is always assumed. For a null eigenvalue the algorithm keeps the initial value. If
we set X(0) = 0, no new information is added. Thus, the algorithm furnishes the
solution which minimizes the energy.

The convergence speed depends on the matrix conditioning, i.e. the ratio
between the highest eigenvalue and its lowest (and different from 0) one of the
matrix AT A. Many methods were proposed to accelerate the convergence. The
conjugate gradient is the most popular one (Hestenes & Stiefel 1952).

7.3 Deconvolution from the significant residual

The significant residuals. The Landweber algorithm consists into the addition
of the residual R(n−1) smoothed with the adjoint matrix AT to the previous
approximation. Even if the solution at step (n − 1) is not noisy we add a noisy
residual. The smoothing by the joint matrix removes only a part of the noise.
Thus it is needed to denoise the residual in order to avoid adding noise to the
solution. It is considered that it is the same noise for the successive residuals
than for the signal Y. In (Murtagh et al. 1995) different iterative inversion
algorithms were examined. The Van-Cittert and the Richardson-Lucy ones are also
available for that purpose. I prefer to present the algorithm using the Landweber
algorithm, more stable than the other ones. In the previous sections different
denoising methods were examined. The best ones have to be applied. In (Murtagh
et al. 1995) a hard thresholding was applied. Upper, it was clear that the Bayesian
posterior mean leads to the best results for the different SNRs. It is thus chosen
for the deconvolution algorithm.
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The deconvolution algorihm. It is the following:

1. Set X(0) = 0 and n = 1.

2. Z = AX(n−1).

3. R = Y − Z.

4. R is denoised to R̃.

5. S = AT R̃.

6. αn = S.R̃/|S|2.

7. X(n) = X(n−1) + αnS and n = n + 1.

8. According to the chosen convergence criterion (number of iterations, residual
energy ...) the algorithm stops or comes back to step 2.

The positivity constraint. Generally the astrophysical sources are positive func-
tions. A background is preliminary subtracted in order to get a positive image
function. The positivity constraint can be easily satisfied by a thresholding to pos-
itive values at each iteration. The application of this constraint to a deconvolution
with a PSF having frequency holes may lead to a significant gain in resolution.
The deconvolution experiments. The simulated image was smoothed with a
Gaussian PSF having the size 1 (Msg1), 2 (Msg2) and 4 (Msg4). A white Gaussian
noise was added with the deviations 0.007, 0.07 and 0.7. The applied deconvo-
lution program was based on the FONDW denoising. The residuals are scale by
scale examined. The wavelet coefficients are softened with a filter derived from
the Miyasawa relation. Their histograms are fitted with the Gaussian mixture
associated to the simple model. After deconvolution, the SNR for the deconvolved
image compared to the initial one (Mel1) is computed. The SNR for the denoised
image compared to the blurred image, free of noise, is also determined.
The results. In Figure 12 the denoised and restored images obtained with this
algorithm (dgondw) are displayed for the Mel1 image blurred with a Gaussian
PSF with σ = 1. The lines correspond respectively to the b1, b2 and b3 images.
At left the smoothed noisy images, at middle the smoothed denoised ones and at
right the Mel1 restoration. In Table 3 the resulting SNRs are given. It can be noted
that the deconvolved images for b1 and b2 lead to a better SNR than the images
obtained without blurring. That is probably due to the a regularization effect
introduced by the Landweber iterations. In Table 3 the SNRs for the restored
images with a blurring at σ = 2 and σ = 4 are also indicated. The positive
constraint brings a significant gain, especially for a low SNR. For a large PSF, the
number of iterations inside the Landweber algorithm was also increased to improve
the results for a high SNR. On Figure 13 the denoised and restored images are
displayed for σ = 4.
The denoising from deconvolution taking into account an hypothetic PSF. In the
previous paragraph the denoising derived from a deconvolution with a known PSF.
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Fig. 12. The blurred noisy images at σ = 1 (left), its resulting denoised (middle) and

restored images (right).

Table 3. SNR resulting from the deconvolution experiments. p: the positivity constraint

is applied; x: 100 iteration steps were done instead to 10. (s) means smoothing and (d)

deconvolution.

Image (s)b1 (d)b1 (s)b2 (d)b2 (s)b3 (d)b3
Msg1 29.90 28.89 14.47 14.03 −1.12 −1.27
Msg2 30.02 27.25 13.87 12.78 −0.16 −0.42

Msg2 p 30.67 28.29 15.54 1.79 1.52
Msg4 p 30.56 14.07 15.32 11.48 0.82 0.08
Msg4 px 30.90 22.35 14.97 11.30 −0.35 −2.12

It can be noted that the SNRs were very fine. But the comparison was done to
the blurred images without noise (Msg1, Msg2, Msg4) and not to the initial one
(Mel1).
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Fig. 13. The blurred noisy images at σ = 4 (left), its resulting denoised (middle) and

restored images (right).

Table 4. The SNRs obtained after denoising taking into account an hypothetic PSF.

The first number is the size of the hypothetic Gaussian PSF. x means that 100 iteration

steps were done instead of 10.

PSF size b1 b2 b3
1 29.99 15.55 1.65
2 30.11 15.24 1.72

4 x 30.11 15.80 2.69

It is posed that the observed image (for example b1) is the noisy blurred
version of an image with a Gaussian PSF but of unknown width. Different widths
are tested. The denoised image obtained after deconvolution is compared to Mel1.
If the chosen PSF is close to a Dirac peak, no gain can be obtained compared to a
direct denoising. For a too extended chosen PSF, information is lost on the details
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Fig. 14. The denoisings obtained from a deconvolution from an hypothetic PSF at σ = 4.

at small scales. In Table 4 the resulting SNRs are given for different PSF. In the
whole cases the positivity constraint was applied. On Figure 14 the denoised Mel1
images are displayed for σ = 4. They correspond to the best denoised images.

It can be noted that the best SNRs were obtained with the present method.

8 Conclusion

The study limits. In the present paper, an introduction to the image restoration
using multiscale methods was given. A large number of papers were published
since two decades on this topic. The paper was centered on the use of a peculiar
algorithm, the à trous one, for the restoration of astrophysical images corrupted by
a white Gaussian noise. In the literature a large panel of transforms and different
noises were examined.
The Poisson case. Many modern astronomical detectors furnish images for which
the noise statistics is dominated by the photon noise. That led to introduce specific
methods to restore these images with a Poisson noise (Murtagh et al. 1995). Dif-
ferent methods were proposed to quantify the significance of a wavelet coefficient.
A simple way consists into the transformation of the initial pixel values such its
variance becomes constant. The Anscombe transform (1948) was first proposed.
The results are fine for a mean number of photons greater than about 10. Below
this value, other strategies were proposed (Fadda et al. 1998; Bijaoui & Jammal
2001; Jammal & Bijaoui 2004; Zhang et al. 2008).
Other cases. Different other noise processes were also considered. A generalization
of the Anscombe transform was proposed to process images with a mixing of a
Gaussian and a Poisson noise (Murtagh et al. 1995). More generally the noise
properties can be provided by a table. That leads to laborious computations to
estimate for each wavelet coefficient its distribution.
Oriented wavelets. Orthogonal DWT carries out simple directional information.
Discrete CWT allows the application of oriented wavelets using the FFT (Antoine
et al. 1996). The steerable pyramids were introduced in order to overcome the
limitations of orthogonal separable wavelet decompositions that do not represent
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oblique orientations well (Simoncelli et al. 1992). This transform is shift invariant
and also rotation invariant. Kingsbury (2002) generalized the use of complex DWT
for the image processing. This transform allows an approximate shift invariance
and some oriented information. More recently an oriented transform based on
wavelets and the lifting scheme was introduced by Chapellier & Guillemot (2006)
for image compression. This work brings a general framework for oriented DWTs.

Other representations. This paper was oriented to the application of the discrete
transforms derived from the continuous one. Other multiscale representations
were mentioned such that the ridgelets, the curvelets or the wave packets. Many
other multiscale geometric representations were developed with a directional and
frequency selectivity (Jacques et al. 2011).

A quality criterion for a given image. Beyond the proposed representations, the
main problem resides in their capability to best restore the images. But, what
is “a best restored image”? Here, the SNR was the alone considered criterion.
The search of sparse representations leads to images which a clean appearance,
fully denoised. But that does not mean that the results are better than the ones
obtained with other algorithms leading to a faint noisy appearance. The posterior
expectation leads to a better estimation than the MAP in term of quadratic error,
even if residual fluctuations can be identified.

In fact, the main question concerns the use of the restored images. The image
restoration is only a step in the image analysis. The astrophysicists are interested
by the detection and the characterization of cosmic sources. They apply on the re-
stored images programs for the source identification. Thus, more accurate quality
criteria may derive from the detection rate, the false-alarm rate and the quality of
the resulting measurements. This feature is fully outside this present introduction.
Nevertheless the readers can get useful information on these questions inside the
reference papers.

I thanks Pr. D. Mary and Pr. D. Nuzillard for their helpful comments on the draft version.
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CONSTRAINED MINIMIZATION ALGORITHMS

H. Lantéri1, C. Theys1 and C. Richard1

Abstract. In this paper, we consider the inverse problem of restoring an
unknown signal or image, knowing the transformation suffered by the
unknowns. More specifically we deal with transformations described by
a linear model linking the unknown signal to an unnoisy version of the
data. The measured data are generally corrupted by noise. This aspect
of the problem is presented in the introduction for general models. In
Section 2, we introduce the linear models, and some examples of linear
inverse problems are presented. The specificities of the inverse problems
are briefly mentionned and shown on a simple example. In Section 3,
we give some information on classical distances or divergences. Indeed,
an inverse problem is generally solved by minimizing a discrepancy
function (divergence or distance) between the measured data and the
model (here linear) of such data. Section 4 deals with the likelihood
maximization and with their links with divergences minimization. The
physical constraints on the solution are indicated and the Split Gradient
Method (SGM) is detailed in Section 5. A constraint on the inferior
bound of the solution is introduced at first; the positivity constraint is
a particular case of such a constraint. We show how to obtain strictly,
the multiplicative form of the algorithms. In a second step, the so-
called flux constraint is introduced, and a complete algorithmic form
is given. In Section 6 we give some brief information on acceleration
method of such algorithms. A conclusion is given in Section 7.

1 Introduction

Inverse problems arise in a variety of important applications in science and indus-
try, such as optical and geophysical imaging, medical diagnostic, remote sensing.
More generaly such problem occurs when the measured quantities are not directly
the quantities of interest (parameters). In such applications, the goal is to estimate
the unknown parameters, given the data. More precisely, denoting y the measured
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data (output of a physical system, generaly corrupted by noise), x the input of
the system, m(a, x) the model and a the internal parameters of the model (m(., .)
is a known function), four cases must be considered:

– when y, m(., .) and x are known, the goal is to identify the optimal values
of the internal parameters a of the model m(a, x);

– when y, m(., .) and a are known, the goal is to found the optimal value of x;

– when x, m(., .) and a are known, y is easy to compute; it is the direct
problem;

– when y, m(., .) only are known, we can say that we have a “blind inverse
problem” which is much more difficult to solve than the previous ones (see
for example NMF and blind deconvolution).

To solve such inverse problems we are generally faced with the problem of min-
imization of a discrepancy function between the noisy data y and the (unnoisy)
model m(a, x). The discrepancy function must deal with significant properties
from the physical point of view, and must leads to a mathematically tractable
minimization problem.

Moreover, to be physically acceptable, the solution is subjected to some specific
(physical) constraints that have to be taken into account during the minimization
process.

In this paper we are mainly concerned with physical processes described by a
linear model. An algorithmic method allowing to deal with the minimization of any
stricly convex differentiable discrepancy function is proposed; classical constraints
such as positivity and fixed sum (integral) are taken into account.

2 Inverse problems with linear models
(Bertero 1989; Bertero et al. 1998)

2.1 Linear models

In this case, the model m (a, x) is simply described by a linear relation between
the unknown (input) signal x and the unnoisy transformed signal ỹ (output), we
simply write:

ỹ = m (a, x) = Hx. (2.1)

More generally, if H (the parameters of the system) is known, for a given x, we
can compute ỹ.

On the other hand we have the experimental data y, that is a noisy version
of ỹ. The problem is to find a solution x such that Hx is as close as possible to y.
This is generally performed by minimizing a discrepancy function between y and
Hx, eventually subject to constraints.
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This brief presentation shows that we are typically dealing with an inverse
problem (Bertero et al. 1998) whose difficulties will be briefly indicated in the
following sections. We first give some examples of problems in which the model is
described by a linear relation.

2.2 Some examples of linear models

2.2.1 Linear unmixing (Heinz & Chang 2001)

In such problems, the model is described by the relation ỹ = Hx. The experimen-
tal data y is a one dimensional optical spectrum sampled at various (equispaced)
wavelenghts; these (noisy) observations are obtained for example by the spectro-
scopic analysis of the light contained in a given pixel of an image. The matrix
[H ] is formed by the juxtaposition of columns containing the (known) spectra of
basis possible component (the endmembers, that is, the elements of a dictionnary),
sampled at the same wavelenght as the data. The unknown vector x contains the
weights (abundances) corresponding to the endmembers, so that the data vector is
described as a weighted sum of the endmembers. The constraints in this problem
are the following: the weights must be positive or zero, moreover their sum must
be 1 (that is, they express a percentage).

One can think that in order to solve this problem in full generality, a supple-
mentary condition must be that the sum of the components of the data, and the
sum of the components of the endmembers must be equal.....

2.2.2 Non negative Matrix Factorization N.M.F. - Hyperspectral data
(Lee & Seung 2001; Cichocki et al. 2009)

Extending first the previous problem, the model can be described by a matrix
equation

[
Ỹ
]

= [H ] [X ]. The matrix [H ] is the one described in the previous
problem, it contains the “endmembers”. The unknowns are organized in a matrix
[X ], each column of this matrix contains the weights (abundances), so that the
column “n” of

[
Ỹ
]

is modeled as the sum of the endmembers (columns of [H ])
weighted by the elements of the column “n” of [X ].

The experimental data are organized in a matrix [Y ]; each column of [Y ] is
an optical spectrum analogous to those considered in the previous problem, they
correspond to all the pixels of an image. If the matrix [H ] is known, the problem
will be a simple succession of “linear unmixing” problems.

The NMF problem becomes much more complicated because the endmembers
are not known, so that the matrix [H ] is unknown as well as [X ].

Roughly speaking, the problem is then: knowing the (noisy) data matrix [Y ]
described as the product of two matrix [H ] and [X ], found such two matrices
subject to some constraints.
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2.2.3 Deconvolution
(Andrews & Hunt 1977; Demoment 1989; Bertero et al. 2008)

Let us consider the case of images. In the space of continuous functions, the
model is described by a first kind Fredholm integral with space invariant kernel.
After discretization, the data (noisy blurred image), the point spread function
(PSF) and the unknown object are obtained as tables of dimensions (N*N) and
the model is described by a discrete convolution between the PSF and the object
(that can be easily performed using FFT). However for sake of generality, we adopt
a matrix notation, so that the columns (or rows) of the data and of the unknown
object tables are organized in stack vectors y and x respectively (lenght N2), the
transformation matrix H is then (N2∗N2), moreover, if the kernel of the Fredholm
equation is space invariant, H is Block-Toeplitz; note that this is not the case for
example in medical imaging where, while we have a linear model, the kernel is no
more space invariant and corellatively, the matrix H does not have any specific
property.

Let us focus more specifically on the deconvolution problem for astrophysical
imagery. In such a case, the kernel of the integral equation is not only space
invariant, but also positive and moreover, its integral is equal to 1, so that the
convolution (blurring operation) of a positive object of known integral gives a
positive image with the same integral; such a convolution acts as a low pass spatial
filtering operation. The intensities in the image pixels have been redistributed,
while the total intensity in the image is equal to the total intensity in the object.

For the discretized problem, this is analogous to say that each column of the
matrix H is of sum 1.

The first constraint of our problem is then: the “solution must be positive
or zero”, while a second constraint will be “the flux must be maintained”. Fre-
quently, this last constraint is not clearly taken into account. One can consider
that the deconvolution problem is closely related to the “linear unmixing” problem
with however some specific difficulties due to the low pass filtering effect of such
convolution.

2.2.4 Blind deconvolution (Ayers & Dainty 1988; Lane 1992)

The blind deconvolution can be considered with respect to the classic deconvo-
lution as an analogous of the NMF problem with respect to the linear unmixing
problem. Indeed, the data model boils down to the convolution product of two
unknown functions, then, the number of unknown is (two times) higher than the
number of data values; the convolution is however commutative, while for NMF,
the matrix product is not, moreover the specific problems appearing in classic de-
convolution obviously remains. Then, this problem is very hard to solve and it is
out of the scope of the present analysis.
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2.3 Some generalities on inverse problems

Inverse problems are generally ill-posed problems in the sense of Hadamard; the
conditions of Hadamard (1923) for well-posed problems are:

– the solution must “exist”

– the solution must be “unique”

– the solution must be “stable with respect to the measurement errors”
(the noise).

If any of these conditions is not fulfilled, the problem is “ill-posed”.
While in finite dimensional spaces, the difficulties linked to the existence and

uniqueness of the solution could be circumvented, the problem of stability remains
because it is a consequence of the ill-conditionning of the matrix H , that is the
condition number K of the matrix H (ratio of the maximum singular value to the
minimun singular value K = λMax

λmin
) is high.

To clarify this point in a very simple way, let us consider a simple system of
two linear equations with two unknowns, illustrated in Figures 1 and 2.
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Fig. 1. For a system of two equations with two unknown, three cases are examined,

depending on the condition number of the matrix H.

The Figure 1 correspond to the case of an unperturbed system (no noise added).
In Figure 1 (upper left), the two lines are almost orthogonal (K ≈ 1), the system
is very well conditionned. If we think for example, to solve the system with an
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iterative method operating by successive orthogonal projections on the two lines
(1 iteration = 2 projections), it is clear that only a very small number of iterations
is necessary to reach an acceptable point (close enough to the solution).

In Figure 1 (upper right), the condition number K has been increased, the two
lines are no more orthogonal. Using the iterative method previously described,
the iteration number allowing to reach the solution has been increased, but we can
expect to reach an acceptable point.

In Figure 1 (lower), the value of K has been strongly increased, the problem
is now ill-conditionned, clearly, the solution is always unique, but the necessary
number of iterations heavily increases.

To summarize, the only difference between the three cases is an increase of
the iteration number and then of computing time when the problem become
ill-conditionned.
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Fig. 2. For a system of two equations with two unknown, three cases are examined,

depending on the condition number of the matrix H. A small amount of noise ε has been

added to the unnoisy data ỹ.

In Figure 2, a small amount of error (noise) has been added to the data.
Depending on the value of the error, the lines remains parallel to themselves,

but moves in their respective shaded areas.
Clearly, there will be always one and only one solution that will be located

somewhere in the intersection of the two shaded areas.
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In Figure 2 (upper left), the solution is close to the one of the initial noiseless
problem Figure 1 (upper left) then, a small error on the data will corresponds to
a small error on the solution, this behavior is typical of the well-posed problems.
In Figure 2 (upper right), the condition number K increases as in Figure 1 (upper
right). The solution is always unique and located in the intersection of the shaded
areas, but it can be in some cases far from the solution of the initial noiseless
problem. In Figure 2 (lower), K has a very large value, the problem is now ill-
conditionned and the solution can be very far from the true solution Figure 1
(lower).

This is a simplebut explicit illustration if the difficulties related to the stability
of the solution with respect to the measurement errors in ill-posed problems.

3 Distances and divergences (Basseville 1996; Taneja 2005)

To solve the inverse problem, i.e. to recover the solution x such that the model
m(a, x) is as close as possible to the noisy data y, we must minimize a scalar
discrepancy function between y and m(a, x) quantifying the gap between them.

Let pi and qi the elements of two data fields p and q, the discrepancy function
D(p, q) between the two fields must have the following properties:

1. D(p, q) must be positive if p �= q

2. D(p, p) = 0

3. D(p, q) must be convex (strictly) with respect to p and q (at least w.r.t. the
field corresponding to the model).

With these properties, D(p, q) is a “divergence”. If, moreover the triangular in-
equality is fullfilled, then D(p, q) is a distance. This last point is not necessary for
our purpose. Finally, we consider that generally, such quantity allowing to deal
with the whole data fields is the sum of analogous distances (divergences) between
corresponding elements of the two fields.

D (p, q) =
∑

i

D (pi, qi) (3.1)

D (y, m (a, x)) =
∑

i

D (yi, {m (a, x)}i) . (3.2)

3.1 Csiszar divergences (Csiszar 1991)

Let f (x) be a strictly convex function, with f (1) = 0, and for our specific use
f

′
(1) = 0; this last property is very important in our case.
The general class of Csiszar divergences is defined as:

Cf (p, q) =
∑

i

qif

(
pi

qi

)
· (3.3)
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Generally Cf (p, q) �= Cf (q, p).
This divergence is jointly convex w.r.t. p and q.

3.2 Divergences founded on convexity measures

3.2.1 Jensen or Burbea-Rao divergences (Burbea & Rao 1982)

This class of divergences is founded on the classical definition of the convex func-
tions that can be expressed as: let f (x), a strictly convex function, and let p and
q two values of the variable, the secant between the points {p, f (p)} and {q, f (q)}
is always superior to the curve between the same points. This is represented in
Figure 3 and expressed by the relation (3.4)

Fig. 3. Strictly convex function.

αf (p) + (1− α) f (q)− f [αp + (1− α) q] ≥ 0. (3.4)

The divergence is then:

Jf (p, q) =
∑

i

{αf (pi) + (1− α) f (qi)− f [αpi + (1− α) qi]} . (3.5)

Note that the convexity of the basis function f (x) does not ensure the conxexity
of the corresponding divergence.

3.2.2 Bregman divergences (Bregman 1967)

These divergences are founded on another property of convex functions:
a (strictly) convex function is always greater than any tangent line, that is to the
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q p 

B(p,q) 

f(p) 

f(q)+(p-q)f’(q) 

x 

f(x) 

Fig. 4. First order Taylor expansion of a strictly convex function.

first order Taylor expansion of the function; this is represented in Figure 4 and
expressed by the relation (3.6)

f (p)− f (q)− (p− q) f
′
(q) ≥ 0. (3.6)

The Bregman divergence is then:

Bf (p, q) =
∑

i

{
f (pi)− f (qi)− (pi − qi) f

′
(qi)

}
. (3.7)

Note that this divergence is always convex w.r.t. p, but its convexity w.r.t. q
depends on the function f .

This classification of divergences is artificial because it is founded on their
constructive method only. A Jensen or Bregman divergence can also be a Csiszar
divergence. Moreover, in this brief presentation, we do not consider the extensions
or generalization of these divergences, but it is important to know that they exist
and could be used as well. Then, at this point it is clear that there are many ways
to quantify the discrepancy between two data fields; the question is then: how to
choose a “good”, that is a “significant” divergence or distance. A partial answer
is given by the Maximum Likelihood principle.

4 Maximum likelihood solutions (Taupin 1988)

In this case, we take into account the statistical properties of the noise corrupting
the data. We consider that we know the analytical expression of the likelihood
that is of the conditional probability law p (y/x), and we want to obtain the value
of x corresponding to the maximum of this law.

In each pixel the noisy data yi depends on the model [m (a, x)]i which is the
mean value; moreover we assume that the noise realizations in the different pixels
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are independent. In what follows, the internal parameters a of the model are
known, so they are omitted in our notations, [m (a, x)]i = [m (x)]i, then we have:

p (y|m (x)) =
∏

i

p (yi| {m (x)}i) (4.1)

and

max
x

[p (y|m (x)] ≡ min
x

[
− ln

∏
i

p (yi| {m (x)}i)
]

. (4.2)

The solution x is obtained as:

x = arg min
∑

i

− ln [p (yi| {m (x)}i)] . (4.3)

Two cases are generally exhibited in the literature corresponding to physical situ-
ations, the zero mean Gaussian additive noise and the Poisson process. We now
examine these two cases and we show the relations with the divergences minimiza-
tion problem.

4.1 Gaussian additive noise case

The likelihood is given by:

p(y |x) = p(y |m (x)) ≈
∏

i

exp− [yi − {m (x)}i]
2

σ2
i

(4.4)

where σ2
i is the noise variance in the pixel i. This leads to an objective function

which is the Euclidean distance between y and m (x) in a space weighted by the
variances:

J (x) = − ln[p (y |m (x))] ≈ 1
2

∑
i

[yi − {m (x)}i]
2

σ2
i

· (4.5)

If the variance is not known or if the variance is identical for all the pixels, we
obtain the pure Euclidean distance:

J (x) ≈ 1
2

∑
i

[yi − {m (x)}i]
2 . (4.6)

One can observe that such a distance is defined for any value of x even if m(x) ≤ 0.

4.2 Poisson noise case

The likelihood is given by:

p(y |x) = p(y |m (x)) =
∏

i

[{m (x)}i]
yi

yi!
exp [−{m (x)}i] (4.7)
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J (x) = − ln[p (y |m (x))] =
∑

i

{m (x)}i + ln yi! + yi ln
yi

{m (x)}i
· (4.8)

Which is equivalent to:

J (x) =
∑

i

{m (x)}i − yi + yi ln
yi

{m (x)}i
· (4.9)

This expression is the Kullback-Leibler divergence (Kullback & Leibler 1951),
adapted to data fields that are not necessarily probability laws. On the contrary
to the Euclidean distance, one can note that the K.L. divergence is not defined
if m (x) ≤ 0. In the case of our linear model x > 0 ⇒ m (x) = Hx > 0. When
the positivity constraint is required, the constraints domain is entirely contained
in the domain of the objective function J(x). Then if the solution is searched
for in the constraints domain, the minimization can be performed. It is one of
the reasons which leads to use an interior points algorithmic method. In such an
iterative method, the successive estimates are feasibles solutions i.e. they fulfill
all the constraints. We propose now a minimization method dealing with strictly
convex differentiable functionnals, subject to a constraint on the inferior bound of
the solution. The positivity constraint will appear as a particular case.

5 The Split Gradient Method (SGM)

This iterative method has been developped initially in the context of the
deconvolution problem with non negativity constraint (Lanteri et al. 2001, 2002a,b).
The multiplicative form of the algorithms is an obvious byproduct. It can be easily
extended to regularized functionnals. The method is founded on the
Karush-Kuhn-Tucker (KKT) conditions (Bertsekas 1995). We first recall these
conditions. A simple example with only one variable clarifies this point.

5.1 Karush-Kuhn-Tucker conditions for inequality constraints

We denote J1 (x), the “data consistency” term, J2 (x), the “regularization” term
and γ ≥ 0, the regularization factor. The problem is to minimize w.r.t. x, the
strictly convex differentiable functionnal: J (x, γ) = J1 (x) + γJ2 (x).

The constraints are: xi ≥ mi ≥ 0 ∀i ⇒ xi −mi ≥ 0 ∀i.
In what follows, the parameter γ will be omitted for sake of clarity.
Let us denote λ the Lagrange multiplier vector, and 〈., .〉 the classical inner

product.
The Lagrange function writes:

L (x, λ) = J (x) − 〈λ, (x−m〉) . (5.1)

The KKT conditions writes: at the solution (x∗, λ∗)

∇xL (x∗, λ∗) = 0 ⇒ λ∗ = ∇xJ (x∗) (5.2)
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λ∗ ≥ 0 ⇒ ∇xJ (x∗) ≥ 0 (5.3)

〈λ∗, (x∗ −m)〉 = 0 ⇒ 〈∇xJ (x∗) , (x∗ −m)〉 = 0. (5.4)

This last condition must be understood as:

[∇xJ (x∗)]i (x∗
i −mi) = 0 ∀i. (5.5)

Indeed, because x∗
i −mi ≥ 0 ∀i, and [∇xJ (x∗)]i ≥ 0 ∀i, the inner product will be

zero if and only if all the terms of the inner product are separately 0.
The Split Gradient Method is founded precisely on this condition.
The KKT conditions for inequality constraints can be understood easily on a

simple example for a function of one variable f(x) with an inferior bound constraint
x ≥ m.

x m 
x 

m 

0

0)(
*

*

mx
xJx

 
 0)( *xJx

0

0)(
*

*

mx
xJx

0* mx

x 
m

*x

Fig. 5. Illustration of KKT conditions for non negativity constraint in the one dimen-

sional case.

Let us consider the case represented in Figure 5 (upper right).
The minimum of the function is clearly reached for x such that f

′
(x) = 0.

The solution is the same to the one of the unconstrained problem; in the case of a
function of several variables, the solution will be reached when [∇xf (x)]i = 0, for
the corresponding components i.

Then, for such indexes, (xi −mi) [∇xf (x)]i = 0 because [∇xf (x)]i = 0.
In Figure 5 (upper left), the solution is on the constraint x − m = 0. At

this point, we have λ = f
′
(x) > 0. In a multi variables case the equivalent

condition will be: if a component i is on the constraint xi −mi = 0, we will have
λi = [∇xf (x)]i > 0, so that for each component on the constraint, we will
have (xi −mi) [∇f (x)]i = 0.
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In Figure 5 (lower), the minimum of the function is exactly on the constraint,
so that we have simultaneously x −m = 0 and f

′
(x) = 0, then obviously, their

product is zero. In a multi variables case the equivalent condition will be: if
a component i is on the constraint xi − mi = 0, and if moreover for the same
components, we have λi = [∇xf (x)]i = 0, for such components we will have
(xi −mi) [∇xf (x)]i = 0.

Then for each component of the solution, the KKT condition expresses as:
(xi −mi) [∇xf (x)]i = 0.

5.2 Principle of the Split Gradient Method

The problem is set as: let γ ≥ 0 and y the noisy data, found

x = arg min J (x, γ) = J1 (x) + γJ2 (x) . (5.6)

Subject to the constraint
0 ≤ mi ≤ xi ∀i. (5.7)

Moreover, in the particular case mi = 0 ∀i, we will introduce a supplementary
equality constraint: ∑

i

xi =
∑

i

yi. (5.8)

In a first step the equality constraint is not considered; it will be introduced later.
Considering now that for convex differentiable functionnals such as J (x, γ) ≡
J (x), the negative gradient is a descent direction, we want to solve w.r.t. x an
equation of the form:

[−∇xJ (x∗)]i (x∗
i −mi) = 0 ∀i. (5.9)

Note that the multiplication of this equation by a positive term do not change
solution.

Then, an iterative algorithm can be writen in the form:

xk+1
i = xk

i + αk
i

(
xk

i −mi

) [
−∇xJ

(
xk

)]
i
. (5.10)

In this algorithm, αk
i is a positive descent step that must be computed to ensure

the convergence of the algorithm. Moreover the form of the algorithm implies that
at each iterative step, we must ensure that xk

i −mi ≥ 0. This last point is of major
importance in SGM.

The negative gradient is now written as the difference between two positive
quantities U

(
xk

)
and V

(
xk

)
:

−∇xJ
(
xk

)
= U

(
xk

)
− V

(
xk

)
. (5.11)

Obviously, such a decomposition is not unique, indeed a constant term can be
added and subtracted to the gradient, leading to shifted values of U and V , with
the only condition that the shifted values remains positive.
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We then propose to modify the algorithm as follows:

xk+1
i = xk

i + αk
i

(
xk

i −mi

) 1
[V (xk)]i

⎡⎢⎣U
(
xk

)
− V

(
xk

)︸ ︷︷ ︸
−∇J(xk)

⎤⎥⎦
i

· (5.12)

In the rest of the paper, we will use for sake of clarity, the notations:[
U

(
xk

)]
i
= Uk

i and
[
V

(
xk

)]
i
= V k

i .
We can observe that the descent property is maintained even if the descent

direction is changed.
The starting iterate will be x0

i ≥ mi, ∀i.
The first step of the method is to compute for each component of the solution

vector, the maximal step size ensuring xk+1
i ≥ mi ∀i, knowing that xk

i ≥ mi ∀i.
Obviously, such restriction on the step size is only necessary for the indexes i

for which [∇J (x)]i ≥ 0.
This leads to:

αk
i ≤

V k
i

V k
i − Uk

i

· (5.13)

Then, at the iteration “k” the maximal step size allowing to fulfill the inferior
bound constraint for all components, will be:

αk
Max = min

i

[
αk

i

]
. (5.14)

We note that αk
Max ≥ 1.

As a consequence, with a stepsize equal to 1 the inferior bound constraint is
always fulfilled. The proposed algorithm can then be written in matrix form:

xk+1 = xk + αk
c diag

[
xk

i −mi

]
diag

[
1

V k
i

] (
Uk − V k

)︸ ︷︷ ︸
−∇Jk

· (5.15)

It is a descent algorithm of scaled gradient type, that is of the general form:

xk+1 = xk + αk
cdk. (5.16)

The descent direction is:

dk = diag
[
xk

i −mi

]
diag

[
1

V k
i

] (
Uk − V k

)︸ ︷︷ ︸
−∇Jk

· (5.17)

The descent stepsize αk
c must be computed on the range

[
0, αk

Max

]
to ensure the

convergence of the algorithm. However, if we use a stepsize equal to 1 ∀k, we
obtain a very attractive simple “quasi multiplicative” form, whose convergence is
not demonstrated in full generality, but only in some specific cases:

xk+1 = m + diag
[
xk −m

] Uk

V k
· (5.18)
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For a non negativity constraint (mi = 0 ∀i), the classical multiplicative form is
immediately obtained:

xk+1 = diag
[
xk

] Uk

V k
· (5.19)

In the two last equations, the ratio Uk

V k of the vectors Uk and V k is performed com-
ponent wise. With this simplified form, we can recover two classical algorithms:
ISRA (Daube-Witherspoon et al. 1986) and RLA (Richardson 1972; Lucy 1974)
corresponding respectively to the hypothesis of a Gaussian, zero mean additive
noise, and to a Poisson noise process.

5.3 Examples with non negativity constraint

5.3.1 Gaussian additive noise case - Least squares

As previously indicated in Equation (4.6), the objective function writes:

J (x) =
1
2
‖y −Hx‖2 (5.20)

−∇J (x) = HT y −HT Hx. (5.21)

A decomposition can be:

U = HT y; V = HT Hx (5.22)

Then the algorithm with non negativity constraint, in the non-relaxed form writes:

xk+1
i = xk

i

(
HT y

)
i

(HT Hxk)i

· (5.23)

This is the classical Image Space Reconstruction Algorithm (ISRA) whose conver-
gence has been demonstrated by De Pierro (1987).

If some of the components of V = HT y is negative, we can add to all the
components of U and V, the quantity −min

(
HT y

)
+ ε, so that the shifted values

become positive.

5.3.2 Poisson noise case - Kullback-Leibler divergence

As previously indicated in Equation (4.9), the objective function writes:

J (x) =
∑

i

yi ln
yi

(Hx)i

+ (Hx)i − yi (5.24)

−∇J (x) = HT
( y

Hx
− 1

)
· (5.25)

In this equation the ratio of two vectors is performed component wise; the result
of the operation is a vector. A decomposition can be:

U = HT y

Hx
; V = HT 1. (5.26)
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Then the algorithm with non negativity constraint, in the non-relaxed form writes:

xk+1
i = xk

i

(
HT y

Hxk

)
i

(HT 1)i

= xk
i

(
HT y

Hxk

)
i

ai
· (5.27)

This is the classical E.M. (Dempster et al. 1977), Richardson-Lucy algorithm.
Some remarks then occur:

1. In the previous equation we have introduced the notation:
(
HT 1

)
i

= ai,
howe-ver, in many cases for example in deconvolution problem with a con-
volution kernel normalized to “1”, all the columns of H are of sum 1, that
is ai = 1 ∀i. Unfortunately, an oversimplified expression of the algorithm in
which ai is omitted, frequently appears; this can be a source of errors.

2. The algorithm of Richardson-Lucy with a kernel normalized to “1”, have the
“magic” and unwanted property to be flux conservative, that is∑

i xk
i =

∑
i yi ∀k; this property does not exist with ISRA.

An interesting question is: why?
The answer lies in the particular expression of the K.L. divergence and in the

associated properties.

5.4 Flux (intensity) conservation constraint (Lanteri et al. 2009, 2010)

We propose now to introduce a supplementary equality constraint in order to
take into account the so called flux constraint or fixed sum constraint. While the
method can be applied to the problem adressed in the previous section with a
constant inferior bound constraint (which is typical of deconvolution problems),
for sake of simplicity, we restrict the presentation to the case of a non negativity
constraint.

The equality constraint writes:∑
i

xi =
∑

i

yi. (5.28)

Moreover, because we want to remain in the class of interior points methods, such
a constraint must be fulfilled at each iteration, that is:∑

i

xk
i =

∑
i

yi ∀k. (5.29)

The two previous relations expressing a sum constraint are typical of the deconvo-
lution problem. In problems such as the linear unmixing one, we have to simply
replace

∑
i yi by 1, without changing anything else in what follows.
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The basic idea to take into account this constraint is to use the following
procedure:

• Introduce the variable change:

xi =
ui∑
m um

∑
m

ym. (5.30)

• Proceed to a minimization w.r.t. the new variable u, subject to non nega-
tivity constraint only.

• Go back (correctly) to the initial variables x.

To minimize w.r.t. the new variable u, subject to non negativity constraint, we
use the SGM previously described.

However, a fundamental question arises first: if J (x) is convex w.r.t. x, did
the function J̃ (u) transformed function of J (x) is still convex w.r.t. u?

The answer may be as follows: if during the iterative minimization process
w.r.t. u, we are able to maintain

∑
i uk

i = Cst ∀k, then the convexity w.r.t. u is
ensured.

Moreover, we show that this property will allow us to go back “correctly” to
the initial variables x.

To apply SGM, we compute the gradient of J̃ (u) w.r.t. u

∂J̃ (u)
∂uj

=
∑

i

∂J

∂xi

∂xi

∂uj
· (5.31)

We then obtain after some simple but tedious algebra:

−∂J̃ (u)
∂uj

≈
(
− ∂J

∂xj

)
−

∑
i

ui∑
m um

(
− ∂J

∂xi

)
· (5.32)

We can now use SGM to minimize J̃ (u) w.r.t. u with the non negativity constraint
only, but we want also that

∑
i uk+1

i =
∑

i uk
i ∀k.

To reach such an objective, at first sight, we can choose:

Uj = − ∂J

∂xj
=

(
−∂J

∂x

)
j

(5.33)

Vj =
∑

i

ui∑
m um

(
− ∂J

∂xi

)
=

∑
i

ui∑
m um

(
−∂J

∂x

)
i

·

However, with such a choice, we cannot ensure that Uj and Vj are positive.
To have this property which is necessary in S.G.M., we will choose:

Uj =
(
−∂J

∂x

)
j

−min
(
−∂J

∂x

)
+ ε (5.34)
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Vj =
∑

i

ui∑
m um

(
−∂J

∂x

)
i

−min
(
−∂J

∂x

)
+ ε (5.35)

One can also write:

Vj =
∑

i

ui∑
m um

[(
−∂J

∂x

)
i

−min
(
−∂J

∂x

)
+ ε

]
. (5.36)

Obviously, the shift −min
(
−∂J

∂x

)
+ ε does not change the gradient, but now, we

are sure that Uj and Vj are positive. Let us note that Vj is in fact constant and
independent of the index j.

We can now apply SGM to obtain the relaxed algorithm:

uk+1
j = uk

j + αkuk
j

⎛⎝ (
− ∂J

∂xk

)
j
−min

(
− ∂J

∂xk

)
+ ε∑

i
uk

i∑
m uk

m

[(
− ∂J

∂xk

)
i
−min

(
− ∂J

∂xk

)
+ ε

] − 1

⎞⎠ · (5.37)

The step size αk is obviously computed as indicated in Section 5.2.
In the non relaxed case, that is , with αk = 1 ∀k, we have:

uk+1
j = uk

j

(
− ∂J

∂xk

)
j
−min

(
− ∂J

∂xk

)
+ ε∑

i
uk

i∑
m uk

m

[(
− ∂J

∂xk

)
i
−min

(
− ∂J

∂xk

)
+ ε

] . (5.38)

Clearly, with such form of the algorithm, relaxed or non-relaxed, we will have:∑
j

uk+1
j =

∑
j

uk
j . (5.39)

Then, during the iterative process, the solution uk is positive and remains in the
convexity domain of the objective function J̃ (u). Moreover the flux conservation
property of the previous algorithms (5-37, 5-38) allows us to turn back “correctly”
to the initial variables x. Indeed, multiplying the two members of these algorithms
by

∑
m ym∑

j uk+1
j

=
∑

m ym∑
j uk

j

, and taking into account the change of variables (5-30), the

final algorithm is obtained in the relaxed case as:
Let x0 = Cst ≥ 0 such that

∑
i x0

i =
∑

i yi,

xk+1
j = xk

j + αkxk
j

⎛⎝ (
− ∂J

∂xk

)
j
−min

(
− ∂J

∂xk

)
+ ε∑

i
xk

i∑
m ym

[(
− ∂J

∂xk

)
i
−min

(
− ∂J

∂xk

)
+ ε

] − 1

⎞⎠ · (5.40)

Let us observe that with such a relaxed algorithm, we obtain:∑
i

xk+1
i = (1 − αk)

∑
i

xk
i + αk

∑
i

yi. (5.41)

So that, the flux conservation is related to the properties of the initial estimate,
that is

∑
i x0

i =
∑

i yi.
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In the non relaxed case, that is, with αk = 1∀k, we obtain:

xk+1
j = xk

j

(
− ∂J

∂xk

)
j
−min

(
− ∂J

∂xk

)
+ ε∑

i xk
i

[(
− ∂J

∂xk

)
i
−min

(
− ∂J

∂xk

)
+ ε

] ∑
m

ym. (5.42)

One can easily check that xk+1
i ≥ 0 if xk

i ≥ 0 ∀k, and that
∑

i xk+1
i =

∑
i yi ∀k

even if
∑

i xk
i �=

∑
i yi.

This is basically different of the property of the non-relaxed algorithm.
Unfortunately, to our experience, such beautifull non relaxed algorithm does

not converge, and the relaxed version must always be used. The corollary remark
is that the only effective property concerning the flux constraint will be:∑

i

xk
i =

∑
i

x0
i . (5.43)

All the algorithms founded on SGM are sometimes considered as having a slow
convergence rate. In the relaxed form, the stepsize computation allows to ensure
the convergence and moreover to (slightly) modify the convergence speed. Then
we briefly indicate in the following section the general rules of the acceleration
methods proposed in the literature.

6 Acceleration methods
(Biggs et al. 1997; Nesterov 1983; Beck et al. 2010)

6.1 Principle of the method

Considering that we have a basis convergent algorithm analogous to (5.40), written
in the form:

xk+1 = F (xk). (6.1)

Remember that in such an algorithm, the solution xk+1 is at each step non negative
and of fixed sum if xk is non negative and of fixed sum.

The general form of the acceleration methods proposed in the litterature could
be summarized as follows:

1. Given the initial estimate x0 fulfilling all the constraint, compute x1 (which
obviously fulfill all the constraints).

2. Knowing xk and xk−1, proceed to a linear extrapolation step to obtain the
prediction x̂k+1 as:

x̂k+1 = xk + δk
(
xk − xk−1

)
(6.2)

where the extrapolation step size δk is positive or zero ∀k.

Two expressions allowing to obtain this stepsize are given in (Biggs et al.
1997; Nesterov 1983; Beck et al. 2010); however some supplementary restric-
tions on this stepsize are necessary as indicated in the comments.
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3. Proceed to an iteration of the basis algorithm:

xk+1 = F (x̂k+1). (6.3)

6.2 Comments

All the difficulties are in the choice of the extrapolation step size, indeed:

• The extrapolated solution x̂k+1 must be a non negative solution.

Depending on the choice of δk, some components of x̂k+1 can become neg-
ative, this is not allowed; if one think to project orthogonally x̂k+1 on the
space of non negative vectors, then, the flux constraint is not fulfilled; as a
conclusion, the extrapolation step, must lead to x̂k+1 ≥ 0. Then, due to the
linearity of the extrapolation step, x̂k+1 will fulfill the flux constraint.

To fulfill the non negativity constraint on x̂k+1, some restrictions of the
extrapolation step size must be introduced.

• Even if such restrictions are taken into account, the algorithm can be non-
monotonic, that is, the objective function can increase locally. This could
be a source of problems.

The solution generally proposed is simply to remove the extrapolation step
when this happens.

• If the extrapolation is too strong, the accelerated algorithm may even di-
verge.

Then, clearly, the main problem is in the value of the extrapolation step size. Even
if several methods are proposed in the literature to compute such a step size, as far
we know, the convergence of accelerated algorithms is not clearly demonstrated
and remain an open problem.

7 Conclusion

In the present work, we analyze mainly the inverse problems in which the overall
effect of the physical system corresponds to a linear transformation of the input
signal. The discrepancy between the experimental noisy data and the linear model
must be quantified. Several classes of divergences or distances are then proposed
as discrepancy functions. The problem is then to recover the unknown signal by
minimization of the adequate divergence, subject to physical constraints.

The main point of this presentation is the Split Gradient Method. When this
method has been elaborated, the objective was to recover, using classical opti-
mization ideas, several algorithms that have been proposed in the field of image
restoration or deconvolution. The main constraint introduced in these problems
was the non negativity constraint. More generally such constraint has been ex-
tended to an inferior bound constraint.
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In a second step, we have taken into account explicitely the flux conservation
or the fixed sum constraint. The corresponding algorithms have been exhibited
in the context of the SGM. These algorithms have been applied successfully in
the fields of linear unmixing, NMF and deconvolution. Finally, the acceleration
method of such algorithms is considered and briefly discussed at the end of the
paper.
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SCALED GRADIENT PROJECTION METHODS FOR
ASTRONOMICAL IMAGING

M. Bertero1, P. Boccacci1, M. Prato2 and L. Zanni2

Abstract. We describe recently proposed algorithms, denoted scaled
gradient projection (SGP) methods, which provide efficient and accu-
rate reconstructions of astronomical images. We restrict the presenta-
tion to the case of data affected by Poisson noise and of nonnegative
solutions; both maximum likelihood and Bayesian approaches are con-
sidered. Numerical results are presented for discussing the practical
behaviour of the SGP methods.

1 Introduction

Image deconvolution is an important tool for reducing the effects of noise and blur-
ring in astronomical imaging. In this paper we assume that blurring is described
by a space invariant point spread function (PSF) and that a model of the PSF
is available, accounting for both telescope diffraction and adaptive optics (AO)
correction of the atmospheric blur. Therefore we do not consider topics such as
space-variant deblurring or blind deconvolution.

Since the deconvolution problem is ill-posed, it should be formulated by using
all the information available on the image formation process: not only the PSF
is required but also a knowledge of the statistical properties of the noise affecting
the data. These properties are used, for instance, for reformulating deconvolution
as a maximum likelihood (ML) problem, which is also ill-posed in many instances
(even if, presumably, with a lower degree of ill-posedness). Then prior information
on the unknown astronomical target is required and this, if available, can be taken
into account by extending the ML approach to a Bayesian approach. In both cases
one reformulates deconvolution as a discrete variational problem and therefore the
use of methods derived from numerical optimization becomes essential.

As concerns noise modeling, a crucial point is that astronomical images are
typically detected by charged coupled device (CCD) cameras so that one can use,
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for instance, the accurate model described by Snyder et al. (1993). According to
this model, if we denote by yi the value of the image y detected at pixel i, then
(after correction for flat field, bad pixels etc.) yi is given by

yi = y
(obj)
i + y

(back)
i + y

(ron)
i , (1.1)

where y
(obj)
i is the number of photoelectrons due to radiation from the object,

y
(back)
i is the number of photoelectrons due to internal and external background,

dark current, etc., and y
(ron)
i is the contribution of the read-out noise (RON) due

to the amplifier. The first two terms are realizations of Poisson random variables
(r.v.) while the third is a realization of an additive Gaussian r.v.. Therefore
the noise affecting the data is a mixture of Poisson (due to photon counting) and
additive Gaussian noise, due to RON. However, a refined model taking into account
this particular structure of the noise does not provide significant improvement
with respect to a simplified model also proposed by Snyder et al. (1993) (for a
comparison see, for instance, Benvenuto et al. 2008, 2012). Indeed, Snyder et al.
propose that, after the substitution yi → yi + σ2, where σ2 is the variance of the
RON, the RON can be treated as the realization of a Poisson r.v. with mean and
variance being the same as σ2. In this paper we use this approximation, which
is quite accurate in the case of near infrared (NIR) observations, characterized by
a large background emission. In conclusion we assume that the data yi, shifted
by σ2, are realizations of suitable Poisson r.v.s.

In the framework of this model several iterative methods have been proposed
for solving the ML or the Bayes problem. These methods are, in general, easy
to implement but very slow: they require a large number of iterations, so that
the computational cost can become excessive for the present and future large
telescopes, able to acquire images of several mega-pixels so that the problem of
image deconvolution in Astronomy becomes a large scale one.

An interesting property of some of the proposed algorithms is that they are
first-order optimization methods using as a descent direction a suitable (diagonal)
scaling of the negative gradient of the objective function. As a consequence, using
these scalings, it is possible to apply a recently proposed approach denoted as
scaled gradient projection (SGP) method and described in its general form by
Bonettini et al. (2009). As shown by several numerical experiments this approach
can provide a considerable speed-up of the standard algorithms.

In this paper SGP is not only considered for single-image deconvolution, the
typical problem arising in the improvement of images provided by telescopes con-
sisting of a monolithic mirror, but also for multiple-image deconvolution, a prob-
lem arising when different images of the same astronomical target are available.
A significant application of this approach is the deconvolution of the images of
the future Fizeau interferometer of the Large Binocular Telescope (LBT) called
LINC-NIRVANA (Herbst et al. 2003).

LBT (http://www.lbto.org) is the world’s largest optical and infrared tele-
scope since it consists of two 8.4 m primary mirrors with the total light-gathering
power of a single 11.8 m telescope. The two mirrors have an elevation over an
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azimuth mounting and the elevation optical support structure moves on two large
C-shaped rings (see Fig. 1). They are mounted with a 14.4 m centre separation,
hence with an edge-to-edge distance of 22.8 m. This particular structure makes
possible Fizeau interferometry, with a maximum baseline of 22.8 m, corresponding
to a theoretical resolution of a 22.8 m mirror in the direction of the line joining
the two centres.

Fig. 1. A design view of LBT (upper panel), and a fish-eye image of the opposite side of

LBT inside the enclosure (lower panel), as it appears to the visitors of the observatory

(photo courtesy of W. Ruyopakam and the Large Binocular Telescope Observatory).

LINC-NIRVANA (LN for short) will operate as a true imager. Indeed, in the
Fizeau mode, the two beams from the primary mirrors are combined in a common
focal plane (not in the pupil plane as with essentially all the existing interfer-
ometers). LN is in an advanced realization phase by a consortium of German
and Italian institutions, leaded by the Max Planck Institute for Astronomy in
Heidelberg (http://www.mpia.de/LINC/). When completed, the instrument will
be mounted in the centre of the platform of LBT (clearly visible in the lower panel
of Fig. 1). It will be fully commissioned and available for scientific studies in 2014.
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Fig. 2. Simulated PSF of LINC-NIRVANA with SR = 70% (upper-left panel), and the

corresponding MTF (upper-right panel), both represented with reversed gray scale. The

fringes are orthogonal to the baseline. In the lower panels we show the cut of the PSF

along the baseline (left) and the cut of the MTF along the same direction (right).

In Figure 2 we show a simulated point spread function (PSF) with SR =
70%, together with the corresponding modular transfer function (MTF), i.e. the
modulus of the Fourier transform of the PSF. This PSF, as well as others used in
this paper, has been obtained with the code LOST (Arcidiacono et al. 2004). It
is monochromatic (λ = 2.2 μm, i.e. K band), and, as clearly appears from this
figure, it is the PSF of a 8.4 m telescope modulated by the interferometric fringes;
accordingly the central disc of the MTF corresponds to the band of a 8.4 m mirror
while the two side disks are replicas, due to interferometry, with a weaker intensity
than the central one. These disks contain the precious additional information on
the target due to interferometry.

As follows from this analysis, LN images will be characterized by an anisotropic
resolution: that of a 22.8 m telescope in the direction of the baseline, and that
of a 8.4 m in the orthogonal direction. Therefore, in order to get the maximum
resolution in all directions, it will be necessary to acquire different images of the
same astronomical target with different orientations of the baseline and to com-
bine these images into a unique high-resolution image by means of suitable image
reconstruction methods. In other words LN will routinely require multiple-image
deconvolution.

The paper is organized as follows. In Section 2 we outline the mathematical
model based on the approximation of the RON mentioned above and we describe
the main algorithms introduced for solving the ML and the Bayesian problems both
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for single and multiple-image deconvolution. Moreover we recall an approach, pro-
posed in Bertero & Boccacci (2005), for boundary effect correction. In Section 3
we describe the algorithm SGP in the particular case of the nonnegativity con-
straint and the optimization of its parameters. In Section 4 we demonstrate its
efficiency by several numerical experiments and finally in Section 5 we derive some
conclusions.

2 Mathematical modeling

As outlined in the Introduction we assume that the value yi of an astronomical
image y detected at pixel i is the realization of a Poisson r.v. Yi with unknown
expected value λi. A further assumption is that the r.v.s. associated with differ-
ent pixels are statistically independent. As a consequence their joint probability
distribution is given by

PY (y|λ) =
∏
i∈S

e−λiλyi

i

yi!
, (2.1)

the data being assumed to be integer numbers and S being the set of the index
values.

In the case of a linear model for image formation, with the imaging system
described by a space-invariant PSF, the unknown expected value is given by

λi = (Hx)i + bi, Hx = K ∗ x, (2.2)

where: x is the unknown astronomical target; b the background emission, including
the σ2 term due to the RON; H the imaging matrix and K the PSF of the system
satisfying the conditions

Ki ≥ 0,
∑
i∈S

Ki = 1. (2.3)

Assuming that b and K are known, the image restoration problem requires the
development of methods for providing an estimate of x, given y.

2.1 Maximum likelihood approach

In the ML approach, given the detected image y, as well as b and K, one introduces
the likelihood function, which is the function of x defined by

Ly(x) = PY (y|Hx + b) (2.4)

and obtained by inserting the image y and the model (2.2) in Equation (2.1).
Then, a ML estimate of the unknown object is any image x∗ which maximizes the
likelihood function. However, since the likelihood is the product of a large number
of functions, it is more convenient to take the negative logarithm of the likelihood
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and minimize the resulting function. It is easy to see that, by rearranging terms
independent of x, the negative logarithm of Ly(x) is given by

f0(x; y) =
∑
i∈S

{
yiln

yi

(Hx + b)i
+ (Hx + b)i − yi

}
, (2.5)

which is the so-called generalized Kullback-Leibler (KL) divergence of the computed
data Hx + b from the detected data y. This function is nonnegative and is zero
iff Hx + b = y; it is also convex and coercive, i.e. f0(x; y)→ +∞ if ||x||2 → +∞.
The KL-divergence is not a metric distance, because it is not symmetric in the two
terms and does not satisfy the triangle inequality. However it can be taken as a
measure of the discrepancy between Hx+b and y; it will be called the data fidelity
function. The properties of f0(x; y) imply the existence of global minima of this
function on the nonnegative orthant and therefore the existence of nonnegative
ML estimates of the unknown. If all data are strictly positive and the imaging
matrix is nonsingular, then f0(x; y) is strictly convex, a sufficient condition for the
uniqueness of the solution.

As shown in Barrett & Meyers (2003), the nonnegative minimizers of f0(x; y)
are sparse objects, i.e. they consist of bright spots over a black background (some-
times are called star-night solutions). Therefore they can be reliable solutions in
the case of simple astronomical objects, such as binaries or open star clusters, but
they are not in the case of more complex objects, such as nebulae, galaxies etc..

The standard algorithm for the minimization of f0(x; y) is the so-called
Richardson-Lucy (RL) algorithm (Richardson 1972; Lucy 1974), defined by

x(k+1) = x(k) ·HT y

Hx(k) + b
, (2.6)

where the · denotes Hadamard product of two vectors and similarly the fraction
symbol indicates component-wise division of two vectors. In the case b = 0 con-
vergence of the iteration to the minimizers of f0(x; y) has been proved, but it
is important to remark that the algorithm has also well-known “regularization”
properties: in the case of complex objects sensible solutions can be obtained by
a suitable early stopping of the iterations, even if this approach may not pro-
vide satisfactory results in some specific cases, for instance in the case of objects
with sharp structures. Then a more refined regularization can be obtained by the
use of prior information on the solution in a Bayesian framework (see, the next
subsection).

An extension of the previous approach is required when different images of
the same object are available. This problem, as discussed in the Introduction, is
fundamental for the future Fizeau interferometer of LBT or for the “co-adding”
method of images with different PSFs proposed by Lucy & Hook (1992).

Let p be the number of detected images y(j), j=1,..,p, with corresponding
PSFs K(j), all normalized to unit volume, H(j)x = K(j) ∗ x, and backgrounds
b(j) (including the term σ2 due to RON). It is quite natural to assume that the p
images are statistically independent, so that the likelihood of the problem is the
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product of the likelihoods associated to the different images. If we assume again
Poisson statistics, and we take the negative logarithm of the likelihood, then the
ML estimates are the minimizers of a data-fidelity function which is the sum of
KL divergences, one for each image, i.e.

f0(x; y) =
p∑

j=1

∑
i∈S

{
y
(j)
i ln

y
(j)
i

(H(j)x + b(j))i
+ (H(j)x + b(j))i − y

(j)
i

}
. (2.7)

If we apply the standard expectation maximization method (Shepp & Vardi 1982)
to this problem, we obtain the iterative algorithm

x(k+1) =
1
p
x(k) ·

p∑
j=1

(H(j))T y(j)

H(j)x(k) + b(j)
, (2.8)

which we call the multiple-image RL method (multiple RL, for short).
For the reconstruction of LN images an acceleration of this algorithm is pro-

posed in Bertero & Boccacci (2000) by exploiting an analogy between the images
of the interferometer and the projections in tomography. In this approach called
OSEM (ordered subset expectation maximization; Hudson & Larkin 1994), the
sum over the p images in Equation (2.8) is replaced by a cycle over the same
images. To avoid oscillations of the reconstructions within the cycle, a prelimi-
nary step is the normalization of the different images to the same flux, if different
integration times are used in the acquisition process. The method OSEM is sum-
marized in Algorithm 1.

Algorithm 1 Ordered subset expectation maximization (OSEM) method

Choose the starting point x(0) > 0.

For k = 0, 1, 2, ... do the following steps:

Step 1. Set h(0) = x(k);

Step 2. For j = 1, ..., p compute

h(j) = h(j−1) · (H(j))T y(j)

H(j)h(j−1) + b(j)
; (2.9)

Step 3. Set x(k+1) = h(p).

End

As follows from practice and theoretical remarks, this approach reduces the
number of iterations by a factor p. However, the computational cost of one multiple
RL iteration is lower than that of one OSEM iteration: we need 3p + 1 FFTs in
the first case and 4p FFTs in the second. In conclusion, the increase in efficiency
provided by OSEM is roughly given by (3p + 1)/4. When p = 3 (the number of
images provided by the interferometer will presumably be small), the efficiency
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is higher by a factor of 2.5, and a factor of 4.7 when p = 6. These results must
be taken into account when evaluating the efficiency of SGP with respect to that
of multiple RL. We can add that the convergence of SGP is proved while that of
OSEM is not, even if it has always been verified in our numerical experiments.

2.2 Bayesian approach

As already remarked, the regularization of the ML estimates obtained by an early
stopping of the previous algorithms may not be satisfactory in some cases. A
more general kind of regularization can be obtained with the so-called Bayesian
approach. In this approach one assumes that the unknown object is also a real-
ization of a suitable r.v. X whose probability distribution expresses information
available on its properties, such as smoothness, sharp details etc..

A frequently used probability distribution has the following form, which is
typical in statistical mechanics

PX(x) =
1
Z

e−β f1(x), (2.10)

where Z (also called the partition function) is a normalization constant, β is a
hyper-parameter, playing the role of a regularization parameter in our applica-
tion, and f1(x) is a potential function characterizing the known properties of the
unknown object, called in the following regularization function or also regularizer.
PX(x) is called the prior.

If the probability distribution PY (y|Hx + b), obtained by combining
Equations (2.1) and (2.2), is interpreted as the conditional probability of Y for
a given value of X , then, from Bayes formulas we obtain that the conditional
probability of X for a given value of Y is given by

PX(x|y) =
PY (y|Hx + b)PX(x)

PY (y)
, (2.11)

where PY (y) is the marginal probability distribution of Y .
If in this equation we insert the detected image y, we obtain a function of x

which is called the posterior probability of x and is essentially the product of the
likelihood and the prior (the value of the marginal distribution of Y computed in
y is a constant which can be neglected). The maximizers of this function are the
maximum a posteriori (MAP) estimates of the unknown object. By taking again
the negative log of this function we find that they are the nonnegative minimizers
of the function

fβ(x; y) = f0(x; y) + βf1(x), (2.12)

where the second term is the negative log of the prior. If the function f1(x) is
convex and nonnegative, then fβ(x; y) is also convex and nonnegative; moreover it
is also coercive, thanks to the coercivity of f0(x; y), so that MAP estimates of the
unknown object exist. Given the regularizer, a crucial point in this approach is
the choice of the regularization parameter β. This point will be briefly discussed
in the following.
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For our purposes an interesting algorithm for the minimization of fβ(x; y) is
the so-called split-gradient method (SGM) proposed by Lantéri et al. (2002), which
consists in a simple modification of the RL algorithm. If f1(x) is differentiable and
U1(x), V1(x) is a pair of nonnegative functions such that

−∇xf1(x) = U1(x) − V1(x), (2.13)

then the algorithm is as follows

x(k+1) =
x(k)

1̂ + β V1(x(k))
·
{

HT y

Hx(k) + b
+ β U1(x(k))

}
, (2.14)

where 1̂ = (1, . . . , 1)T . The choice of the pair U1(x), V1(x) is not unique but, for
each one of the standard regularizers, one can find a quite natural choice (Lantéri
et al. 2002). As concerns the extension to the case of multiple image deconvolution
(Bertero et al. 2011), the updating rule of SGM becomes

x(k+1) =
x(k)

p1̂ + βV1(x(k))
·

⎧⎨⎩
p∑

j=1

(H(j))T y(j)

H(j)x(k) + b(j)
+ βU1(x(k))

⎫⎬⎭ , (2.15)

while the OSEM algorithm, with regularization, is given by Algorithm 1 where
Equation (2.9) is replaced by

h(j) =
h(j−1)

1̂ + β
p V1(h(j−1))

·
{

(H(j))T y(j)

H(j)h(j−1) + b(j)
+

β

p
U1(h(j−1))

}
. (2.16)

2.3 Boundary effect corrections

If the target x is not completely contained in the image domain, then the previous
deconvolution methods produce annoying boundary artifacts. It is not the purpose
of this paper to discuss the different methods for solving this problem. We focus
on an approach proposed in Bertero & Boccacci (2005) for single-image and in
Anconelli et al. (2006) for multiple-image deconvolution. Here we present the
approach in the case of multiple images (single image corresponds to p = 1).

The idea is to reconstruct the object x over a domain broader than that of
the detected images and to merge, by zero padding, the arrays of the images and
the object into arrays of dimensions that enable their Fourier transform to be
computed effectively by means of FFT. We denote by S̄ the set of values of the
index labeling the pixels of the broader arrays containing S, and by R that of
the object array contributing to S, so that S ⊂ R ⊂ S̄. It is obvious that also
the PSFs must be defined over S̄ and that this can be done in different ways,
depending on the specific problem one is considering. We point out that they
must be normalized to unit volume over S̄. We also note that R corresponds to
the part of the object contributing to the detected images and that it depends on
the extent of the PSFs. The reconstruction of x outside S is unreliable in most
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cases, but its reconstruction inside S is practically free of boundary artifacts, as
shown in the papers cited above and in the experiments of Section 4.

In order to estimate the reconstruction domain R we can proceed as follows.
Let MS be the characteristic function (mask) of S in S̄, i.e. the array which is
1 inside S and 0 outside; moreover, let us introduce the following arrays, defined
over S̄, which appear in the computation of the gradient of f0(x; y) as defined
below

γ(j) = K
(j)
− ∗MS , γ =

p∑
j=1

γ(j), (2.17)

where (K(j)
− )i = (K(j))−i. These arrays are essentially the images of MS in S̄ and

are computable by FFT. Their extent outside S (they can be either very small or
zero in pixels of S̄ outside S) depends on the extent of the PSF and therefore they
can be used for defining the reconstruction domain R. Given a thresholding value
ε, we define R as follows

R = {l ∈ S̄ | γ(j)
l ≥ ε ; j = 1, .., p}; (2.18)

Next, if MR is the characteristic function of R, we introduce the following matrices
H(j) and (H(j))T

H(j)x = MS ·K(j) ∗ (MR · x), (2.19)

(H(j))T h = MR ·K(j)
− ∗ (MS · h), (2.20)

where, in the second equation, h denotes a generic array defined over S̄. Again,
both matrices can be computed by means of FFT. We point out that, in the case
of a regularization function containing the discrete gradient of x, it could be con-
venient to slightly modify the definition of MR: not use exactly the characteristic
function of R, but an array which is 1 over R and tends smoothly to 0 outside
R (obtained, for instance, by convolving the characteristic function of R with a
suitable Gaussian). In this way one can avoid discontinuities at the boundary of
R in S̄.

With the previous definitions, the data fidelity function is given again by
Equation (2.7), with S replaced by S̄ and the matrices H(j) defined as in the previ-
ous equation. Then the multiple RL algorithm, with regularization and boundary
effect correction, is given by

x(k+1) =
MR · x(k)

γ + βV1(x(k))
·

⎧⎨⎩
p∑

j=1

(H(j))T y(j)

H(j)x(k) + b(j)
+ βU1(x(k))

⎫⎬⎭ , (2.21)

the quotient being zero in the pixels outside R. Similarly, the OSEM algorithm,
with regularization and boundary effect correction, is given by Algorithm 1 where
Equation (2.9) is replaced by

h(j) =
MR · h(j−1)

γ(j) + β
p V1(h(j−1))

·
{

(H(j))T y(j)

H(j)h(j−1) + b(j)
+

β

p
U1(h(j−1))

}
. (2.22)
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We stress again that the convergence of OSEM is not proved in the case of noisy
data but that it has been always verified numerically in our applications to astro-
nomical imaging.

3 The scaled gradient projection method

Let us consider, for generality, the case of multiple images with boundary effect
correction and regularization. It is easy to verify that the gradient of fβ(x; y),
with x restricted to R, is given by

∇xfβ(x; y) = MR ·

⎛⎝γ −
p∑

j=1

(H(j))T y(j)

H(j)x + b(j)

⎞⎠ + β∇f1(x), (3.1)

where the definitions and notations introduced in the previous sections are used.
If x is an admissible image, x ≥ 0, then it is also easy to verify that, for each
α ∈ (0, 1] the image

xα = x− α
x

γ + β V1(x)
∇xfβ(x; y), (3.2)

where V1(x) is the array related to the gradient of f1(x) (see Eq. (2.13)), is also
an admissible image. If we do the substitutions xα = x(k+1), x = x(k) and α = 1,
we re-obtain the algorithm of Equation (2.21).

Since all the algorithms in the previous section can be obtained as particular
cases of this one, we can conclude that all these algorithms are scaled gradient
method, with a descent direction which is also feasible just thanks to the scaling
of the gradient which has been introduced. This property may suggest that all the
scalings previously considered may be very useful for designing efficient first order
methods and this is just what is obtained thanks to the SGP method proposed in
Bonettini et al. (2009).

3.1 The algorithm

In many astronomical applications both ML and Bayes problems are particular
cases of the following general convex optimization problem

min f(x), sub.to x ≥ 0, (3.3)

where f is a continuously differentiable, nonnegative, convex and coercive function.
In the following we denote as P+ the projection onto the nonnegative orthant, i.e.
the operator setting to zero the negative component of a vector. Moreover, we
introduce the set D of the diagonal positive definite matrices, whose diagonal
elements have values between L1 and L2, for given thresholds 0 < L1 < L2. Then
the general SGP can be stated as in Algorithm 2.

In practice, at iteration k, given the step-length αk and the scaling matrix Dk ∈
D, a descent direction d(k) is obtained as difference between the projection of the
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Algorithm 2 Scaled gradient projection (SGP) method

Choose the starting point x(0) ≥ 0 and set the parameters η, θ ∈ (0, 1), 0 < αmin <
αmax.

For k = 0, 1, 2, ... do the following steps:

Step 1. Choose the parameter αk ∈ [αmin, αmax] and the scaling matrix
Dk ∈ D;

Step 2. Projection:
z(k) = P+(x(k) − αkDk∇f(x(k)));

Step 3. Descent direction: d(k) = z(k) − x(k);

Step 4. Set λk = 1;

Step 5. Backtracking loop:
let fnew = f(x(k) + λkd(k));
If

fnew ≤ f(x(k)) + ηλk∇f(x(k))T d(k)

then
go to step 6;

Else
set λk = θλk and go to step 5.

Endif

Step 6. Set x(k+1) = x(k) + λkd(k).

End

vector x(k) − αkDk∇f(x(k)) and the current iteration x(k). The descent direction
is then used to define the new approximation x(k+1) = x(k) + λkd(k), where the
line-search parameter λk is defined by a standard Armijo line-search procedure
that ensures the monotone reduction of the objective function at each iteration.
The global convergence can be obtained by following Birgin et al. (2000, 2003)
and Bonettini et al. (2009), where the more general case based on non-monotone
line-search procedures is also considered. We emphasize that any choice of the
step-length αk ∈ [αmin, αmax] and the scaling matrix Dk ∈ D are allowed; this
freedom of choice can then be fruitfully exploited for introducing performance
improvements, as discussed in the next section.

3.2 Scaling matrix and step-length

The choice of the scaling matrix has to be addressed with the goal of improving
the convergence rate of the image reconstruction process while avoiding to increase
excessively the computational cost of the single iteration. In the case of twice
continuously differentiable objective function, a possible choice is to use a diagonal
scaling matrix whose nontrivial elements approximate the diagonal entries of the
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inverse of the Hessian matrix ∇2f(x), for example by choosing

(Dk)ii = min
{

L2, max
{

L1,
((
∇2f(x(k))

)
ii

)−1
}}

. (3.4)

However, since the computation of the diagonal entries of the Hessian might rep-
resent an expensive task, the commonly used choice for the scaling matrix is the
one suggested by the RL algorithm and its regularized versions, namely

Dk = diag
(

min
{

L2, max
{

L1,
x(k)

γ + ηV1(x(k))

}})
, (3.5)

where only the indexes in R are considered in the case of boundary effect correc-
tion. In several applications of SGP to image deblurring the above scaling matrix
has been shown to be very successful in accelerating the approximation of suited
reconstructions, in comparison with gradient projection based approaches that
avoid the use of scaling matrices (Bonettini et al. 2009, 2012).

As concerns the step-length parameter, an effective selection strategy is ob-
tained by adapting to the context of the scaled gradient projection methods the two
Barzilai & Borwein (1988) rules (hereafter denoted by BB), which are widely used
in standard non-scaled gradient methods for unconstrained minimization prob-
lems. For the non-scaled case, the recent literature suggests effective alternation
strategies of two BB step-length updating rules, derived by a careful analysis
of their properties in the case of unconstrained minimization of quadratic func-
tions. In particular, their ability in approximating the eigenvalues of the objective
Hessian is exploited to design adaptive alternation strategies able to improve signif-
icantly the convergence rate of the gradient scheme (Zhou et al. 2006; Frassoldati
et al. 2008). Numerical evidence is available that confirms the efficiency of these
alternated BB rules also in case of nonlinear constrained minimization problems
(Serafini et al. 2005; Loris et al. 2009).

When the scaled direction Dk∇f(x(k)) is exploited within a step of the form
x(k) − αkDk∇f(x(k)), the standard BB step-length rules can be generalized as
follows:

α
(BB1)
k =

(s(k−1))T D−1
k D−1

k s(k−1)

(s(k−1))T D−1
k t(k−1)

, (3.6)

α
(BB2)
k =

(s(k−1))T Dkt(k−1)

(t(k−1))T DkDkt(k−1)
, (3.7)

where s(k−1)=x(k)−x(k−1) and t(k−1)=∇f(x(k))−∇f(x(k−1)); when Dk = I the
above formulas lead to the standard BB rules.

In SGP, the values produced by these rules are constrained into the interval
[αmin, αmax] in the following way:

if (s(k−1))T D−1
k t(k−1) ≤ 0 then

α
(1)
k = min {10 · αk−1, αmax};

else
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α
(1)
k = min

{
αmax, max

{
αmin, α

(BB1)
k

}}
;

endif
if (s(k−1))T Dkt(k−1) ≤ 0 then

α
(2)
k = min {10 · αk−1, αmax};

else
α

(2)
k = min

{
αmax, max

{
αmin, α

(BB2)
k

}}
;

endif

The criterion adopted in SGP for alternating between the above step-lengths is
derived from that proposed in Frassoldati et al. (2008) and can be stated as
follows:

if α
(2)
k /α

(1)
k ≤ τk then

αk = min
j=max{1,k+1−Mα},...,k

α
(2)
j ; (3.8)

τk+1 = 0.9 · τk;
else
αk = α

(1)
k ; τk+1 = 1.1 · τk;

endif

where Mα is a prefixed positive integer and τ1 ∈ (0, 1). In contrast to the criterion
proposed in Frassoldati et al. (2008), that is thought for the non-scaled case
(Dk = I) and uses a constant threshold τk = τ ∈ (0, 1) in the switching condition,
here a variable threshold is exploited with the aim of avoiding the selection of
the same rule for a too large number of iterations. A wide computational study
suggests that this alternation criterion is more suitable in terms of convergence
rate than the strategy proposed by Zhou et al. (2006) and the use of a single BB
rule (Bonettini et al. 2009; Favati et al. 2010; Zanella et al. 2009). Furthermore,
in our experience, the use of the BB values provided by Equation (3.8) (that are
generally lower than those provided by α

(1)
k ) in the first iterations slightly improves

the reconstruction accuracy and, consequently, in the proposed SGP version we
start the step-length alternation only after the first 20 iterations.

3.3 Choice of the parameters and implementation

Even if the number of SGP parameters is certainly higher than those of the RL and
OSEM approaches, the huge amount of tests carried out in several applications
has led to an optimization of these values, which allows the user to have at his
disposal a robust approach without the need of an expensive problem-dependent
parameter tuning. In the following we provide some comments on each of these
parameters:

• x(0): although any array can be used as starting point of the algorithm,
the two commonly used images are either the detected one (or one of the
detected images in the case of multiple deconvolution) or a constant image
with pixel values equal to the background-subtracted flux (or mean flux in
the case of multiple deconvolution) of the noisy data divided by the number
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of pixels. If the boundary effect correction is considered, only the pixels in
the object array R become equal to this constant, while the remaining values
of S̄ are set to zero. Our experience showed no clear preference of the former
choice with respect to the latter, that is typically used in the standard RL
approach;

• η, θ: the sufficient decrease parameter η and the step-reduction parameter θ
control, respectively, the severity of the objective function decrease condition
and the number of backtracking reductions. The parameter η has been set
to 10−4 as usually done in literature (see, for example, Birgin et al. 2000),
while the value θ = 0.4 resulted to be a good compromise to get a sufficiently
large step size calculated with a low number of reductions;

• αmin, αmax, α0: the bounds αmin, αmax of the step-length parameter αk are
safeguard values that have to be considered for the algorithm to ensure the
theoretical convergence. Usually, a very large range (αmin, αmax) is exploited
in combination with BB-like step-length selections (Birgin et al. 2000, set
such values to 10−30 and 1030); we found that the interval (10−5, 105) is
suited both for working with the rules (3.6)-(3.7) and for avoiding extreme
step-length values. As far as the starting parameter α0 concerns, the value
1.3 has been chosen to have an initial step slightly longer than the RL one;

• initial value for τk: as previously observed, the switching condition between
the step-length (3.8) and the value α

(1)
k works after the first 20 iterations

and we choose the value 0.5 as first value for the switching parameter τk. In
our experience, in the considered imaging applications, the values provided
by Equation (3.7) are generally lower than those given by (3.6) and the
starting value chosen for τk seems well suited to activate the alternation
between the two step-length rules (remember that in the non-scaled case, if
(s(k−1))T t(k−1) > 0, the inequality α

(BB2)
k ≤ α

(BB1)
k holds).

• Mα: in case of non-scaled gradient schemes for unconstrained quadratic min-
imization, the use of the minimum of the step-lengths α

(BB2)
k−j , j = 0, . . . , Mα

increased the ability of the first BB rule to approximate, in the subsequent
iterations, the inverse of the Hessian’s smallest eigenvalues, with interest-
ing convergence rate improvements (Frassoldati et al. 2008). In Bonettini
et al. (2009), by using the setting Mα = 3, the importance of this trick is
numerically confirmed also on more general minimization problems and in
case of scaled gradient projection methods; for this reason we adopted the
same setting also for our SGP version.

• L1, L2: while in the original paper of Bonettini et al. (2009) the choice
of the bounds (L1, L2) for the scaling matrices was a couple of fixed values
(10−10, 1010), independent of the data, we prefer to make automatically these
bounds suitable for images of any scale. In details, one step of the RL
method is performed and the parameters (L1, L2) are tuned according to
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the min/max positive values ymin/ymax of the resulting image; moreover, for
avoiding too close bounds, the following rule is implemented

if ymax/ymin < 50 then
L1 = ymin/10;
L2 = ymax · 10;

else
L1 = ymin;
L2 = ymax;

endif

The above parameter settings are at the basis of the SGP versions currently avail-
able for ML deconvolution of astronomical images, which we briefly describe.

• IDL implementation: an Interactive Data Language (IDL) package for the
single and multiple deconvolution of 2D images corrupted by Poisson noise,
with the optional inclusion of the boundary effect correction.

• IDL-GPU implementation: an extended version of the above IDL implemen-
tation able to exploit the resources available on Graphics Processing Units
(GPUs). This SGP version is obtained by means of the CUDA
(Compute Unified Device Architecture) technology, developed by NVIDIA
for programming their GPUs. The CUDA framework is available within an
IDL implementation through the GPUlib, a software library developed by
Tech-X Corporation, that enables GPU-accelerated computation.

• Matlab implementation: a Matlab package for the deconvolution of 2D and
3D images through the minimization of the function (2.5) and the early
stopping of the iterations.

These implementations and the relative documentation can be downloaded
from the URL http://www.unife.it/prin/software. A complete C++ and
C++/CUDA library collecting all the described SGP versions is in progress and
will be soon available by request.

4 Numerical experiments

The application of SGP to ML problems described in Section 3 is presented, dis-
cussed and illustrated with several numerical examples in Prato et al. (2012).
In this section we show the SGP behaviour by discussing a few of the numerical
experiments presented in Prato et al. (2012) as well as a numerical experiment of
regularized deconvolution described in Staglianò et al. (2011).

In the case of methods for ML problems a crucial point is the choice of the
number of iterations, i.e. the introduction of sensible stopping rules providing
sensible solutions. On the other hand, in the case of regularization methods, the
crucial point is the choice of the regularization parameter. We first discuss the
stopping of the iterative methods for ML reconstructions.
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In the case of the reconstruction of stellar objects such as binaries, clusters
etc., SGP can be pushed to convergence; in other words, iteration can be stopped
when the following condition is satisfied

|f0(x(k); y)− f0(x(k−1); y)| ≤ tol f0(x(k−1); y), (4.1)

where tol is a parameter selected by the user (in most cases we use tol = 10−7,
but a larger value can be selected to reduce the number of iterations if a poorer
accuracy of the result is sufficient). We remark that the application of this criterion
does not require an additional cost because f0(x(k); y) is already computed within
the algorithm.

In the case of early stopping the choice of the stopping rule is a difficult task.
In numerical simulations the reference object is known, let us denote it as x̃, and
therefore at each iteration one can compute (with a small additional cost) some
“distance” between x̃ and x(k). A frequently used indicator is the relative r.m.s.
error defined by

ρ(k) =
||x(k) − x̃||2
||x̃||2

, (4.2)

or other indicators in terms of �1-norm, KL divergence etc.. Iterations can be
stopped when ρ(k) reaches a minimum value, thus defining a reconstruction which
is “optimal” according to this criterion.

Obviously such a strategy can not be applied in the case of real data. In the
vein of a discrepancy principle used for Tikhonov regularization, one can introduce
the following quantity, which must be computed at each iteration and can be called
a “discrepancy function”

D(k)
y =

1
#S

∥∥∥∥∥Hx(k) + b− y√
Hx(k) + b

∥∥∥∥∥
2

. (4.3)

It is derived from Bardsley & Goldes (2009) while in Staglianò et al. (2011) it
is shown that this quantity is a decreasing function of k; moreover, in the latter
paper, it is proposed, on the basis of statistical considerations, that iterations could
be stopped when D

(k)
y ≤ 1. Another criterion, also based on a statistical analysis,

is proposed in Bertero et al. (2010). In this case the “discrepancy function” is
defined by

D(k)
y =

2
#S

f0(x(k); y), (4.4)

and its computation does not require any additional cost. It is proved that it is
a decreasing function of k and again iterations can be stopped when D

(k)
y ≤ 1.

Examples of the application of this criterion are given in Bertero et al. (2010).
In the case of regularized solutions, for a given value of the regularization

parameter, the iterations must be pushed to convergence using, for instance, a
criterion similar to (4.1), with f0(x(k); y) replaced by fβ(x(k); y). The problem
is to select a value of β. Again, one must use different strategies in the case of
simulated and real data.
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In the first case, if we denote as x∗
β the minimizer of fβ(x; y) (in practice, its

approximation computed by means of an iterative method), then one can introduce
again a relative r.m.s. error using a “distance” between x∗

β and x̃, for instance in
terms of the �2-norm,

ρ(β) =
||x∗

β − x̃||2
||x̃||2

, (4.5)

(or another indicator) and searching for the value of β minimizing this quantity.
This approach obviously requires the computation of x∗

β for several values of β
and can be computationally expensive.

In the case of real data one can use the discrepancy function introduced by
Bardsley & Goldes (2009)

Dy(β) =
1

#S

∥∥∥∥∥∥Hx∗
β + b − y√
Hx∗

β + b

∥∥∥∥∥∥
2

, (4.6)

or that introduced by Bertero et al. (2010)

Dy(β) =
2

#S
f0(x∗

β ; y). (4.7)

In both cases one must search for the value of β satisfying the equation D(β) = 1.
A secant-like method can be used for solving this equation; if a tolerance 10−3 is
used, in general only 4-5 iterations are required. This approach can be useful also
in the case of simulations because the value of β minimizing the error (4.5) can be
searched in a neighborhood of the value provided by the discrepancy principle.

4.1 Acceleration of the RL method

In this section we show the effectiveness of SGP with respect to the RL and OSEM
approaches, highlighting the speedups achievable thanks to both the algorithmic
acceleration provided by SGP and the parallel implementation of the codes on
GPU. We consider 256× 256 HST images of the planetary nebula NGC 7027 and
the galaxy NGC 6946, with two different integrated magnitudes (m) of 10 and
15, not corresponding to the effective magnitudes of these objects but introduced
for obtaining simulated images with different noise levels. Such images have been
convolved with an ideal PSF, simulated assuming a telescope of diameter 8.25 m,
a wavelength of 2.2 μm, and a pixel size of 50 mas. A constant background
term of about 13.5 mag arcsec−2, corresponding to observations in K-band, is
added and the resulting images are perturbed with Poisson noise and additive
Gaussian noise with σ = 10 e−/px. Original objects and the corresponding blurred
and noisy images are shown in Figure 3. As suggested in Snyder et al. (1994),
compensation for RON is obtained in the deconvolution algorithms by adding the
constant σ2 = 100 to the images and the background. We obtained test problems
of larger size (up to 2048×2048) by means of a Fourier-based rebinning, preserving
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the same background and the same noise level. The results are reported in Tables 1
and 2, where we highlight both the speedup observed between GPU and serial
implementations (labeled “Par”) and the one provided by the use of SGP instead
of RL (labeled “Alg”).

Fig. 3. Original images (top panels) and blurred noisy images with m = 10 (middle

panels) and m = 15 (bottom panels).

As concerns the multiple-image deconvolution problem, we test the efficiency
of multiple RL, OSEM, and SGP (applied to multiple RL), by means of synthetic
images of LN. In particular, we simulate a model of an open star cluster based on
an image of the Pleiades, by selecting the nine brightest stars characterized by the
following name, position and magnitude.
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Table 1. Relative r.m.s. errors, computational times, and speedups obtained by the

accelerating features of SGP with respect to RL (“Alg”) and by the GPU implementations

(“Par”), for the nebula NGC 7027 with different image sizes. Iterations are stopped at a

minimum relative r.m.s. error in the serial algorithms.

m = 10

Algorithm Size Err Sec SpUp SpUp
(Par) (Alg)

2562 0.051 783.9 - -
RL 5122 0.051 4527 - -

It = 10000∗ 10242 0.051 17610 - -
20482 0.051 80026 - -
2562 0.051 35.63 22.0 -

RL CUDA 5122 0.051 69.77 64.9 -
It = 10000∗ 10242 0.051 149.5 118 -

20482 0.051 469.1 171 -
2562 0.052 26.14 - 30.0

SGP 5122 0.051 143.6 - 31.5
It = 272 10242 0.051 554.0 - 31.8

20482 0.051 2493 - 32.1
2562 0.052 1.797 14.5 19.8

SGP CUDA 5122 0.052 3.469 41.4 20.1
It = 272 10242 0.052 8.016 69.1 18.7

20482 0.052 25.66 97.2 18.3
m = 15

Algorithm Size Err Sec SpUp SpUp
(Par) (Alg)

2562 0.068 48.27 - -
RL 5122 0.064 278.7 - -

It = 612 10242 0.062 1068 - -
20482 0.062 4897 - -
2562 0.068 2.219 21.8 -

RL CUDA 5122 0.064 4.109 67.8 -
It = 612 10242 0.062 9.250 115 -

20482 0.062 29.13 168 -
2562 0.068 3.016 - 16.0

SGP 5122 0.064 16.95 - 16.4
It = 31 10242 0.062 65.22 - 16.4

20482 0.061 290.8 - 16.8
2562 0.068 0.218 13.8 10.2

SGP CUDA 5122 0.064 0.421 40.3 9.76
It = 31 10242 0.062 1.063 61.4 8.70

20482 0.061 3.406 85.4 8.55
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Table 2. Relative r.m.s. errors, computational times, and speedups obtained by the

accelerating features of SGP with respect to RL (“Alg”) and by the GPU implementations

(“Par”), for the galaxy NGC 6946 with different image sizes. Iterations are stopped at a

minimum relative r.m.s. error in the serial algorithms.

m = 10

Algorithm Size Err Sec SpUp SpUp
(Par) (Alg)

2562 0.293 786.0 - -
RL 5122 0.293 4545 - -

It = 10000∗ 10242 0.293 17402 - -
20482 0.293 80022 - -
2562 0.293 36.64 21.5 -

RL CUDA 5122 0.293 67.94 66.9 -
It = 10000∗ 10242 0.293 146.7 119 -

20482 0.293 463.9 172 -
2562 0.292 88.72 - 8.86

SGP 5122 0.291 484.3 - 9.38
It = 928 10242 0.291 1854 - 9.19

20482 0.291 8386 - 9.54
2562 0.293 7.219 12.3 5.08

SGP CUDA 5122 0.293 11.14 43.5 6.10
It = 928 10242 0.293 25.86 71.7 5.67

20482 0.293 81.02 104 5.73
m = 15

Algorithm Size Err Sec SpUp SpUp
(Par) (Alg)

2562 0.311 114.9 - -
RL 5122 0.307 644.3 - -

It = 1461 10242 0.306 2574 - -
20482 0.306 11689 - -
2562 0.311 5.375 21.4 -

RL CUDA 5122 0.307 9.656 66.7 -
It = 1461 10242 0.306 22.41 115 -

20482 0.306 68.44 171 -
2562 0.311 3.672 - 31.3

SGP 5122 0.308 20.36 - 31.6
It = 38 10242 0.307 78.20 - 32.9

20482 0.306 354.0 - 33.0
2562 0.311 0.266 13.8 20.2

SGP CUDA 5122 0.307 0.531 38.3 18.2
It = 38 10242 0.307 1.344 58.2 16.7

20482 0.306 4.188 84.5 16.3
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Star Name X Y m
ALCYONE 228 246 12.86

ATLAS 156 237 13.62
ELECTRA 340 247 13.70

MAIA 299 295 13.86
MEROPE 277 216 14.17
TAYGETA 326 313 14.29
PLEIONE 155 253 15.09
CELAENO 343 280 15.44
ASTEROPE 296 330 15.64

The coordinate values are deduced from the picture found in the Wikipedia
page (http://en.wikipedia.org/wiki/Pleiades), resized to a 256× 256 pixels
image, and immersed in a 512 × 512 pixels image. In this way we generated a
relatively compact cluster in the center of the image. These objects are convolved
with three PSFs corresponding to three equispaced orientations of the baseline,
0◦, 60◦, and 120◦, obtained by rotating the PSF described in the Introduction and
shown in Figure 2. Background emission in K band (13.5 mag/arcsec2) is added to
the results, which are also perturbed with Poisson and Gaussian (σ = 10 e−/px)
noise. The object and one of the corresponding blurred and noisy images are
shown in Figure 4.

Fig. 4. Star cluster data: simulated object (left panel, stars are marked by circles) and

corresponding blurred and noisy image (right panel).

In this case, iterations are pushed to convergence and therefore the stopping
rule is given by the condition (4.1). We use different values of tol, specifically
10−3, 10−5, and 10−7. In order to measure the quality of the reconstruction, we
introduce an average relative error of the magnitudes defined by

av rel er =
1
q

q∑
j=1

|mj − m̃j |
m̃j

, (4.8)

where q is the number of stars (in our case q = 9) and m̃j and mj are respectively
the true and the reconstructed magnitudes. The results are reported in Table 3.
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Table 3. Reconstruction of the star cluster with three 512×512 equispaced images. The

error is the average relative error in the magnitudes defined in Equation (4.8).

tol = 1e-3
Algorithm It Err Sec SpUp

RL 319 2.39e-4 393.4 -
RL CUDA 319 2.38e-4 4.641 84.8

OSEM 151 1.63e-4 220.8 -
OSEM CUDA 151 1.62e-4 2.421 91.2

SGP 71 1.35e-3 97.80 -
SGP CUDA 71 1.29e-3 1.641 59.6

tol = 1e-5
Algorithm It Err Sec SpUp

RL 1385 6.65e-5 1703 -
RL CUDA 1385 6.64e-5 19.38 87.9

OSEM 675 5.64e-5 980.6 -
OSEM CUDA 675 5.64e-5 10.75 91.2

SGP 337 5.89e-4 455.2 -
SGP CUDA 337 1.79e-4 7.187 63.3

tol = 1e-7
Algorithm It Err Sec SpUp

RL 7472 5.64e-5 9180 -
RL CUDA 7472 5.98e-5 104.8 87.6

OSEM 3750 6.13e-5 5442 -
OSEM CUDA 3750 5.98e-5 59.52 91.4

SGP 572 7.37e-5 772.6 -
SGP CUDA 572 7.05e-5 12.20 63.3

4.2 Boundary effect correction

We show now the effectiveness of the boundary effect correction described in
Section 2.3 on the RL, OSEM and SGP algorithms. The numerical experiments
are designed according to the following procedure: we select a 256× 256 HST im-
age of the Crab nebula NGC 19521, and we build the blurred and noisy image by
means of the same procedure (and the same parameters) adopted in the previous
tests, but using the AO-corrected PSF3 shown in Figure 5.

The parameters of this PSF (pixel size, diameter of the telescope, etc.) are
not provided. However, it has approximately the same width as the ideal PSF
described in Section 4.1. We apply RL and SGP first to the full image, and then
to four 160×160 partly overlapping sub-domains with the addition of the boundary
effect correction. The full deconvolved image is obtained as a mosaic of the central
parts (see Fig. 6). The same comparison is performed in the multiple-image case

3Downloaded from http://www.mathcs.emory.edu/~nagy/RestoreTools/index.html
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Fig. 5. The PSF used for the single deconvolution experiments with boundary effect

correction (left panel) and the corresponding MTF (right panel). Both are represented

in reversed gray scale.

Fig. 6. Crab nebula test: the object (top left), its blurred and noisy image in the case

m = 10 (top right), the reconstructions of the full image with SGP (bottom left) and as

a mosaic of four reconstructions of partially overlapping subdomains, using SGP with

boundary effect correction (bottom right).

by using three 512 × 512 images of the nebula NGC 7027 obtained by means of
the LN PSFs described in the previous section (in this test, 320×320 sub-domains
are extracted). In Tables 4 and 5 we report the serial and parallel performances
of RL, OSEM (when multiple images were available) and SGP in both cases of
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Table 4. Reconstruction of the 256 × 256 Crab object with a standard deconvolution

and as a mosaic of the reconstructions of four subimages with boundary effect correction.

Standard deconvolution Boundary effects correction
m = 10

Algorithm It Err Sec SpUp It Err Sec SpUp
RL 5353 0.128 419.8 - 4070 0.129 1146 -

RL CUDA 5353 0.128 19.45 21.6 4070 0.129 61.55 18.6
SGP 151 0.129 14.28 - 129 0.129 46.42 -

SGP CUDA 151 0.129 1.219 11.7 129 0.133 4.342 10.7
m = 12

Algorithm It Err Sec SpUp It Err Sec SpUp
RL 954 0.136 74.83 - 696 0.137 196.5 -

RL CUDA 954 0.136 3.516 21.3 696 0.137 10.99 17.9
SGP 52 0.137 4.984 - 53 0.137 19.41 -

SGP CUDA 52 0.137 0.406 12.3 53 0.137 1.922 10.1
m = 15

Algorithm It Err Sec SpUp It Err Sec SpUp

RL 128 0.172 10.09 - 99 0.172 28.08 -
RL CUDA 128 0.172 0.483 20.9 99 0.172 1.704 16.5

SGP 10 0.172 1.093 - 9 0.172 3.859 -
SGP CUDA 10 0.172 0.093 11.8 9 0.172 0.360 10.7

Table 5. Reconstruction of the nebula using three equispaced 512 × 512 images, in the

cases of standard deconvolution and as a mosaic of four reconstructed subimages with

boundary effect correction.

Standard deconvolution Boundary effects correction
m = 10

Algorithm It Err Sec SpUp It Err Sec SpUp
RL 3401 0.032 4364 - 2899 0.034 13978 -

RL CUDA 3401 0.032 48.00 90.9 2899 0.034 174.2 80.2
OSEM 1133 0.032 1602 - 950 0.034 5447 -

OSEM CUDA 1133 0.032 18.59 86.2 950 0.034 64.03 85.1
SGP 144 0.033 220.7 - 160 0.034 873.3 -

SGP CUDA 144 0.033 3.563 61.9 160 0.034 15.45 56.5
Standard deconvolution Boundary effects correction

m = 15
Algorithm It Err Sec SpUp It Err Sec SpUp

RL 353 0.091 441.5 - 243 0.094 1174 -
RL CUDA 353 0.091 4.937 89.4 243 0.094 15.28 76.8

OSEM 117 0.091 165.7 - 81 0.094 479.1 -
OSEM CUDA 117 0.091 2.062 80.4 81 0.094 5.939 80.7

SGP 16 0.087 26.14 - 11 0.087 69.88 -
SGP CUDA 16 0.087 0.546 47.9 11 0.086 1.532 45.6

full and splitted deconvolution. The computational times reported in the case of
boundary effect correction refer to the reconstruction of all the four sub-domains.
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4.3 Edge-preserving regularization

As an example of regularized reconstruction we consider the case of an edge-
preserving prior, called hypersurface (HS) regularization (Charbonnier et al. 1997).
It is defined by

f1(x) =
n∑

j1,j2=1

ψδ(D2
j1,j2), δ �= 0, (4.9)

where

ψδ(t) =
√

t + δ2, D2
j1,j2 = (xj1+1,j2 − xj1,j2)

2 + (xj1,j2+1 − xj1,j2)
2. (4.10)

For δ small this regularization is used as a smoothed approximation to total varia-
tion (TV) (see, for instance, Vogel 2002; Bardsley & Luttman 2009; Zanella et al.
2009; Defrise et al. 2011; Staglianò et al. 2011; for TV regularization, see Dey
et al. 2006; Le et al. 2007; Brune et al. 2010; Setzer et al. 2010; Bonettini &
Ruggiero 2011).

By computing the gradient of f1(x) one finds the following natural choice for
the function V1(x) to be inserted in the scaling of the gradient of the complete
objective function (see Eq. (3.5))

[V1(x)]j1,j2 = [2ψ′
δ(D

2
j1,j2) + ψ′

δ(D
2
j1,j2−1) + ψ′

δ(D
2
j1−1,j2)], (4.11)

where ψ′
δ(t) is the derivative of ψδ(t).

We consider as reference object the frequently used spacecraft image charac-
terized by sharp details (Fig. 7). The size is 256×256 (in Fig. 7 we show only the
central part), and the maximum value is 255; it is superimposed to a background
b = 1. Moreover, for generating images with different noise levels, we consider
three other versions with maximum values 2550, 25 500 and 25 5000, respectively
(and backgrounds 10, 100, 1000), obtained by scaling the original object. Next,
the four versions are convolved with a PSF and then perturbed with Poisson noise
(we did not add Gaussian noise). The PSF used is the one already described in the
previous section and shown in Figure 5. For each image we generate 25 different
realizations of noise so that we have a total of 200 noisy images.

We first consider unregularized reconstructions. Early stopping of the iteration
is based on two stopping rules. The first consists in computing at each iteration
the relative r.m.s. error ρ(k), defined in Equation (4.2) and stopping the iteration
when this parameter reaches its minimum value. The second consists in com-
puting the discrepancy D(k), introduced by Bardsley & Goldes (2009), defined in
Equation (4.3), and stopping the iteration when it crosses 1. Iteration is initialized
with x(0) = yam − b (where yam is the arithmetic mean of the image values). In
all cases, D(0) > 1 and D(k) is decreasing for increasing k, providing a solution of
the equation D(k) = 1.

The results are given in Table 6 for the four images of the spacecraft with dif-
ferent noise levels. For each image we report average value and standard deviation
both of the number of iterations and of the reconstruction error, computed using
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Fig. 7. The spacecraft image, represented in reversed gray scale.

the 25 realizations of noise. The reconstruction error is weakly dependent on the
noise realization even if the number of iterations is strongly varying. Stopping
based on Bardsley & Goldes criterion works better at the highest noise level.

Table 6. Unregularized reconstructions of the spacecraft: errors and iterations.

Minimum error Discrepancy
iter error (%) iter error (%)

255 73 ± 19 40.1 ± 0.6 33 ± 14 43.9 ± 9.6
2550 186 ± 58 33.5 ± 0.4 117 ± 84 30.9 ± 11.5
25 500 465 ± 198 29.3 ± 0.3 593 ± 322 30.0 ± 1.1
255 000 1449 ± 376 26.9 ± 0.2 1788 ± 553 27.3 ± 0.5

In column (a) of Figure 8 we show the four images with different noise levels;
in columns (b) and (c) the reconstructions corresponding to the minimum r.m.s.
error and to the criterion of Bardsley & Goldes, respectively; finally, in the last
column, we show the normalized residuals defined by

R(k) =
Hx(k) + b− y√

Hx(k) + b
, (4.12)

and computed in the case of the reconstructions of column (b). Artifacts are
present at the lowest noise levels, due to the reconstruction method.

The previous numerical test is performed for investigating possible improve-
ments of the reconstructions due to the use of edge-preserving regularization, as
provided by the penalty function of Equation (4.9), with δ = 10−4, and we use
the SGP algorithm with the scaling defined in terms of the function (4.11). This
scaling has been already successfully used in the case of denoising of Poisson data
(Zanella et al. 2009) and we use the same parameters of the algorithm described
in that paper. For a given β, iteration is stopped when |fβ(xk; y)− fβ(xk−1; y)| ≤
10−7fβ(xk−1; y). The choice of β is performed by computing x∗

β and using a secant-
like method for satisfying the criterion of Bardsley & Goldes, with a tolerance
of 10−3. Next, the value of β providing the minimum r.m.s. error is obtained by
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Fig. 8. Unregularized reconstructions of the spacecraft: (a) the blurred images; (b) the

reconstructions with minimum r.m.s. error; (c) the reconstructions satisfying the criterion

of Bardsey & Goldes; (d) the normalized residuals in the case of the reconstructions of

column (b).

searching in an interval around the value provided by the discrepancy equation.
Also in this experiment we considered 25 different realization of noise for each test
image.

The reconstruction errors and the number of required iterations are reported
in Table 7. The average reconstruction errors are smaller than those obtained in
the unregularized case, with comparable standard deviations. As concerns the use
the discrepancy criterion, it provides acceptable results except at the highest noise
level. The reconstructions and the normalized residuals are shown in Figure 9.
The residuals are still affected by strong artifacts, at least in the case of the lowest
noise levels.

5 Concluding remarks and perspectives

We briefly discuss the main points of this paper by considering first the case of
the ML problems.
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Fig. 9. Regularized reconstructions of the spacecraft: (a) the blurred images; (b) the

reconstruction with the minimum r.m.s. error; (c) the reconstructions satisfying the crite-

rion of Bardsley & Goldes; (d) the normalized residuals in the case of the reconstructions

of column (b).

Table 7. Regularized reconstructions of the spacecraft: iterations and errors.

Minimum error Discrepancy
iter error (%) iter error (%)

255 247 ± 54 36.4 ± 0.6 367 ± 198 40.7 ± 4.5
2550 458 ± 138 30.7 ± 0.3 462 ± 210 32.2 ± 1.0

25 500 1308 ± 124 26.1 ± 0.2 933 ± 221 26.9 ± 0.7
255 000 2190 ± 409 24.3 ± 0.8 1700 ± 462 24.9 ± 1.0

Both RL and SGP (with the scaling suggested by RL) converge to minimizers
of the data fidelity function defined in terms of the generalized KL divergence, in
particular to the unique minimizer if the function is strictly convex. In the case
of the reconstruction of binaries or star clusters, the algorithms must be pushed
to convergence and, of course, they provide the same result. However, as follows
for instance from Table 4, the convergence of SGP is much faster than that of RL
with a speed-up increasing from 4 to about 12 for the serial implementation, and
from 3 to 9 for the parallel implementation, if the required accuracy is increased.
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On the other hand, in the case of complex objects such as nebulae, galaxies
or similar, it is well known that an early stopping of the iterations is required in
the case of RL. Indeed the algorithm has the so-called semi-convergence property,
in the sense that the iterations first approach the true object (we are talking
about simulations) and then go away. Therefore it is interesting to remark that
the iterations of SGP have a similar behaviour. The trajectories formed by the
iterations of the two algorithms are different even when the starting point is the
same, but the two points of minimal distance from the true object are very close
(in general, visually indistinguishable), and SGP reaches the point with a number
of steps much smaller than RL. The gain in computational time is considerable
in spite of the fact that the cost of one SGP iteration is about 30% higher than
that of one RL iteration (Bonettini et al. 2009). If we look at Tables 1 and 2, we
find a speed-up ranging from 10 to 30 in the serial implementation, and from 6 to
20 in the parallel implementation. The speed-up depends on the specific object
and, in general, it is higher when a higher number of iterations is required. We
conclude these brief remarks by pointing out that, in the case of faint objects, SGP
implemented on GPU is able to process a 2048× 2048 image in a few seconds.

In the case of a Bayesian approach we do not still have estimates of the speed-
up provided by SGP algorithms (with the scaling suggested by SGM) with respect
to other algorithms and, in particular, SGM (with or without line-search in terms,
for instance, of Armijo rule). In this paper we give only a few preliminary results
obtained in the case of SGP deconvolution with edge-preserving regularization.
The speed-up provided by GPU implementation of SGP edge-preserving denoising
of Poisson data is estimated in Serafini et al. (2010) (see also Ruggiero et al. 2010,
for GPU implementation of SGP deconvolution without regularization). A speed-
up of the order of 20 is observed.

We expect that also in the case of regularized deconvolution SGP can provide
very fast algorithms, reducing the computational time required for the estimation
of the value of the regularization parameter with one of the methods described in
Section 4 or other proposed methods. These topics are under investigation by our
group. The goal is to provide a library of algorithms for different regularization
functions.

We conclude by remarking that the SGP approach has been already applied to
other problems, in particular to the computation of nonnegative least-square solu-
tions (Benvenuto et al. 2010), to the nonnegative reconstruction of astronomical
data from sparse Fourier data (Bonettini & Prato 2010) and to the least-squares
problem with a sparsity regularization (Loris et al. 2009).
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SGM TO SOLVE NMF – APPLICATION TO
HYPERSPECTRAL DATA

C. Theys1, H. Lantéri1 and C. Richard1

Abstract. This article deals with the problem of minimization of a
general cost function under non-negativity and flux conservation con-
straints. The proposed algorithm is founded on the Split Gradient
Method (SGM) adapted here to solve the Non Negative Matrix
Factorization (NMF). We show that SGM can be easily regularized,
allowing to introduce some physical constraints. Finally, to validate
the algorithm, we propose an example of application to hyperspectral
data unmixing.

1 Introduction

In the field of image reconstruction or deconvolution, the minimization of a cost
function between noisy measurements and a linear model is usually performed, sub-
ject to positivity and flux constraints. The well known, in astrophysical area, are
the Iterative Space Reconstruction Algorithm (ISRA) (Daube-Witherspoon 1986),
and the Expectation Minimization (EM) (Dempster et al. 1977) or Richardson
Lucy (RL) (Lucy 1974; Richardson 1972) algorithm. In the last ten years, a gen-
eral algorithmic method, called Split Gradient Method (SGM) (Lantéri et al. 2001,
2002), has been developed to derive multiplicative algorithms for minimizing any
convex criterion under positivity constraints. It leads to ISRA and EM-RL algo-
rithm as particular cases. SGM has recently been extended to take into account a
flux conservation constraint (Lantéri et al. 2009).

During the last few years, many papers have been published in the field of
Nonnegative Matrix Factorization (NMF) with multiplicative algorithms (Lee &
Seung 2001; Cichoki et al. 2006; Févotte et al. 2009). This problem is closely
related to the blind deconvolution one (Desidera et al. 2006; Lantéri et al. 1994)
and consists in estimating W and H, nonnegative, such that V ≈WH. The aim
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of this paper is to propose a unified framework based on SGM, an interior-point
algorithm, to derive algorithms for NMF, in a multiplicative form or not.

To illustrate the general interest of SGM for NMF, we also show how to regular-
ize the problem by introducing smoothness or sparsity constraints on the columns
of W and H respectively, Lantéri et al. (2011), Lantéri et al. (2011). The choice of
these different regularization terms are motivated by the application on hyperspec-
tral imagery, Theys et al. (2009). The paper is organized as follows. In Section 2,
we describe the problem at hand and notations for non-negative matrix factoriza-
tion. In Section 3, we describe the Split Gradient Method (SGM). In Section 4,
we show how to add a sum-to-one constraint in the SGM algorithm. In Section 5,
we briefly discuss the choice of the step size. Section 6 introduces the physical
context and some simulation results are given in Section 7. The regularized SGM
is developed in section 8 with a smoothness constraint on the columns of W and
then a sparsity constraint on the columns of H, with typical numerical examples
in Section 9. Section 10 concludes the paper.

2 Nonnegative matrix factorization

We consider here the problem of nonnegative matrix factorization (NMF), which
is now a popular dimension reduction technique, employed for non-subtractive,
part-based representation of nonnegative data. Given a nonnegative data matrix
V of dimension F ×N , the NMF consists of seeking a factorization of the form

V ≈WH (2.1)

where W and H are nonnegative matrices of dimensions F × K and K × N ,
respectively. Dimension K is usually chosen such that FK + KN � FN , that is,
much more equations than unknowns. For example with F = N = 3 and K = 1:⎡⎣ V11 V12 V13

V21 V22 V23

V31 V32 V33

⎤⎦ =

⎡⎣ W11

W21

W31

⎤⎦ [
H11 H12 H13

]
. (2.2)

This problem is encountered at each time we want to find both the basis and the
coefficients of projection. The factorization (2.1) is usually sought through the
minimization problem

min
W,H

D(V,WH) s.t. [W]ij ≥ 0, [H]ij ≥ 0 (2.3)

with [V]ij and [WH]ij the (i, j)-th entries of V and WH, respectively. In the
above expression, D(V,WH) is a cost function defined by

D(V,WH) =
∑
ij

d([V]ij , [WH]ij) =
∑
ij

dij . (2.4)

In the general case, d(u, v) is a positive convex function that is equal to zero if
u = v.
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2.1 Unicity

The solution of (2.3) is, obviously, not unique. One way to overcome this problem
is to normalize the columns of W or H. We propose, here, to normalize to one
the columns of W. As a direct consequence of (2.1), this implies a constraint-sum
condition on the columns of H.

The minimization problem (2.3) becomes:

min
W,H

D(V,WH) s.t. [W]ij ≥ 0, [H]ij ≥ 0,∑
i

[W]ij = 1,
∑

i

[H]ij =
∑

i

[V]ij . (2.5)

This constant-sum constraint is motivated by applications such as, for example,
hyperspectral data unmixing. In this case, W is the matrix of basis spectra that
are supposed to be normalized to one. Another source of indetermination is that
the solutions are given up to a permutation on rows and columns of W and H. The
problem established by (2.3) is a convex optimization problem under inequality
constraint and problem (2.5) is a convex optimization problem under both equality
and inequality constraints. We propose to consider first the problem (2.3), the
inequality constraint is treated by solving the Karush-Kuhn-Tucker conditions.
Second, we consider the problem (2.5) and the equality constraint is added by
introducing normalized variables. Once the conditions satisfying the constraints
have been established, an iterative algorithm should be applied alternatively on W
and H. The proposed iterative algorithm founded on the Split Gradient Method
(SGM), a scaled gradient descent algorithm. The way to obtain it is detailed in
the following section.

3 Minimization under non-negativity constraints: The SGM

The SGM was initially formulated and developed to solve the minimization of a
positive convex function under non-negativity constraint of the solution, problem
(2.3).

3.1 The Lagrangian function

The non-negativity constraint is expressed by the Lagrangian function associated
to (2.3), given by:

L(V,WH;Λ,Ω) = D(V,WH)− 〈Λ,W〉 − 〈Ω,H〉 (3.1)

where Λ and Ω are the matrices of positive Lagrange multipliers, and 〈·,·〉 is the
inner product defined by:

〈U,V〉 =
∑
ij

[U]ij [V]ij . (3.2)

The Lagrange multipliers method allows to find an optimum of a function under
some constraints.
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3.2 Minimization with respect to W

Minimization of (3.1)with respect toW leads to the following Karush-Kuhn-Tucker
conditions for all i, j at the solution W∗, Λ∗:

[∇WL(V,W∗H;Λ∗,Ω)]ij = 0, (3.3)
[Λ∗]ij ≥ 0, (3.4)
[W∗]ij ≥ 0, (3.5)
〈Λ∗,W∗〉 = 0⇔ [Λ∗]ij [W∗]ij = 0. (3.6)

Condition (3.3) immediately leads to

[Λ∗]ij = [∇WD(V,W∗H)]ij . (3.7)

Condition (3.6) then becomes

[W∗]ij [∇WD(V,W∗H)]ij = 0
⇔ [W∗]ij [−∇WD(V,W∗H)]ij = 0 (3.8)

where the extra minus sign in the last expression is just used to make apparent
the negative gradient descent direction of D(V,WH).

The expression (3.6) gives the condition that must be satisfied for any op-
timization problem under non-negativity constraint. At the solution, the inner
product between the gradient of the cost function and the variables must be equal
to zero. The interpretation is the following: either our solution is the one that
minimizes the cost function and the minimizer is positive, either the minimizer of
the cost function is negative or zero and the constrained solution is zero.

This condition is non linear w.r.t. the unknowns, an analytical solution does
not exist.

3.2.1 Gradient descent method

Since the gradient of the functional has an analytical form, a natural choice for
the iterative algorithm is a gradient descent method.

If we consider first the minimization problem without non-negativity con-
straint:

min
W,H

D(V,WH), (3.9)

we use the negative gradient as a descent direction and we write:

[Wk+1]ij = [Wk]ij + αk
ij [−∇WD(V,W∗H)]ij (3.10)

with αk
ij a positive step size that allows to control convergence of the algorithm.

If now, we consider the minimization problem with non-negativity constraint,
Equation (2.3), the descent direction becomes [W∗]ij [−∇WD(V,W∗H)]ij ,
Equation (3.8) and the descent algorithm is:

[Wk+1]ij = [Wk]ij + αk
ij [W

∗]ij [−∇WD(V,W∗H)]ij . (3.11)
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More generally:
M ·W · [−∇WD(V,W∗H)] (3.12)

is a scaled gradient descent direction of D if M is a matrix with positive en-
tries, where · denotes the Hadamard product. A particular choice for M with
an adequate particular decomposition of [−∇WD(V,W∗H)] leads to the SGM
algorithm.

3.2.2 Split Gradient Method (SGM)

The SGM algorithm is a descent algorithm whose direction is constructed in such
a way that, for a step size equal to one, we obtain a multiplicative algorithm.
To obtain it, an additional point is that [−∇WD]ij can always be decomposed
as [P]ij − [Q]ij , where [P]ij and [Q]ij are positive entries, let us note that this
decomposition is obviously not unique. If we take for M, Equation (3.12):

[M]ij =
1

[Q]ij
(3.13)

we obtain the following gradient-descent algorithm:

[Wk+1]ij = [Wk]ij + αk
ij

[Wk]ij
[Q]kij

[−∇WD(V,WkH)]ij (3.14)

with αk
ij a positive step size that allows to control convergence of the algorithm.

If we write explicitly the decomposition of the gradient, Equation (3.11) becomes:

[Wk+1]ij = [Wk]ij + αk
ij

[Wk]ij
[Qk]ij

(
[Pk]ij − [Qk]ij

)
(3.15)

or

[Wk+1]ij = [Wk]ij + αk
ij [W

k]ij

(
[Pk]ij
[Qk]ij

− 1
)

. (3.16)

Once we have the gradient type descent algorithm, we must determine the maxi-
mum value for the step size in order that [Wk+1]ij ≥ 0, given [Wk]ij ≥ 0. Note
that, according to (3.15) or (3.16), a restriction must only apply if

[Pk]ij − [Qk]ij < 0 (3.17)

since the other terms are positive. The maximum step size which ensures the
positivity of [Wk+1]ij is given by

(αk
ij)max =

1

1− [Pk]ij

[Qk]ij

(3.18)

which is strictly greater than 1. Finally, the maximum step size over all the
components must satisfy

(αk)max ≤ min{(αk
ij)max}. (3.19)
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This choice ensures the non-negativity of all the components of Wk from iteration
to iteration. Then, convergence of the algorithm is guaranteed by computing an
appropriate step size, at each iteration, over the range [0, (αk)max] by means of a
simplified line search such as the Armijo rule for example. Finally, it is important
to notice that the use of a step size equal to 1 leads to the very simple and
well-known multiplicative form:

[Wk+1]ij = [Wk]ij
[Pk]ij
[Qk]ij

· (3.20)

This form is used because it is very easy to implement and it guarantees the
non-negativity of successive iterates for an initial non-negative value [W0]ij ≥ 0.
The main and important drawback is that the convergence of the algorithm is not
assured in the general case, but only for specific cases of [P] and [Q].

3.3 Minimization with respect to H

Minimization of (3.1) with respect to H leads to the following Karush-Kuhn-
Tucker conditions for all i, j at the solution W∗, Λ∗:

[∇HL(V,W∗H;Λ,Ω∗)]ij = 0, (3.21)
[Ω∗]ij ≥ 0, (3.22)
[H∗]ij ≥ 0, (3.23)
〈Ω∗,H∗〉 = 0⇔ [Ω∗]ij [H∗]ij = 0. (3.24)

Condition (3.21) immediately leads to

[Ω∗]ij = [∇HD(V,WH∗)]ij . (3.25)

Condition (3.24) then becomes

[H∗]ij [∇HD(V,WH∗)]ij = 0
⇔ [H∗]ij [−∇HD(V,WH∗)]ij = 0. (3.26)

where the extra minus sign in the last expression is just used to make the negative
gradient descent direction of D(V,WH) apparent.

The expression (3.24) gives the condition that must be satisfied for any op-
timization problem under non-negativity constraint. At the solution, the inner
product between the gradient of the cost function and the variables must be equal
to zero. The interpretation is the following: either our solution is the one that
minimizes the cost function and the minimizer is positive, either the minimizer of
the cost function is negative or zero and the constrained solution is zero.

This condition is non linear w.r.t. the unknowns, an analytical solution does
not exist.
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3.3.1 Gradient descent method

Since the gradient of the functional is computable, a natural choice for the iterative
algorithm is a gradient descent method.

If we consider first the minimization problem without non-negativity con-
straint:

min
W,H

D(V,WH), (3.27)

we use the negative gradient as a descent direction and we write:

[Hk+1]ij = [Hk]ij + βk
ij [−∇HD(V,WH∗)]ij (3.28)

with βk
ij a positive step size that allows to control convergence of the algorithm.

If now, we consider the minimization problem with non-negativity constraint,
Equation (2.3), the descent direction becomes [H∗]ij [−∇HD(V,WH∗)]ij ,
Equation (3.26) and the descent algorithm is:

[Hk+1]ij = [Hk]ij + βk
ij [H

k]ij [−∇HD(V,WH∗)]ij . (3.29)

More generally:
N ·H · [−∇HD(V,WH∗)] (3.30)

is a gradient descent direction of D if N is a matrix with positive entries, where ·
denotes the Hadamard product. A particular choice for N with a specific decom-
position of [−∇HD(V,WH∗)] leads to the SGM algorithm.

3.3.2 Split Gradient Method (SGM)

The SGM algorithm is a descent algorithm whose direction is constructed in such
a way that, for a step size equal to one, we obtain a multiplicative algorithm.
To obtain it, an additional point is that [−∇HD]ij can always be decomposed
as [R]ij − [S]ij , where [R]ij and [S]ij are positive entries, let us note that this
decomposition is obviously not unique. If we take for N, Equation (3.30):

[N]ij =
1

[S]ij
, (3.31)

we obtain the following gradient-descent algorithm:

[Hk+1]ij = [Hk]ij + βk
ij

[Rk]ij
[Sk]ij

[−∇HD(V,WHk)]ij (3.32)

with βk
ij a positive step size that allows to control convergence of the algorithm.

If we write explicitly the decomposition of the gradient, Equation (3.32) becomes:

[Hk+1]ij = [Hk]ij + βk
ij

[Hk]ij
[Rk]ij

(
[Rk]ij − [Sk]ij

)
(3.33)
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or

[Hk+1]ij = [Hk]ij + βk
ij [H

k]ij

(
[Rk]ij
[Sk]ij

− 1
)

. (3.34)

Once we have the gradient type descent algorithm, we must determine the ma-
ximum value for the step size in order that [Hk+1]ij ≥ 0, given [Hk]ij ≥ 0. Note
that, according to (3.33), a restriction must only apply if

[Rk]ij − [Sk]ij < 0 (3.35)

since the other terms are positive. The maximum step size which ensures the
positivity of [Hk+1]ij is given by

(βk
ij)max =

1

1− [Rk]ij

[Sk]ij

(3.36)

which is strictly greater than 1. Finally, the maximum step size over all the
components must satisfy

(βk)max ≤ min{(βk
ij)max}. (3.37)

This choice ensures the non-negativity of all the components of Hk from iteration
to iteration. Then, convergence of the algorithm is guaranteed by computing an
appropriate step size, at each iteration, over the range [0, (βk)max] by means of a
simplified line search such as the Armijo rule for example. Finally, it is important
to notice that the use of a step size equal to 1 leads to the very simple and well-
known multiplicative form:

[Hk+1]ij = [Hk]ij
[Rk]ij
[Sk]ij

· (3.38)

This form is used because it is very easy to implement and it guarantees the non-
negativity of successive iterates for an initial non-negative value [H0]ij ≥ 0. The
main and important drawback is that the convergence of the algorithm is not
assured.

3.4 Explicit expressions of the gradients

Before ending this section, let us compute ∇D with respect to H and W, using
Equations (2.1) and (2.4). It can be expressed in matrix form as follows:

∇HD = WT A ∇WD = AHT (3.39)

where A is a matrix whose (i, j)-th entry is given by:

[A]ij =
∂dij

∂[WH]ij
· (3.40)

Equations (3.20), (3.38) associated to (3.39), (3.40), lead to the multiplicative
algorithms described in (Cichoki et al. 2006; Févotte et al. 2009; Lee & Seung
2001). These are particular cases of the relaxed algorithms (3.15) (3.33), when a
unit step size is used.
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4 Minimization under non-negativity constraints and flux conservation

Let us now consider problem (2.5), which differs from (2.3) by additional flux
constraints.

4.1 Flux conservation constraints

We make the following variable changes:

[W]ij =
[Z]ij∑
m[Z]mj

; (4.1)

[H]ij =

(∑
m

[V]mj

)
[T]ij∑
m[T]mj

· (4.2)

The term (
∑

m[V]mj) comes from the fact that [H]ij is normalized to the column
j of V. In so doing, the problem becomes unconstrained with respect to the flux
but we must search the solution in a domain where the denominator is a constant
to ensure that the problem remains convex w.r.t. the new variables. It is an
important point performed by our method. The flux conservation being provided
by the change of variables, we can proceed the SGM on the new variables to ensure
both the non-negativity and the flux conservation.

To deal with the non-negativity constraints, let us consider again the SGM
algorithm and compute the gradient with respect to new variables.

4.2 Explicit expressions of the gradients

Let us compute expression of the gradients w.r.t. the new variables:

∂D
∂[Z]lj

=
∑

i

∂D
∂[W]ij

× ∂[W]ij
∂[Z]lj

, (4.3)

∂D
∂[T]lj

=
∑

i

∂D
∂[H]ij

× ∂[H]ij
∂[T]lj

(4.4)

where, in a compact form,

∂[W]ij
∂[Z]lj

=
1∑

m[Z]mj
× (δli − [W]ij), (4.5)

∂[H]ij
∂[T]lj

=
∑

m[V]mj∑
m[T]mj

×
(

δli −
[H]ij∑
m[V]mj

)
(4.6)

with δli the Kronecker symbol. As a consequence, the components of the opposite
of the gradient of D with respect to the new variables can now be written as

− ∂D
∂[Z]lj

=
1∑

m[Z]mj

((
− ∂D

∂[W]lj

)
−

∑
i

[W]ij

(
− ∂D

∂[W]ij

))
(4.7)
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and

− ∂D
∂[T]lj

=
∑

m[V]mj∑
m[T]mj

((
− ∂D

∂[H]lj

)
−

∑
i[H]ij∑

m[V]mj

(
− ∂D

∂[H]ij

))
(4.8)

4.3 SGM with the normalized variables

We solve both the split of the gradient between two positive functions and the
conservation of the convexity w.r.t. to the new variables by making the shift of
the form:

(−∂D�∂[W]ij)s ←− (−∂D�∂[W]ij) + η, ∀(i, j),
(−∂D�∂[H]ij)s ←− (−∂D�∂[H]ij) + μ, ∀(i, j).

Let us notice that this shift leaves Equations (4.9) and (4.14) unchanged. Conse-
quently, using

η = −min
ij

(
− ∂D

∂[W]ij

)
+ ε, μ = −min

ij

(
− ∂D

∂[H]ij

)
+ ε

does not modify the gradient of D with respect to the new variables Z and T, but
ensures the non-negativity of (−∂D�∂[W]ij)s and (−∂D�∂[H]ij)s. A constant
ε is added to avoid numerical instability, however, it must be chosen small enough
not to slow down the minimization. Let us note that this particular decomposition
allows to ensure that the denominator in (4.1) and (4.2) remains constant and then
we are always in the convexity domain. We shall now apply the SGM method.

4.4 Minimization with respect to W

Consider the following gradient (4.9) decomposition:

[−∇ZD]ij = [P]ij − [Q]ij (4.9)

that involves the non-negative entries defined as follows

[P]ij =
(
− ∂D

∂[W]ij

)
s

, (4.10)

[Q]ij = [Q].j =
∑

i

[W]ij

(
− ∂D

∂[W]ij

)
s

. (4.11)

The relaxed form of the minimization algorithm can be expressed as

[Zk+1]lj = [Zk]lj + αk[Zk]lj

(
(−∂D�∂[Wk]lj)s∑

i[Wk]ij(−∂D�∂[Wk]ij)s
− 1

)
.

We clearly have
∑

l[Z
k+1]lj =

∑
l[Z

k]lj , for all αk. This allows us to express the
algorithm with respect to the initial variable W, that is,

[Wk+1]lj = [W]klj + αk[W]klj

(
(−∂D�∂[W]klj)s∑

i[W]kij(−∂D�∂[W]kij)s
− 1

)
. (4.12)
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Again, with a constant step size equal to 1, the algorithm takes a simple multi-
plicative form:

[Wk+1]lj = [Wk]lj
(−∂D�∂[Wk]lj)s∑

i[Wk]ij(−∂D�∂[Wk]ij)s
· (4.13)

4.5 Minimization with respect to H

In an analogous way, consider the following gradient (4.14) decomposition:

[−∇TD]ij = [R]ij − [S]ij (4.14)

that involves the non-negative entries given by

[R]ij =
∑

m[V]mj∑
m[T]mj

(
− ∂D

∂[H]ij

)
s

, (4.15)

[S]ij = S.j =
∑

m[V]m,j∑
m[T]mj

∑
i

[H]ij∑
m[V]mj

(
− ∂D

∂[H]ij

)
s

. (4.16)

This leads to the relaxed form of optimization algorithm with respect to variable
T, that is,

[Tk+1]lj = [Tk]lj + αk[Tk]lj

⎛⎝ (−∂D�∂[Hk]lj)s∑
i

[Hk]ij∑
m[V]mj

(−∂D�∂[Hk]ij)s

− 1

⎞⎠ .

It can be seen that
∑

l[T
k+1]lj =

∑
l[T

k]lj , for all αk, which implies that

[Hk+1]lj = [Hk]lj + αk[Hk]lj

⎛⎝ (−∂D�∂[Hk]lj)s∑
i

[Hk]ij∑
m[V]mj

(−∂D�∂[Hk]ij)s

− 1

⎞⎠ . (4.17)

The multiplicative form is obtained with a constant step size equal to 1, namely,

[Hk+1]lj = [Hk]lj
(−∂D�∂[Hk]lj)s∑

i[Hk]ij(−∂D�∂[Hk]ij)s

∑
m

[V]mj . (4.18)

In the next section, we propose to illustrate this algorithm within the field of
hyperspectral imaging.

5 Choice of the descent step size and convergence speed

On one hand, if the descent step size is fixed to one, there is no way to mod-
ify the convergence speed and the iterations number can be high, moreover, the
convergence is not ensured but the algorithm takes a simple form. On the other
hand, if the descent step size is searched by a simple rule, Armijo for example, the
iterations number decreases but the duration of one iteration increases, from our
experience, when the step size is computed, the overall gain is about ten or twenty
percents and in this case the convergence is ensured.
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6 Physical context: Hyperspectral imagery

Hyperspectral imaging has received considerable attention in the last few years.
See for instance (Chang 2003), (Landgrebe 2003) and references therein. It con-
sists of data acquisition with high sensitivity and resolution in hundreds contiguous
spectral bands, geo-referenced within the same coordinate system. With its ability
to provide extremely detailed data regarding the spatial and spectral characteris-
tics of a scene, this technology offers immense new possibilities in collecting and
managing information for civilian and military application areas.

Each vector pixel of an hyperspectral image characterizes a local spectral sig-
nature. Usually, one consider that each vector pixel can be modeled accurately
as a linear mixture of different pure spectral components, called endmembers.
Referring to our notations, each column of V can thus be interpreted as a spec-
tral signature obtained by linear mixing of the spectra of endmembers, i.e., the
columns of W. The problem is then to estimate the endmember spectra W and
the abundance coefficients H from the spectral signatures V.

In all the simulations presented in this paper, the end members are extracted
from the ENVI library (ENVI 2003).

7 Simulation results

Many simulations have been performed to validate the proposed algorithm,
Equations (4.13) and (4.18). The experiment presented in this paper corresponds
to 10 linear mixtures of 3 endmembers, the length of each spectrum being 826.
The three endmembers used in this example correspond to the spectra of the con-
struction concrete, green grass, and micaceous loam. The chosen cost function for
D is the Frobenius norm:

D(V,WH) =
∑
ij

([WH]ij − [V]ij)2 = (WH−V)T (WH−V). (7.1)

The used procedure is the following:

1. Take the spectra from a library (ENVI here).

2. Generate randomly the KN abundance coefficients Hij in a given interval.

3. Compute V.

4. Generate randomly H0 and W 0 in the space constraints.

5. Compute the chosen cost function, here the Frobenius norm:

6. Compute the decomposition of the gradient w.r.t. Z, i.e. (4.10) and (4.11).

7. Compute Wk+1, (4.12).

8. Compute the decomposition of the gradient w.r.t. T , i.e. (4.15) and (4.16).
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9. Compute Hk+1, (4.17).

10. Until the stopping criterion:

D(V,Wk+1Hk+1)−D(V,WkHk)
D(V,WkHk)

≤ 10−10. (7.2)

Figure 1 shows the behaviour of the criterion D as a function of the number of
iterations, and the 10 reconstructed spectra in comparison with the true ones.
Figure 2 shows the estimated endmembers (columns of W), and their abundance
coefficients (rows of H) after 12 000 iterations, and compared with the true values.
Note that the initial values for W and H were chosen to satisfy the constraints,
i.e., positivity, sum to one of the columns of W. We clearly see that the curves
coincide almost perfectly. The normalization of the columns of matrix W, as well
as the flux conservation between V and H, are satisfied at each iteration. Let us
note that H and W could be estimated up to a permutation of the columns of W,
and to an analogous permutation of the rows of H.

0 100 200 300 400 500 600 700 800 900
0

0.002

0.004

0.006

0.008

0.01

0.012

Fig. 1. Frobenius D(V,WH) as a function of the number of iterations. Columns of V

at the end of the iterations, solid line for true values, dashed line for estimated values.

8 Regularization

In full generality, we can add several regularization terms depending on one or
two variables, the only constraint being that each regularization function must be
convex w.r.t. the relevant variable. If the regularization term depends on the two
variables, it must be convex w.r.t. one variable, the other being fixed. Here, we
consider the case where the regularization penalty terms are incorporated sepa-
rately on the columns of W and H, and are added to the data consistency term
D(V,WH). Then the penalized objective function expresses as

Dreg(V,WH) = D(V,WH) + γ1F1(W) + γ2F2(H) (8.1)

where F1(W) and F2(H) are penalty functions, and γ1, γ2 the respective regular-
ization factors. The general rules given for SGM remain true for the regularized
versions of the algorithms.
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Fig. 2. On the left, columns of W. On the right, rows of H. On each plot: solid line for

true values, dashed line for estimated values.

The minimization of Dreg w.r.t. the variable Z must take into account the
regularization function F1(W), Equation (4.1):

−∇ZDreg = −∇ZD − γ1∇ZF1, (8.2)

and the minimization of Dreg w.r.t. the variable T must take into account the
regularization function F2(H), Equation (4.2).

−∇TDreg = −∇TD − γ2∇TF2. (8.3)

In the following, we consider one regularization term at a time, that is, first on
the spectra and then on the abundance coefficients.



C. Theys et al.: SGM to Solve NMF 371

8.1 Regularized SGM on the spectra W

We develop in this section expressions of SGM for a regularization F1 on the
normalized endmembers spectra W, we have:

−∇ZDreg = −∇ZD − γ1∇ZF1, (8.4)

−∇TDreg = −∇TD. (8.5)

The component of the opposite of the gradient of Dreg with respect to Z is:

−∂Dreg

∂[Z]lj
=

1∑
m[Z]mj

(
− ∂D

∂[W]lj
− γ1

∂F1

∂[W]lj

)
s

−

1∑
m[Z]mj

∑
i

[W]ij

(
− ∂D

∂[W]ij
− γ1

∂F1

∂[W]ij

)
s

(8.6)

In the same way that for the non regularized SGM, we solve both the split of
the gradient between two positive functions and the conservation of the convexity
w.r.t. the new variables by making the shift of the form:(

− ∂D
∂[W]ij

− γ1
∂F1

∂[W]ij

)
s

←−
(
− ∂D

∂[W]ij
− γ1

∂F1

∂[W]ij

)
+ η + ε ∀(i, j)

with

η = −min
ij

(
− ∂D

∂[W]ij
− γ1

∂F1

∂[W]ij

)
.

The decomposition of the gradient of the regularized cost function w.r.t. Z is:

[−∇ZDreg]ij = [P ]ij − [Q]ij (8.7)

with

[P ]ij =
(
− ∂D

∂[W]ij
− γ1

∂F1

∂[W]ij

)
s

,

[Q]lj = [Q].j =
∑

i

[W].j

(
− ∂D

∂[W]ij
− γ1

∂F1

∂[W]ij

)
s

(8.8)

and the iterate on W is:

[Wk+1]lj = [W]klj + αk[W]klj

⎛⎝
(
− ∂D

∂[W]lj
− γ1

∂F1
∂[W]lj

)
s∑

i[W]ij
(
− ∂D

∂[W]ij
− γ1

∂F1
∂[W]ij

)
s

− 1

⎞⎠ . (8.9)

In the same way that for the non regularized SGM, with a constant step size equal
to one, we get:

[Wk+1]lj = [W]klj

(
− ∂D

∂[W]lj
− γ1

∂F1
∂[W]lj

)
s∑

i[W]ij
(
− ∂D

∂[W]ij
− γ1

∂F1
∂[W]ij

)
s

· (8.10)



372 New Concepts in Imaging: Optical and Statistical Models

The iterate on H is still given by Equation (4.17) or Equation (4.18) for a unit
step size.

8.1.1 Tikhonov smoothness regularization

The well known Tikhonov regularization expresses some smoothness of the solution
and is applied, here, on endmember spectra, i.e. on the columns of W. This is
justified by physical considerations, spectra varying slowly as a function of the
wavelength. Consequently, the regularization function is:

F1(W) =
1
2

∑
ij

([W]ij − c)2 (8.11)

with c a constant positive or zero, or more generally

F1(W) =
1
2

∑
ij

[∂1,2W]2ij (8.12)

where ∂1,2 is the first or second-order derivative operator. For simplicity, we
approximate ∂1,2W in a closed numerical form as

[∂1,2W]ij = [W]ij − [AW]ij (8.13)

where AW stands for the convolution of each column of matrix W by a mask, e.g.
[1 0 0] and [12 0 1

2 ] for the first and second-order derivative operators, respectively.
In this case, the opposite of the gradient can be expressed in matrix form as follows:

−[∇WF1]ij = [(A + A�)W]ij − [(A�A + I)W]ij . (8.14)

Note that Tikhonov regularization with the basic SGM algorithm was initially
associated to the basic SGM algorithm in (Lantéri et al. 2011), i.e., without flux
constraint. The interested reader is invited to consult this reference for an overview
of the results that have been obtained.

8.1.2 Simulations results

As for the non regularized SGM, many simulations have been performed to validate
the proposed algorithm, Equations (8.10) and (4.18). Note that the different forms
of the regularization term give approximatively the same practical results. The
experiment corresponds to 10 linear mixtures of 3 endmembers, the length of
each spectrum being 826. A noise vector distributed according to a Gaussian
distribution with zero-mean and covariance matrix σ2IN , where IN is the N ×N
identity matrix has been added to each column of V. Note that this statistical
model assumes that the noise variances are the same in all bands. Results are
given for a snr equal to 20dB. Figure 3 shows the estimated endmembers (columns
of W) after 12 000 iterations, and compared with the true values with and without
regularization. Figures 4 and 5 show the 10 reconstructed spectra in comparison
with the true ones, respectively without and with regularization. We clearly see
the interest of the regularization on the estimation.
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Fig. 3. Columns of W. On each plot: solid line for true values, dashed line for estimated

values. Left column: without regularization γ = 0. Right column with γ = 0.1.

8.2 Regularized SGM on the abundance coefficients H

We develop in this section expressions of SGM for a regularization F2 on the
normalized abundance coefficients H, we have:

−∇ZDreg = −∇ZD (8.15)

−∇TDreg = −∇TD − γ2∇TF2. (8.16)

In this case, the component of the opposite of the gradient of Dreg with respect
to T is:

− ∂Dreg

∂[T]lj
=

1∑
m[T]mj

(
− ∂D

∂[H]lj
− γ2

∂F2

∂[H]lj

)
s

−

1∑
m[T]mj

∑
i

[H]ij

(
− ∂D

∂[H]ij
− γ2

∂F2

∂[H]ij

)
s

· (8.17)
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Fig. 4. Columns of V, solid line for true values, dashed line for estimated values without

regularization, γ = 0.

In the same way that for the non regularized SGM, we solve both the split of
the gradient between two positive functions and the conservation of the convexity
w.r.t. the new variables by making the shift of the form:(

− ∂D
∂[H]ij

− γ2
∂F2

∂[H]ij

)
s

←−
(
− ∂D

∂[H]ij
− γ2

∂F2

∂[H]ij

)
+ η + ε ∀(i, j)

with

η = −min
ij

(
− ∂D

∂[H]lj
− γ2

∂F2

∂[H]lj

)
.

The decomposition of the gradient of the regularized cost function w.r.t. T is:

[−∇TDreg]lj = [R]ij − [S]ij (8.18)

with

[R]ij =
(
− ∂D

∂[H]ij
− γ2

∂F2

∂[H]lj

)
s

, [S]ij =
∑

i

[H]ij

(
− ∂D

∂[H]ij
− γ2

∂F2

∂[H]ij

)
s

(8.19)
and the iterate on H is:

[Hk+1]lj = [H]klj + αk[H]klj

⎛⎝
(
− ∂D

∂[H]lj
− γ2

∂F2
∂[H]lj

)
s∑

i[H]ij
(
− ∂D

∂[H]ij
− γ2

∂F2
∂[H]ij

)
s

− 1

⎞⎠ · (8.20)
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Fig. 5. Columns of V, solid line for true values, dashed line for estimated values with

γ = 0.1.

In the same way that for the non regularized SGM, with a constant step size equal
to one, we get:

[Hk+1]lj = [H]klj

(
− ∂D

∂[H]lj
− γ2

∂F2
∂[H]lj

)
s∑

i[H]ij
(
− ∂D

∂[H]ij
− γ2

∂F2
∂[H]ij

)
s

· (8.21)

The iterate on W is still given by Equation (4.12) or Equation (4.13) for a unit
step size.

8.2.1 Sparsity-enforcing regularization

Such a penalty, which expresses that most of information may be concentrated
in a few coefficients, mainly applies to the abundance coefficients, that is, to the
columns of H. Keeping in mind that the algorithm satisfies flux conservation
constraint, see (4.2), we are ready to consider the following sparsity measure σ
introduced in (Hoyer (2004))

σ =

√
K − ‖[H]•j‖1

‖[H]•j‖2√
K − 1

, 0 ≤ σ ≤ 1 (8.22)

with K the number of rows of H, and [H]•j its j-th row. This clearly defines a
relation between the �2-norm and the �1-norm of [H]•j , the sum constraint on H
associated with non negativity inducing a constant �1-norm.

‖[H]•j‖22 = α2‖[H]•j‖21 (8.23)



376 New Concepts in Imaging: Optical and Statistical Models

with

α =
1√

K − σ(
√

K − 1)
,

1√
K
≤ α ≤ 1. (8.24)

Note that only two values for σ lead to unambiguous situations; if α is equal to
one, only one entry of [H]•j is nonzero; if α = 1/

√
K, all the entries of [H]•j are

equal. Any other value for α can correspond to different sets of entries. As a
consequence, we suggest to consider the following penalty function2:

F2(H) =
1
2

∑
j

(
‖[H]•j‖22 − α2‖[H]•j‖21

)2
(8.25)

with α equal to one, and use of the regularization factor γ2 in (8.1) to push [H]•j

toward a sparse solution. For convenience, let us provide the opposite of the
gradient of F2(H)

−[∇HF2]ij = (α2‖[H]•j‖21 − ‖[H]•j‖22)
([H]ij − α2‖[H]•j‖1) (8.26)

to be used in (8.21). In the next section, we shall test this algorithm for hyper-
spectral data unmixing.

8.2.2 Simulations results

To test interest of sparsity regularization on the abundance coefficients, we take
20 linear mixtures of 6 endmembers, the length of each spectrum being 826. The
six endmembers correspond to the construction concrete, green grass, micaceous
loam, olive green paint, bare red brick and galvanized steel metal.

In order to characterize the performance of our approach, and show that it
tends to provide sparse solutions, we considered a matrix H with only one nonzero
entry per column. This entry was selected randomly and set to one. See Figure 6.
Each observed spectrum was corrupted by an additive white Gaussian noise at
a signal-to-noise ratio equal to 20 dB. The matrices H obtained for γ2 = 0 and
γ2 = 10−3, respectively, are presented in Figures 7 and 8.

We clearly observe that the sparsity-enforcing function allowed us to recover, in
most cases, the endmembers involved in each observed spectrum. On the contrary,
when no sparsity penalty term was used, all the entries of the estimated matrix
H were nonzero. Finally, we checked that normalization of the columns of the
matrix W, as well as the flux conservation between V and H, were satisfied at
each iteration in both cases. On Figure 9, the behaviour of sj is plotted as a
function of the number of iterations, one see clearly that sj tends to 1, whatever
j after a small number of iterations.

2Using (4.2), note that [H]•j‖2
1 remains constant along iterations.
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Fig. 6. True H with a sparsity sj = 1, α = 1.

Fig. 7. Estimated H without sparsity constraint, μ = 0.

Fig. 8. Estimated H with a sparsity constraint, μ = 0.001.

9 Conclusion

In this paper, we proposed a (split) gradient-descent method to solve the nonnega-
tive matrix factorization problem subject to flux conservation constraints on each
column of the estimated matrices. Tikhonov regularization and sparsity-enforcing
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Fig. 9. sj as a function of the number of iterations, μ = 0.001.

regularization have been also considered. Application in the context of hyper-
spectral data unmixing shows the effectiveness and the interest of the proposed
algorithms.
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Abstract. In this paper, we describe two fully Bayesian algorithms that
have been previously proposed to unmix hyperspectral images. These
algorithms relies on the widely admitted linear mixing model, i.e. each
pixel of the hyperspectral image is decomposed as a linear combination
of pure endmember spectra. First, the unmixing problem is addressed
in a supervised framework, i.e., when the endmembers are perfectly
known, or previously identified by an endmember extraction algorithm.
In such scenario, the unmixing problem consists of estimating the mix-
ing coefficients under positivity and additivity constraints. Then the
previous algorithm is extended to handle the unsupervised unmixing
problem, i.e., to estimate the endmembers and the mixing coefficients
jointly. This blind source separation problem is solved in a lower-
dimensional space, which effectively reduces the number of degrees of
freedom of the unknown parameters. For both scenarios, appropriate
distributions are assigned to the unknown parameters, that are esti-
mated from their posterior distribution. Markov chain Monte Carlo
(MCMC) algorithms are then developed to approximate the Bayesian
estimators.

1 Abstract

For several decades, hyperspectral imagery has been demonstrating its high inter-
est in numerous research works devoted to Earth monitoring. This interest can
be easily explained by the high spectral resolution of the images provided by the
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hyperspectral sensors. For instance, hyperspectral images can provide automatic
classification maps for mineralogic surveys, avoiding long and tedious sampling
campaigns (Jackson & Landgrebe 2002; Rellier et al. 2004). When environmental
issues are on the front of the stage, hyperspectral imaging enables to provide cru-
cial information related to macroscopic parameters, e.g., the status of ecosystems
or plants. Obviously, the price to pay for extracting the information contained in
these images is to develop new methods exploiting the data provided by hyper-
spectral sensors efficiently.

Since the first hyperspectral images were acquired, spectral unmixing has been
of considerable interest, not only in the remote sensing community, but also in
the signal and image processing community. Solving this problem can indeed
provide answers to various important issues such as classification (Chang 2003),
material quantification (Plaza et al. 2005) and sub-pixel detection (Manolakis et al.
2001). Spectral unmixing consists of decomposing each pixel of the observed scene
into a collection of reference spectra, usually referred to as endmembers, and
estimating their proportions, or abundances, in each pixel (Bioucas-Dias et al.
2012). To formally describe the mixture, the most frequently encountered model
is the macroscopic model which gives a good approximation of the nonlinear model
introduced by Hapke (Hapke 1981) in the reflective spectral domain from visible
to near-infrared (0.4 μm to 2.5 μm) (Johnson et al. 1983). This linear model
assumes that the observed pixel spectrum is a weighted linear combination of the
endmember spectra.

As noticed in (Keshava & Mustard 2002), linear spectral unmixing has of-
ten been handled as a two-step procedure: the endmember extraction step and
the inversion step, respectively. In the first step of the analysis, the macroscopic
materials that are present in the observed scene are identified by using an end-
member extraction algorithm (EEA). The most popular EEAs include pixel pu-
rity index (PPI), N-FINDR (Winter 1999), and more recently the VCA algorithm
(Nascimento & Bioucas-Dias 2005a) which proposes to recover the vertices of the
biggest simplex in the observed data. A common assumption in these EEAs is
that they require the presence of pure pixels in the observed image. Conversely,
(Craig 1994) and (Bowles et al. 1995) proposed minimum volume transforms to
recover the smallest simplex that contains all the dataset.

The second step of spectral unmixing is devoted to the abundance estimation.
These abundances have to ensure constraints inherent to hyperspectral imagery: as
they represent proportions, the abundances have to satisfy positivity and additivity
constraints. Several algorithms proposed in the literature to solve this inversion
step rely on constrained optimization techniques (Heinz & Chang 2001; Theys
et al. 2009; Tu et al. 1998).

This paper studies alternatives based on Bayesian inference for supervised and
unsupervised unmixing problems. In the first part of this work, the endmembers
are assumed to be previously identified, e.g., using a priori knowledge regarding
the observed scene or using results provided by an EEA. In this case, the unmixing
algorithm performs the inversion step, i.e., it estimates the abundance coefficients
under positivity and additivity constraints. In a second part of this paper, we
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introduce a spectral unmixing algorithm in a fully unsupervised framework to
estimate the pure component spectra and their proportions jointly.

In both frameworks, Bayesian formulation allows the constraints within the
model to be satisfied. Indeed, appropriate prior distributions are chosen to take
into account the positivity and additivity of the abundances, as well as the pos-
itivity of the endmember spectra. To overcome the complexity of the posterior
distribution, Markov chain Monte Carlo algorithms are proposed to approximate
the standard minimum mean squared error estimator. Moreover, as the full pos-
terior distribution of all the unknown parameters is available, confidence intervals
can be easily computed. These measures allow the accuracy of the different esti-
mates to be quantified.

2 Linear mixing model and problem statement

Let consider P pixels of an hyperspectral image acquired in L spectral bands.
According to the linear mixing model, described for instance in (Bioucas-Dias et al.
2012), the observed spectrum yp = [yp,1, . . . , yp,L]T of the pth pixel (p = 1, . . . , P )
is written as an the linear combination of R spectral signatures mr, corrupted by
an additive noise np:

yp =
R∑

r=1

mrap,r + np, (2.1)

where mr = [mr,1, . . . , mr,L]T is the pure spectrum that is characteristic of the
rth material and ap,r is the abundance of the rth material in the pth pixel. More-
over, in (2.1), np = [np,1, . . . , np,L]T is an noise sequence whose components are
assumed to be independent and identically distributed (i.i.d.) according to a cen-
tered Gaussian distribution with covariance matrix4 Σn = σ2IL, where IL is the
identity matrix of size L× L

np|σ2 ∼ N (0L,Σn) . (2.2)

Due to physical considerations (Keshava & Mustard 2002), the abundance vec-
tors ap = [ap,1, . . . , ap,R]T in (2.1) satisfy the following positivity and additivity
constraints {

ap,r ≥ 0, ∀r = 1, . . . , R,∑R
r=1 ap,r = 1.

(2.3)

In other words, the P abundance vectors belong to the space

A = {ap : ‖a‖1 = 1 and ap � 0} , (2.4)

where ‖·‖1 is the �1 norm such that ‖x‖1 =
∑

i |xi|, and ap � 0 stands for
the set of inequalities {ap,r ≥ 0}r=1,...,R. In addition, the spectral signatures mr

4The proposed model can be easily extended to more complex noise models, following for
instance (Dobigeon et al. 2008a).
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correspond to reflectance measures and, as a consequence, need to ensure the
positivity constraints

mr,l ≥ 0, ∀r = 1, . . . , R, ∀l = 1, . . . , L. (2.5)

If we consider all the pixels in the hyperspectral image, the set of Equations (2.1)
can be rewritten using the following matrix notations

Y = MA + N (2.6)

where Y is a L× P matrix that contains all the observations associated with the
image pixels, M is the L × R matrix of the spectral signatures, A is the R × P
matrix of the abundances and N is a L× P matrix of the noise vectors

Y = [y1, . . . ,yP ] , M = [m1, . . . ,mR] ,
A = [a1, . . . ,aP ] , N = [n1, . . . ,nP ] . (2.7)

This paper proposes a Bayesian approach to first estimate the abundance coeffi-
cient under the constraints (2.3) when the spectral signatures are known. Then,
the spectra of the pure components will be assumed unknown and will be included
within the estimation procedure.

3 Supervised unmixing: The spectral components are known

When the pure spectral components (also known as endmembers) are perfectly
known, the problem of linear unmixing reduces to the inversion step, i.e., the con-
strained estimation of the abundances. This problem can be formulated as a linear
regression under constraints whose resolution can be conducted within a Bayesian
framework. Indeed, Bayesian models are very convenient in such situation since
the constraints are conveniently handled when defining a priori distributions for
the unknown parameters. Several constraints have been studied in the literature,
including monotony (Chen & Deely 1996), positivity (Moussaoui et al. 2006) or
sparsity (Blumensath & Davies 2007; Févotte & Godsill 2006). Constraints inher-
ent to hyperspectral imagery are positivity and additivity, as explained in Section
2. In what follows, the Bayesian model to solve the supervised spectral unmixing
model is described. Note that in this supervised scenario, spectral unmixing is con-
ducted pixel-by-pixel. As consequence, to lighten the notations, the dependence
of the quantity yp, ap, cp on the pixel p will be omitted.

3.1 Bayesian model

3.1.1 Likelihood

The linear mixing model defined by (2.1) and the statistical properties (2.2) of the
noise vector n lead to a Gaussian distribution for the observed spectrum for the
pth pixel:

y|a, σ2 ∼ N
(
Ma, σ2IL

)
. (3.1)
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As a consequence, the likelihood function of the vector y can be written

f
(
y
∣∣a, σ2

)
=

(
1

2πσ2

)L
2

exp

[
−‖y −Ma‖2

2σ2

]
, (3.2)

where ‖x‖ =
(
xT x

) 1
2 is the �2-norm of the vector x.

3.1.2 Parameter prior distributions

When the spectra of the pure components m1, . . . ,mR are known, the vector of
unknown vector denoted as θ is composed of the abundance vector and the noise
variance θ =

{
a, σ2

}
.

Abundance coefficients. For each pixel p, thanks to the additivity constraints
enounced in (2.3), the abundance vector a can be rewritten5

a =
[

c
aR

]
with c =

⎡⎢⎣ a1

...
aR−1

⎤⎥⎦ , (3.3)

and aR = 1 −
∑R−1

r=1 ar. According to the model proposed in (Dobigeon et al.
2008b), the prior distribution chosen for c is a uniform distribution defined on the
simplex S

S = {c; ‖c‖1 ≤ 1 and c � 0} . (3.4)
Choosing this prior distribution for c is fully equivalent of choosing a Dirichlet
prior D (1, . . . , 1) for a, i.e., a uniform distribution on the the set A of admissible
values for a (defined by (2.4)) (Robert 2007, Appendix A).

Noise variance. A conjugate inverse-gamma distribution is chosen as a prior
distribution for the noise variance σ2

σ2 |ν, γ ∼ IG
(ν

2
,
γ

2

)
, (3.5)

where IG
(

ν
2 , γ

2

)
is an inverse-gamma distribution of parameters ν

2 and γ
2 . This

distribution has been successfully used in several works of the literature, e.g.,
(Punskaya et al. 2002) and (Dobigeon et al. 2007). As in the references above, the
hyperparameter ν will be fixed to ν = 2.

Moreover, γ is an hyperparameter assumed to be unknown, and a non-informative
Jeffreys’ distribution is chosen as prior distribution (Jeffreys 1961)

f (γ) ∝ 1
γ
1R+ (γ) , (3.6)

where ∝ stands for “proportional to”.

5For writing conciseness, the last component of a will be always expressed as a function of
the others. Note however that in the algorithm described in the following section, the discarded
component can be randomly chosen at each iteration of the Gibbs sampler.
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3.1.3 Posterior distribution

The posterior distribution of the unknown parameter vector θ =
{
c, σ2

}
is com-

puted from the following hierarchical model

f(θ|y) ∝
∫

f(y|θ)f(θ|γ)f(γ)dγ, (3.7)

where f (y|θ) and f (γ) are defined in (3.2) and (3.6), respectively. By assuming
prior independence between σ2 and c, i.e. f (θ|γ) = f (c) f(σ2|γ), the hyperpa-
rameter γ can be integrated out from the joint distribution f (θ, γ|y) in (3.7),
which leads to

f
(
c, σ2|y

)
∝ 1

σL+2
exp

[
−‖y −Ma‖2

2σ2

]
1S (c) . (3.8)

Note that this posterior distribution is defined on the simplex S × R+, i.e., c
satisfies the constraints resulting from the positivity and additivity constraints of
a. We introduce in the following section a Gibbs sampler that allows samples to
be generated according to the joint distribution f

(
c, σ2|y

)
.

3.2 Gibbs sampler

Samples (denoted as ·(t) where t is the iteration index) can be generated according
to f

(
c, σ2|y

)
thanks to a Gibbs sampler described below. It successively generates

samples according to the conditional distributions f
(
c|σ2,y

)
and f(σ2|c,y). The

main steps of this algorithm are detailed below and are summarized by Algo. 1.
The interested reader can refer to (Robert & Casella 1999) for more details on
MCMC methods.

Algorithm 1 Gibbs sampler for supervised unmixing
1: % Initialization

2: Sampling the parameters σ̃2(0) and c̃(0) from the prior distributions defined in
Section 3.1.2,

3: % Iterations

4: for t = 1, 2, . . . , do
5: Sampling c̃(t) according to the distribution (3.11),
6: Sampling σ̃2(t) according to the distribution (3.12),
7: end for

3.2.1 Sampling according to f
(
c|σ2,y

)
The conditional posterior distribution of the partial abundance vector is

f
(
c
∣∣σ2,y

)
∝ exp

[
− (c− υ)T Σ−1 (c− υ)

2

]
1S (c) , (3.9)
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where ⎧⎪⎨⎪⎩
Σ =

[(
M-R −mR1T

R−1

)T
Σ−1

n

(
M-R −mR1T

R−1

)]−1

,

υ = Σ
[(

M-R −mR1T
R−1

)T
Σ−1

n (y −mR)
]
,

(3.10)

with Σ−1
n = 1

σ2 IL, 1R−1 = [1, . . . , 1]T ∈ RR−1 and where M-R is the matrix
M whose Rth column has been removed. As a consequence, the vector c

∣∣σ2,y
is distributed according to a multivariate Gaussian distribution truncated on the
simplex S defined by (3.4)

c
∣∣σ2,y ∼ NS (υ,Σ) . (3.11)

Sampling according to this truncated Gaussian distribution can be conducted fol-
lowing the strategy described in (Dobigeon & Tourneret 2007).

3.2.2 Sampling according to f(σ2|c,y)

By looking at the joint distribution f
(
σ2, c|y

)
, it can be stated that the conditional

distribution of σ2|c,y is the following inverse-gamma distribution

σ2|c,y ∼ IG
(

L

2
,
‖y −Ma‖2

2

)
· (3.12)

3.3 Simulation results on synthetic data

To illustrate the algorithm performance, a synthetic mixture of R = 3 pure com-
ponents is generated. These spectral signatures are extracted from the library
provided with the ENVI software (RSI (Research Systems Inc.) 2003, p. 1035)
and are characteristics of a urban or sub-urban scene: construction concrete,
green grass and micaceous loam. The mixing coefficients are defined as a1 = 0.3,
a2 = 0.6 and a2 = 0.1. The observed spectrum has been corrupted by an additive
Gaussian noise with variance σ2 = 0.025, which corresponds to a signal-to-noise

ratio RSB ≈ 15dB where RSB = L−1σ−2
∥∥∥∑R

r=1 mrar

∥∥∥2

. The endmembers and
the resulting observed spectrum are represented in Figure 1.

Figure 2 shows the posterior distributions of the abundance coefficients ar

(r = 1, 2, 3) estimated by the proposed Gibbs sampler for NMC = 20 000 iterations
(with Nbi = 100 burn-in iterations). These distributions are in good agreement
with the actual values of the coefficients a = [0.3, 0.6, 0.1]T . As a comparison, the
results obtained with the FCLS algorithm (Chang & Ji 2001; Heinz & Chang 2001)
have been also depicted in this figure for NMC Monte Carlo simulations (i.e., for
NMC realizations of the noise sequence).

3.4 Results on real data

This paragraph presents the analysis of an hyperspectral image that has been
widely studied in the literature (Akgun et al. 2005; Chen 2005; Christophe et al.
2005; Tang & Pearlman 2004). This image, depicted in Figure 3, is initially
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Fig. 1. Top: endmember spectra: construction concrete (line), green grass (dashed line),

loam (dotted line). Bottom: spectrum of the observed pixel.

composed of 189 spectral bands (when the water absorption bands have been
removed). It has been acquired by the spectro-imager AVIRIS (Jet Propulsion
Lab. (JPL) 2006) in 1997 over Moffett Field, CA. It is composed of a lake and a
coastal area. The spectral unmixing algorithm has been applied on a 50×50 scene.
The analyzed image area is depicted in Figure 3.

3.4.1 Endmember identification

First, the pure materials that are present in the image have been identified. Since
no prior knowledge is available for the analyzed scene, an endmember extraction
algorithm has been used to recover to identify the endmember spectra. More pre-
cisely, N-FINDR (Winter 1999) has been used to identify R = 3 endmembers that
are represented in Figure 4: vegetation, water and soil. Note that the number of
endmembers has been determined by a principal component analysis, as explained
in (Keshava & Mustard 2002).

3.4.2 Abundance estimation

The supervised unmixing algorithm introduced in Sections 3.1 and 3.2 has been
applied on each pixel of the AVIRIS hyperspectral image using the endmembers
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Fig. 2. Posterior distributions of the abundance coefficients [a1, a2, a3]
T estimated by the

proposed algorithm (continuous lines) and histograms of the estimated values by FCLS

(dashed lines).

previously identified. The abundance maps estimated by the proposed algorithm
for the R = 3 materials are depicted in Figure 5 (top). Note that a white (resp.
black) pixel corresponds to a high (resp. low) proportion of the corresponding
material. The lake area (that appears as white pixels on the water abundance map)
has been clearly recovered. The results obtained with the unmixing algorithm
provided with the ENVI software (RSI (Research Systems Inc.) 2003, p. 739) are
also depicted in Figure 5 (bottom). These results obtained with constrained least
square algorithm are in good agreement with those of Figure 5 (top). Note however
that the proposed algorithm also allows posterior distributions to be estimated.
These posterior distributions can be useful to derive confidence intervals.

4 Unsupervised unmixing

As explained in (Bioucas-Dias et al. 2012; Keshava & Mustard 2002), linear spec-
tral unmixing has been often addressed in a two-step procedure: i) endmember
identification by an EEA and ii) abundance estimation. However, solving the
unmixing problem in two distinct and successive steps may lead to poor estima-
tion performance. In particular, when no pure pixels are present in the image,
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Fig. 3. Real hyperspectral image acquired by AVIRIS over Moffett Field in 1997 (left)

and the region of interest (right).

Fig. 4. The R = 3 endmember spectra obtained by N-FINDR.

the geometric EEA such as VCA, N-FINDR or PPI provide inadequate endmem-
ber estimates. To overcome this issue, we propose to solve the linear unmixing
problem in a fully unsupervised Bayesian framework, by estimating the endmem-
ber spectra and the corresponding abundances jointly. This approach casts the
unmixing problem as an blind source separation (BSS), that as received a huge
interest in the signal processing literature. In particular, it is well known that
independent component analysis (ICA) (Hyvärinen et al. 2001) is a powerful so-
lution of BSS problems. However, as noticed in (Nascimento & Bioucas-Dias
2005b) and (Dobigeon & Achard 2005), ICA-based algorithms fails to solve the
unmixing problem, mainly due to the high correlation between the source signals.
Other strategies, based on non-negative matrix factorization techniques (Paatero
& Tapper 1994), can be used to jointly estimate the endmember spectra and the
abundance coefficients. However, these algorithms do not take explicitly into ac-
count the sum-to-one constraint on the abundance coefficients. Conversely, the
Bayesian framework is a convenient way to ensure all the constraints (positivity
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Fig. 5. Top: abundance maps estimated by the proposed algorithm. Bottom: abundance

maps estimated by the unmixing routine provided with the ENVI software.

on the abundance coefficients and endmember spectra, additivity on the abun-
dance coefficients) by defining appropriate prior distributions for the unknown
parameters.

Moreover, a geometrical interpretation of the linear unmixing problem allows
one to show that the spectral signatures can be estimated in an appropriate lower-
dimensional subspace. This estimation in a subspace allows the number of degree
of freedom to be significantly reduced for the parameters, while ensuring the phys-
ical constraints.

4.1 Bayesian model

Unsupervised spectral unmixing can be formulated as a blind source separation
problem. Thus, the joint estimation of the endmembers and the abundances re-
quires to consider all the image pixels Y = [y1, . . . ,yP ] during the analysis. From
a pixel-wise analysis in Section 3.1, spectral unmixing is now conducted on a whole
hyperspectral image. More specifically, the previous Bayesian model introduced
in 3.1 is extended by defining a prior model for the endmember spectra. The new
posterior distribution associated with the new set of unknown parameters is finally
derived.

4.1.1 Likelihood function

By assuming the independence of the noise vector, the new likelihood function as-
sociated with the observed pixel matrix Y is the product of the marginal likelihood
functions (3.1.1)

f (Y|M,C) =
P∏

p=1

f (yp|M, cp)
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where C = [c1, . . . , cP ]T is a matrix coming from the reparametrization (3.3) of
the abundance vectors and f (yp|M, cp) has been defined in (3.1.1).

4.1.2 Prior of the abundance coefficients

The coefficient vectors c1, . . . , cP are assumed to be a priori independent. Thus,
the prior distribution for the coefficient matrix C can be written as the product
of the prior chosen in paragraph 3.1.2

f (C) =
P∏

p=1

f (cp)

with
f (cp) ∝ 1S (cp)

where S has been defined in (3.4). This prior allows the constraints inherent to the
linear mixing model to be ensured. Moreover, this prior has the great advantage
of imposing a constraint on the size of the simplex spanned by the endmembers
in the hyperspectral space. Indeed, as demonstrated in (Dobigeon et al. 2009),
among two admissible solutions for the unmixing problem, this prior will favor
the solution that corresponds to the simplex of minimum volume. Note that this
property has been exploited also in (Arngren et al. 2011; Bowles et al. 1995; Craig
1994).

4.1.3 Prior model for the endmembers

Dimensionality reduction. First, notice that the set

SM =

{
x ∈ �L; x =

R∑
r=1

λrmr,

R∑
r=1

λr = 1, λr ≥ 0

}

is a convex polytope of �L whose vertices m1, . . . ,mR are the R � L spec-
tral signatures to be estimated. As a consequence, the unobserved data X =
MA = Y−N can be represented in a lower-dimensional subspace VK of �K with
R − 1 ≤ K � L without any loss of information. In this subspace, the noise-free
data X span a (R− 1)-simplex whose vertices are the projections of the endmem-
bers. As stated in (Keshava & Mustard 2002), dimensional reduction is a classical
step while performing spectral unmixing, required by numerous EEAs, such as
N-FINDR (Winter 1999) and PPI (Boardman 1993). In this paper, we propose
to estimate the projections tr (r = 1, . . . , R) of the spectral signatures mr onto
the subspace VK . This approach allows the number of degrees of freedom to be
significantly reduced. We assume that this subspace has been previously estimated
by a dimensional reduction technique (e.g., principal component analysis, PCA).
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PCA-based dimensional reduction. The empirical covariance matrix of Υ
of the observed data Y is

Υ =
1
P

P∑
p=1

(yp − ȳ) (yp − ȳ)T (4.1)

where ȳ is the empirical mean

ȳ =
1
P

P∑
p=1

yp. (4.2)

Let {
D = diag (λ1, . . . , λK) ,

V = [v1, . . . ,vK ]T
(4.3)

denote the diagonal matrix of the K highest eigenvalues and the corresponding
matrix of eigenvectors of Υ, respectively. The projected vector tr ∈ �K of the
endmember spectrum mr ∈ �L is then obtained by the affine transformation

tr = P (mr − ȳ) (4.4)

where P = D− 1
2 V. Equivalently,

mr = Utr + ȳ (4.5)

where U = VT D
1
2 . Note that in the subspace VR−1 obtained for K = R− 1, the

vectors {tr}r=1,...,R span a simplex that the classical EEAs (e.g., N-FINDR Winter
1999, MVT Craig 1994 and ICE Berman et al. 2004) try to estimate. We propose
to estimate the projected vertices tr (r = 1, . . . , R) of this simplex in a Bayesian
setting. The prior distributions assigned to the projections tr (r = 1, . . . , R) are
detailed in the following paragraph.

Prior distributions of the projected endmembers. The spectral signature
mr ∈ �L and its projection tr ∈ �K onto VK are related by tr = P (mr − ȳ)
and mr = Utr + ȳ, where P is a projection matrix, U is the pseudo-inverse of P
and ȳ is the empirical mean of the observations. The prior distributions chosen
for the endmember spectra should be chosen such that the endmember spectra
satisfy the positivity constraints (2.5). Straightforward computations allows the
space Tr ⊂ VK to be identified such that

{ml,r ≥ 0, ∀l = 1, . . . , L} ⇔ {tr ∈ Tr} (4.6)

thanks to the L following inequalities

Tr =

{
tr; ȳl +

K∑
k=1

ul,ktk,r ≥ 0, l = 1, . . . , L

}
, (4.7)
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One of the originality of the proposed blind source separation method consists of
defining prior distributions for the endmember projections tr onto the subspace
VK instead of the endmembers mr themselves. More precisely, a multivariate
Gaussian distribution

tr ∼ NTr

(
er, s

2
rIK

)
(4.8)

truncated to the set Tr is chosen as prior distribution for each vector tr (r =
1, . . . , R). The mean vectors er of these prior distributions are fixed to some
values corresponding to the solutions provided by fast EEA, such as N-FINDR and
VCA. In absence of additional prior information, the variances s2

r (r = 1, . . . , R)
are fixed to large values s2

1 = . . . = s2
R = 50, which allows some deviations to be

modeled between the actual endmember projections tr and the crude estimations
er provided by N-FINDR or VCA.

4.1.4 Posterior distribution

Following the the Bayes rule, the prior distributions of unknown parameters de-
fined in the paragraphs 4.1.3 and 4.1.2, associated with the likelihood function
defined in paragraph 4.1.1, lead to the following joint posterior distribution

f
(
C,T, σ2

∣∣Y)
∝

R∏
r=1

exp

[
−‖tr − er‖2

2s2
r

]
1Tr (tr)

×
P∏

p=1

[(
1
σ2

)L
2 +1

exp

(
−‖yp − (UT + ȳ1R−1)ap‖2

2σ2

)]

×
P∏

p=1

1S (cp) . (4.9)

Since the standard Bayesian estimators (e.g., minimum mean square error
(MMSE) or maximum a posteriori (MAP) estimators) are difficult to derive from
(4.9), a Gibbs algorithm, detailed in the following paragraph, allows samples{
C(t),T(t), σ2(t)

}
to be generated according to this distribution. These samples

are then used to approximate the Bayesian estimators.

4.2 Gibbs sampler

The Gibbs sampler that allows samples to be asymptotically distributed accord-
ing to the posterior (4.9) is detailed below. This algorithm is similar to the Gibbs
sampler introduced in paragraph 3.2 (Algo. 1) with an additional step that con-
sists of sampling according to the conditional distribution f

(
T|C, σ2,Y

)
(see also

Algo. 2).
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Algorithm 2 Gibbs sampler for unsupervised unmixing
1: % Pre-processing

2: Computing the empirical mean ȳ following (4.2),
3: Computing the matrices D and V following (4.3) thanks to a PCA,
4: Set U =

(
VT V

)−1
VT D

1
2 ,

5: Choose the crude estimations er ∈ VK required in (4.8),
6: % Initialization

7: for r = 1, . . . , R do
8: Sampling t(0)

r according to (4.8),
9: Set m(0)

r = Ut(0)
r + ȳ,

10: end for
11: Sampling σ2(0) according to (3.5),
12: % Iterations

13: for t = 1, 2, . . . , do
14: for p = 1, . . . , P do
15: Sampling c(t)

p according to (4.11),
16: end for
17: for r = 1, . . . , R do
18: for k = 1, . . . , K do
19: Sampling t

(t)
k,r according to (4.15),

20: end for
21: Set m(t)

r = Ut(0)
r + ȳ,

22: end for
23: Sampling σ2(t) according to (4.17).
24: end for

4.2.1 Sampling according to f
(
C|T, σ2,Y

)
For each pixel p, as in paragraph 3.2.1, the conditional distribution of the coefficient
vector cp is

f
(
cp

∣∣T, σ2,yp

)
exp

[
−

(cp − υp)
T Σ−1

p (cp − υp)
2

]
1S (cp) , (4.10)

where Σp and υp have been defined in 3.2.1. Consequently, the vector cp

∣∣T, σ2,yp

is distributed according to a multivariate Gaussian distribution truncated onto the
simplex S defined by (3.4)

cp

∣∣T, σ2,yp ∼ NS (υp,Σp) . (4.11)
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4.2.2 Sampling according to f
(
T|C, σ2,Y

)
Let T-r denote the T whose rth column has been removed. The conditional
posterior distribution of tr (r = 1, . . . , R) is

f
(
tr|T-r, cr, σ

2,Y
)
∝ exp

[
−1

2
(tr − τ r)

T Λ−1
r (tr − τ r)

]
1Tr (tr) , (4.12)

with ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Λr =

[
P∑

p=1

a2
p,rU

T Σ−1
n U +

1
s2

r

IK

]−1

,

τ r = Λr

[
P∑

p=1

ap,rUT Σ−1
n εp,r +

1
s2

r

er

]
,

(4.13)

and
εp,r = yp − ap,rȳ −

∑
j �=r

ap,jmj. (4.14)

Generating vectors distributed according to this distribution is not straightfor-
ward, mainly due to the truncature on the set Tr. One alternative strategy
consists of generating each component tk,r of tr conditionally upon the oth-
ers t-k,r = {tj,r}j �=k. By denoting U+

k = {l; ul,k > 0}, U−
k = {l; ul,k < 0} and

εl,k,r = ȳl +
∑

j �=k ul,jtj,r, it follows

tk,r |t-k,r,T-r, cr, σ
2,Y ∼ N[t−k,r,t+k,r]

(
wk,r , z

2
k,r

)
, (4.15)

with ⎧⎪⎪⎨⎪⎪⎩
t−k,r = max

l∈U+
k

−εl,k,r

ul,k
,

t+k,r = min
l∈U−

k

−εl,k,r

ul,k
,

(4.16)

where wk,r and z2
k,r are the conditional mean and variance computed following

(Kay 1988, p. 324) (see also similar computations in Dobigeon & Tourneret 2007).
Generating samples according to the truncated Gaussian distribution (4.15) can
be performed using various strategies, such as (Robert 1995).

4.2.3 Sampling according to f
(
σ2|C,T,Y

)
The conditional distribution of σ2|C,T,Y is the inverse-gamma distribution

σ2|C,T,Y ∼ IG
(

PL

2
,
1
2

P∑
p=1

‖yp −Map‖2
)

. (4.17)
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4.3 Simulation results on synthetic data

To illustrate the performance of the proposed method, the algorithm has been
applied on a 100 × 100-pixel image, where R = 3 spectral signatures have been
linearly mixed: construction concrete, green grass, red bare brick. These signa-
tures have been measured in L = 413 spectral bands and are depicted in Figure 6
(top, in black). These materials have been linearly mixed with random propor-
tions (ensuring the sum-to-one and positivity constraints), with an i.i.d. noise
corresponding to signal-to-noise ratio SNR = 15dB.

Fig. 6. Top: actual spectra (black), spectra estimated by N-FINDR (blue), estimated by

VCA (green) and estimated by the proposed approach (red). Middle and bottom: actual

and estimated abundance maps.

The estimation results for the spectral signatures obtained by the proposed
algorithm, depicted in Figure 6 (top, in red) have been compared with the results
provided by two geometrical EEAs: VCA and N-FINDR. Table 1 (top) reports
the mean square errors defined by

MSE2
r = ‖m̂r −mr‖2 , r = 1, . . . , R. (4.18)
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The results regarding the estimation of the 104 abundance vectors (see Fig. 6,
bottom), are reported in the Table 1 (bottom) in terms of mean square errors for
each component:

MSE2
r =

P∑
p=1

(âp,r − ap,r)
2
, r = 1, . . . , R, (4.19)

where âp,r is the estimated abundance coefficient for the #r material in the #p
pixel. These results demonstrate that the proposed algorithm provides better
estimation performance than the two other algorithms.

Table 1. Estimation performance comparison between the algorithms VCA, N-FINDR

and the proposed Bayesian approach: mean square errors between the R = 3 estimated

and actual spectra (top), global mean square errors between the estimated and actual

abundances (bottom).

Spectra Bayesian algo. VCA N-FINDR
Endmember #1 0.10 1.29 0.54
Endmember #2 2.68 15.59 5.19
Endmember #3 0.16 4.35 0.57

Abundances Bayesian algo. VCA N-FINDR
Endmember #1 25.68 57.43 30.66
Endmember #2 29.97 74.48 46.45
Endmember #3 3.19 83.02 11.22

4.4 Results on real data

The proposed algorithm is finally applied to the Moffett Field image introduced
in Section 3.4. The R = 3 endmembers identified by the Bayesian algorithm are
depicted in Figure 7 (top). The corresponding estimated abundance maps are
represented in Figure 7 (bottom). Both results are in good agreement with those
of Figures 4 and 5 obtained using a supervised unmixing approach.

5 Conclusion

This article presented two Bayesian algorithms to solve the problem of linear un-
mixing of hyperspectral images in supervised and unsupervised frameworks. For
each scenario, suitable prior distributions were assigned to the unknown parame-
ters. In particular, these distributions were chosen to ensure constraints inherent
to the mixing model: positivity and additivity for the abundance coefficients and
positivity for the endmember spectra. MCMC algorithms were designed to gen-
erate samples distributed according to the posterior distribution of the unknown
parameters. Simulation results, obtained on synthetic and real hyperspectral im-
ages, demonstrated the interest of the proposed methods. Both of the strategies
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Fig. 7. Top: the R = 3 endmembers estimated by the unsupervised algorithm in the

Moffett Field image. Bottom: the corresponding estimated abundance maps.

detailed in this article ignore any spatial correlations between the observed pixels.
To improve the unmixing performance, intrinsic dependencies between the param-
eters of interest, e.g., the abundance vectors, could be exploited. Extending the
previous approaches, a hidden Markov model has been introduced in (Eches et al.
2011). Conversely, Mittelman et al. have proposed a nonparametric Bayesian algo-
rithm to jointly unmix and classify hyperspectral images (Mittelman et al. 2012).
Future works also include the design of efficient unmixing algorithms to analyze
hyperspectral data resulting from non-linear mixtures. Encouraging results have
been obtained in (Altmann et al. 2012; Halimi et al. 2011).

Part of this work was conducted in collaboration with Prof. C.-I. Chang, University of Maryland.
Some results were obtained during a “Young researcher” Project founded by GdR-ISIS. The
authors would also like to thank Jérôme Idier and Eric le Carpentier for fruitful discussion
regarding this work.

References

Akgun, T., Altunbasak, Y., & Mersereau, R.M., 2005, IEEE Trans. Image Process., 14,
1860

Altmann, Y., Halimi, A., Dobigeon, N., & Tourneret, J.-Y., 2012, IEEE Trans. Image
Process., 21, 3017

Arngren, M., Schmidt, M.N., & Larsen, J., 2011, J. Signal Proc. Syst., 65, 479

Berman, M., Kiiveri, H., Lagerstrom, R., Ernst, A., Dunne, R., & Huntington, J.F.,
2004, IEEE Trans. Geosci. Remote Sens., 42, 2085

Bioucas-Dias, J.M., Plaza, A., Dobigeon, N., et al., 2012, IEEE J. Sel. Topics Appl. Earth
Observations Remote Sens., 5, 354

Blumensath, T., & Davies, M.E., 2007, IEEE Trans. Signal Process., 55, 4474



400 New Concepts in Imaging: Optical and Statistical Models

Boardman, J., 1993, in Summaries 4th Annu. JPL Airborne Geoscience Workshop, Vol. 1
(JPL Pub., Washington, D.C.), 11

Bowles, J.H., Palmadesso, P.J., Antoniades, J.A., Baumback, M.M., & Rickard, L.J.,
1995, ed. M. Strojnik & B.F. Andresen, Infrared Spaceborne Remote Sensing III,
SPIE, 2553, 148

Chang, C.-I., 2003, Hyperspectral Imaging: Techniques for Spectral detection and clas-
sification (Kluwer, New York)

Chang, C.-I., & Ji, B., 2001, IEEE Trans. Geosci. Remote Sensing, 44, 378

Chen, F.W., 2005, IEEE Geosci. Remote Sensing Lett., 2, 64

Chen, M.-H., & Deely, J.J., 1996, J. Agricultural, Biological Environmental Stat., 1, 467
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RESTORATION OF HYPERSPECTRAL ASTRONOMICAL
DATA WITH SPECTRALLY VARYING BLUR

F. Soulez1, E. Thiébaut1 and L. Denis2

Abstract. In this paper we present a method for hyper-spectral image
restoration for integral field spectrographs (IFS) data. We specifically
address two topics: (i) the design of a fast approximation of spec-
trally varying operators and (ii) the comparison between two kind of
regularization functions: quadratic and spatial sparsity functions. We
illustrate this method with simulations coming from the Multi Unit
Spectroscopic Explorer (MUSE) instrument. It shows the clear in-
crease of the spatial resolution provided by our method as well as its
denoising capability.

1 Introduction

In the last decade, integral field spectrographs (IFS) have become popular tools
for astronomical observations. Such instruments are now installed on all the main
optical telescope facilities around the world. They provide spatially resolved spec-
tra of a whole region of the sky, yielding (θ, λ) data cubes – with θ the 2D angular
position and λ the wavelength – with several hundreds of wavelength bins. With
IFS, astronomical data enters the hyper-spectral era. New dedicated image re-
construction techniques are needed to take full advantage of the data gathered by
these instruments. Because the light is split on multiple channels instead of being
integrated on a single image, the information contents is increased at the cost of
a lower signal to noise for the same exposure time. Furthermore, atmospheric
turbulence and instrumental response spatially blur the observations, degrading
the spatial resolution.

First attempts to restore multi-channel images consisted in applying classi-
cal 2D restoration techniques like Wiener filter or Richardson-Lucy algorithm on
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each individual channel. The caveat of these approaches is to ignore the natural
spectral correlations present in the data. The first restoration technique specifi-
cally dedicated to multichannel data (Hunt & Kubler 1984) was a Minimum Mean
Square Error (MMSE) restoration filter based on the assumption that signal auto-
correlation is spatially and spectrally separable. This assumption was later relaxed
(Galatsanos & Chin 1989) and many other multichannel linear restoration filters
have been proposed since (Galatsanos et al. 1991; Gaucel et al. 2006; Katsaggelos
et al. 1993; Tekalp & Pavlovic 1990). More recently, Fourier/wavelet restora-
tion techniques (Neelamani et al. 2004) have been adapted to multispectral data
(Benazza-Benyahia & Pesquet 2006; Duijster et al. 2009). In remote sensing, some
authors (Akgun et al. 2005; Bobin et al. 2009) combine demixing and restoration to
achieve enhanced spatial resolution given the strong assumption that the observed
scene is composed of only a few materials with unknown spectrum.

Most of these developments on restoration of multi-spectral images are dedi-
cated to remote sensing and color (RGB) images. Those methods can’t easily be
directly applied to astronomical data with its specific features like large dynamic
range and strong sharp features (e.g. narrow emission lines or peaked sources).
Few restoration techniques for multi-spectral astronomical images have been pro-
posed for (x, λ) data (slit spectrography) (Courbin et al. 2000; Lucy & Walsh
2003) or (x, y, λ) data composed of slit spectrography scans (Rodet et al. 2008).
However astronomical hyperspectral processing is gaining more and more atten-
tion as it is becoming mandatory to fully exploit the capabilities of new integral
field spectrographs (e.g. second generation VLT instruments MUSE and KMOS)
and restoration algorithms dedicated to IFS begin to appear (Bongard et al. 2009;
Bongard et al. 2011; Bourguignon et al. 2011a,b; Soulez et al. 2008).

Following the work we have done in Soulez et al. (2011) and Bongard et al.
(2011), we present in this paper a deconvolution method based on a so called
inverse problem approach. It is very generic and exploits intrinsic regularities
of hyper-spectral data. We suppose that a good estimation of the point spread
function (PSF) is provided by other means (e.g. by calibration on the telescope
guiding stars or on information from the adaptive optics system) and defer the
blind restoration problem to a later time.

Our approach will be illustrated on data provided by the MUSE IFS simulator.
Still in integration, the MUSE IFS (Henault et al. 2003) will be installed on the
ESO Very Large Telescope (VLT) in 2013. It is a “slicer” based IFS that covers
in its wide field mode a 60′′ × 60′′ spectroscopic field-of-view subdivided into a
grid of about 300× 300 spatial elements (spaxels). To each spaxel corresponds a
spectrum, obtained by dispersing the light on 3463 equally spaced spectral bins
from 480 nm to 930 nm.

2 Problem formulation

2.1 Model description

The direct model describes how the observed data y is related to the 3D intensity
distribution of the object of interest I(θ, λ) with θ = (θ1, θ2) the 2-D position
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angle. This data cube y is composed of Nλ monochromatic images of NΩ pixels.
It writes:

yk,� = g(θk, λ�) + ek,� (2.1)

where g(θ, λ) is the distribution sampled by the detector, (θk, λ�) are the spatio-
spectral coordinates of the pixel at the 2D spatial index k and spectral index �,
and ek,� accounts for the errors (noise and model approximations). The sampled
distribution g(θ, λ) writes:

g(θ, λ) =
∫∫∫

h(θ − θ′, λ− λ′; θ′, λ′) I(θ′, λ′) d2θ′ dλ′ (2.2)

where h(Δθ, Δλ; θ, λ) is the recentred PSF at position θ and at wavelength λ. In
words, the PSF is the linear response of the total observing system (atmosphere
+ optics + detector) for a monochromatic point-like source at (θ, λ).

At best, we can only recover an approximation of the true object brightness
distribution, we choose to represent the sought distribution by:

I(θ, λ) =
∑
k,�

xk,� bk,�(θ, λ) (2.3)

where x are the unknown parameters and bk,�(θ, λ) are basis functions. Using in-
terpolation functions for the basis functions and the same spatio-spectral sampling
for the model and the data yields:

xk,� ≈ I(θk, λ�). (2.4)

The direct model then writes:

yk,� =
∑
k′,�′

Hk,�,k′,�′ xk′,�′ + ek,� (2.5)

with H the linear operator corresponding to the system response. Using compact
matrix notation:

y = H · x + e. (2.6)

Under the same assumption as those leading to Equation (2.4):

Hk,�,k′,�′ ≈ h(θ − θ′, λ− λ′; θ′, λ′)Πθ2Πλ , (2.7)

with Πθ2 and Πλ the pixel size and the effective spectral bandwidth respectively.
The linear operator H models the linear response of the observation system.

It can be described by a PSF which varies both spatially and spectrally. As the
telescope and the atmosphere don’t have any effect along the spectral dimension,
blur along spectral dimension is only due to the IFS. Conversely, without adaptive
optics system, the atmosphere is responsible for most of the blur along spatial
dimensions. As the field of view (FOV) is limited, we can assume that this PSF
is spatially shift invariant:

hλ((Δθ, Δλ) = h(Δθ, Δλ; λ). (2.8)
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However wavelength-wise PSF’s hλ may be centered at a location θλ which de-
pends on the wavelength so as to account for imperfect instrumental alignment
and atmospheric differential refractive index (ADR). Furthermore PSF is not nec-
essarily normalized in order to account for the variable throughput (atmospheric
and instrumental transmission). Finally, the operator H can be described as a
spectrally varying convolution.

2.2 Spectrally varying PSF approximation

If the observing system is spatially and spectrally shift-invariant, H is a block
Toeplitz matrix with Toeplitz block that can be diagonalized by means of discrete
Fourier transforms (under a circulant approximation or providing a proper process-
ing of the egdes as explained later). Such transforms being efficiently computed
thanks to the FFT (Fast Fourier Transform) algorithm. In the considered case,
the PSF is spatially shift-invariant but depends on the wavelength of the source.
In order to implement a fast version of such an operator H storing the full H
(≥ 1012 elements) is not possible and, even so, applying it in this form would take
to much CPU time, we propose to follow the prescription of Denis et al. (2011)
and write:

hλ(Δθ, Δλ) ≈
∑

p

φp(λ)hp(Δθ, Δλ) (2.9)

where:
hp(Δθ, Δλ) def= h(Δθ, Δλ; λp) (2.10)

are samples at differents wavelengts {λp}Pp=1 of the recentered spectrally-varying
PSF and {φp(λ) : R �→ R}Pp=1 are spectral interpolation functions. With this
modeling of the PSF, the operator H becomes:

H =
P∑

p=1

Hp ·Kp (2.11)

with Hp the discrete 3D convolution by hp(Δθ, Δλ) and Kp an operator which
extracts a subset of the spectral range (around λp) and weights the selected spaxels
by the interpolation function φp(λ). Operators Hp are implemented using 3D
FFT’s while Kp’s are very sparse as their only non-zero coefficients are along
their diagonal. Thus, as long as the spectral support of hp(Δθ, Δλ) is sufficiently
small compared to the patch selected by Kp, applying H (or its adjoint H∗ =∑

p KT
p ·H∗

p) is very fast. The computations are dominated by the calculus of the
FFT.

First order (linear) interpolation with a subset of PSF built by sampling on
a uniform grid {λ1, ..., λP } leads to interpolation weights supported on a patch
twice the grid step along. Each patch extracted by Kp are convolved only with
the coresponding PSF hp(Δθ, Δλ). As a consequence, the computational cost for
applying our spectrally varying operator is only roughly twice the cost the applying
a non-varying operator: (4 versus 2 FFTs). As stated in Denis et al. (2011), such
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approximation of the shift varying PSF preserves some good properties of the PSF,
namely normalization, positivity and symmetry.

3 Maximum a posteriori approach

Restoration is a typical ill-posed problem (Bertero & Boccacci 1998). We choose to
solve it by adding priors in a classical Maximum A Posteriori (MAP) framework.
This is achieved by estimating the object x+ that minimizes a cost function f(x):

x+ = argmin
x

f(x) , (3.1)

f(x) = fdata(x) + fprior(x) . (3.2)

This cost function f(x) is the sum of a likelihood penalty fdata(x) ensuring the
agreement between the model and the data y, and a regularization penalty fprior(x)
introducing subjective a priori knowledge about the object.

3.1 Likelihood and noise statistics

Assuming Gaussian noise, the likelihood penalty reads:

fdata(x) = [y −H · x]T ·Werr · [y −H · x] , (3.3)

where the weighting matrix Werr = C−1
err is the inverse of the angular-spectral

covariance of the errors (noise + approximations). Assuming uncorrelated noise,
Werr is diagonal and Equation (3.3) simplifies to:

fdata(x) =
∑
k,�

wk,� [y −H · x]2k,�

where 1/wk,� is the noise variance of the measurements at pixel k and channel
�. This model can cope with non-stationary noise and can be used to express
confidence on each measurements. Since unmeasured data can be considered as
having infinite variance, we readily deal with missing or bad pixels as follows:

wk,�
def=

{
Var(yk,�)−1 if yk,� is measured,
0 otherwise. (3.4)

This treatment of missing data is rigorous because (i) it consistently accounts
for unmeasured data and bad pixels, and (ii) it allows to properly expand the
synthesized FOV to avoid field aliasing and border artifacts caused by convolution
using Fourier transform. This formulation provides a rigorous scheme to take into
account photons emitted by sources outside the FOV that are measured because of
the blurring. As a consequence, restored object has to be estimated even outside
of the field of view, by extending the size of the FOV by at least the PSF size.
As we showed in Soulez et al. (2008) and Bongard et al. (2011), this may lead to
a small extension of the FOV of the instrument that can be relatively significant
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when this FOV is small like in the SNIFS instrument considered by Bongard et al.
(2011).

Except for very low detector noise (< few e− per pixel), the total noise
(Gaussian detector noise plus Poisson noise) is approximated by a non station-
ary uncorrelated Gaussian noise (Mugnier et al. 2004):

wk,�
def=

{ (
γ max(yk,�, 0) + σ2

k,�

)−1

if yk,� is measured,
0 otherwise,

(3.5)

where γ accounts for the quantization factor of the detector (i.e. number of photon
per quantization level) and σ2

k,� is the variance on the pixel (k, �) of other sources
of noise than the signal, like for example read-out noise for instance.

3.2 Priors

In our MAP framework, priors on the object are enforced by the regularization
penalty fprior(x) term of the total cost function f(x). It introduces in the solution
generic knowledge about the observed objects. In addition, we enforce strict priors
to ensure the non negativity of the parameters x.

As in hyper-spectral imaging the spatial and the spectral dimension have dif-
ferent physical meaning we split the regularization function as the sum of a spatial
regularization fspatial(x) and a spectral regularization fspectral(x):

fprior(x) = αfspatial(x) + βfspectral(x). (3.6)

where α and β are hyper-parameters that have to be tuned to set the importance
of the priors.

In this work we propose two kind of regularization functions: (i) a quadratic
regularisation and (ii) a spatial sparsity regularisation.

3.2.1 Quadratic regularization

Quadratic regularization (so called Tikhonov) is the most simple prior that can be
introduced in our MAP scheme. In that case and with the least square likelihood
function defined in 3.3, the minimization of Equation (3.1) shows good convergence
property since the total cost function f(x) is strictly convex and quadratic.

As stated in (Bongard et al. 2011), it is customary to minimize the quadratic
norm of finite differences to account for continuities along the three dimensions of
the brightness distribution. The regularization functions are thus:

fspatial(x) =
∑
k,�

(∇k1x)2 + (∇k2x)2 , (3.7)

fspectral(x) =
∑
k,�

(∇�x)2 , (3.8)

where ∇ix is the finite differential operator along the dimension indexed by the
letter i.
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3.2.2 Spatial only sparsity regularization

In wide field observations, astronomical data is mainly composed of bright objects
(stars, galaxy) over a flat background. Most of the quite large MUSE field of
view will thus contain only background. As a consequence, the observed scene is
intrinsically spatially sparse. This spatial sparsity prior can be enforced by means
of structured norms (Fornasier & Rauhut 2008; Kowalski & Torrésani 2009):

fsparsity(x) =
∑

k

⎡⎣√∑
�

x2
k,� + ε2 − ε

⎤⎦ (3.9)

where ε is a small real number (ε ≈ 10−9) that ensures the derivability in 0
(hyperbolic approximation of the �1 norm). This regularization enforces spatial
sparsity and spectral correlation since it favors solutions where bright features in
each spectral channel are at the same spatial location.

The regularization defined in Equation (3.9) does not ensure the spectral con-
tinuity of the solution whereas in practice the spectral energy distribution (SED)
of a pixel should be relatively smooth excepted near emission and absorption lines.
For that reason we introduce an additional regularization function:

fspectral(x) =
∑
k,�

[√
(∇�xk)2 + ζ2 − ζ

]
. (3.10)

This regularization tends to smooth the spectra xk but preserve discontinuities
where |∇�xk|  ζ. This situation is for example encountered at absorption or
emission lines, which shall not be smoothed.

3.2.3 Renormalization

Owing to the large variations of the dynamical range between spectral channel of
astronomical images, these regularizations lead to over-regularize bright features
or under-regularize faint ones. For that reason, as Bongard et al. (2011) we rather
suggest to apply these regularizations to spectrally whitened object x′:

x′
k,� = xk,�/s� (3.11)

with s� = 〈xk,�〉k the spatially averaged object spectrum – 〈 〉k denotes averaging
over pixel index k. To avoid introducing more non-linearity in regularizations, we
estimate the mean object spectrum directly from the data:

s� = 〈yk,�〉k/η� (3.12)

with η� = η(λ�) the effective throughput in �-th spectral channel:

η� =
∫∫∫

h�(Δθ, Δλ) d2Δθ dΔλ. (3.13)
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Fig. 1. Left: profile of the PSF along a spatial dimension. Right: profile of the PSF

along the spectral dimension. Grey and black profile correspond to the blue and the red

ends of the IFS respectively.

3.3 Algorithm description

As discussed in Section 3.1, due to the convolution process, flux from the object
just outside of the field of view may have an impact on the data. To take this fact
correctly into account, the estimated object has to be spatially larger than the
observed field of view. At least half of the PSF support must be added on each
side of the observed field of view to form the restored field of view.

The level of priors introduced in the restoration is balanced by hyper-parameters
α and β that are estimated by trial and error. The restored data cube x+ is the
solution of Equation (3.1). It requires the minimization of the cost function f(x)
that involves a large number of parameters (> 106) with positivity constraints.
To that end, we use the VMLM-B algorithm (Thiébaut 2002) which is a limited
memory variant of the variable metric method with BFGS updates (Nocedal &
Wright 1999). This algorithm has proved its effectiveness for image reconstruc-
tion and only requires the computation of the penalty function being minimized
together with its gradient. The memory requirement is a few times the size of the
problem.

4 Results

The quality of the presented algorithm was assessed on data from the MUSE IFS
simulator. This data is a part of 51 × 36 spaxels (pixels size: 0.′′2 × 0.′′2) of the
whole MUSE data cube. It contains 3463 spectral channels comprised between
480 nmand 930 nm. The PSF was computed for a seeing of 1.1.′′. This PSF shown
on Figure 1 is supposed to be separable and composed of a spatial field spread
function (FSF) and a spectral line spread function (LSF). As shown in Figure 1,
both of them vary spectrally. FSF is Gaussian with a full width at half maximum
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that varies from 0.′′75 (3.75 pixels) at the red end to 0.′′92 (4.6 pixels) at the blue
end. In addition, the MUSE IFS simulator provided a cube of the variance for
each pixel as it will be estimated by the data reduction software of the instrument.

To perform the restoration, we first have to build the fast approximation of
the operator H as defined Equation (2.11). For these experiments, the PSF was
sampled on a grid of P = 350 evenly spaced wavelengths to give the hp and
linear interpolation along the spectral dimension that was used for the weights φp.
As linear interpolation is used, the PSF h� centered on spectral channel � with
λp ≤ λ� ≤ λp+1 is interpoled only using hp and hp+1. The Euclidean norm of the
differences between the true PSF hλ and our approximation is less than 8× 10−5

(0.08% relatively to the euclidean norm of the PSF). That gives a quantitative
estimate of the good quality of our approximation.

As stated in Section 3.1, the restored field of view must be larger than the data
FOV. In the presented experiments, the size of the restored FOV is extended to
64× 48 spaxels and 3481 wavelengths.

The data were processed with both quadratic and spatial sparsity regulariza-
tions. The effectiveness is qualitatively evaluated by visual inspection and quan-
titatively by the root mean square error (RMSE):

RMSE(x) =
√

1
NΩ Nλ

∑
k,�

[x− o]2k,� ,

with o the truth. In both cases, the hyper-parameters α and β were set to minimize
the RMSE. For the quadratic case, with the hyper-parameters α = 1 and β = 1, the
algorithm converged in about 5 hours to the solution x+

quad with RMSE(x+
quad) =

0.418. For the spatial sparsity case, the algorithm converged in about 8 hours to the
solution x+

Spar with RMSE(x+
Spar) = 0.344 with the hyper-parameters α = 15 000,

β = 0.05 and ζ = 1.
The results are shown on Figures 2 and 3. Figure 2 shows the data, the results

and the true object integrated over the whole spectral range of the instrument. It
clearly illustrates the gain in term of spatial resolution provided by our method.
Both the shapes of the central galaxy and of the one near the upper left corner
are recovered. Compared to the solution with spatial sparsity regularization x+

Spar,
the solution with quadratic regularization x+

quad shows more artifacts (e.g. on the
bottom left part of the central galaxy) and bright spots are a bit over-smoothed.

We display in Figure 3 spectral cuts through the heart of the central galaxy
materialized by the dashed line in 2. These figures show (θ, λ) images zoomed be-
tween 567 nmand 574nmfor the data, both restorations and the true object. These
plots show the resolution gain provided by our algorithm: the two brightest objects
are well separated, with the spectrum at 43rd column visible in the restoration
that was not visible in the data. Once again, the solution with quadratic regu-
larization x+

quad shows much more artifacts (e.g. on the bright emission line at
λ = 573 nmand θ = 22). Furthermore, the noise has been drastically reduced by
our method as this can clearly be seen by looking at the background.
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Fig. 2. Images spectrally integrated. Top left : raw data. Top right: restored object x+
quad

with quadratic regularization. Bottom left: restored object x+
Spar with spatial sparsity

regularization. Bottom right: true object o.

Figure 4 displays the spectra of the brighter spaxel of the galaxy (θ = (33, 27))
of the data, the quadratic restoration x+

quad and the spatial sparsity restoration
x+

Spar and the ground truth. Even though regularizations introduce some expected
bias, the restored spectra are closer to the ground truth and far less noisy than
the measured spectrum. In the spatial sparsity restoration x+

Spar (red), most of the
spectral features are preserved. These features are over-smoothed in the quadratic
restoration x+

quad (green). The bias between restoration and is quite strong as it
is the spectrum of the spaxel with the higher dynamical range and it tends to
be flattened by the regularization. The hyper-parameters were tuned to provide
the minimal RMSE for the whole field of view. As a consequence, the hyper-
parameters setting for a sufficient regularization of the faint sources is strong for
bright sources and tends to smooth them. However, this bias disappears if we
integrate spatially on few spaxels as we show in Figure 5 on the spectra of the
central 3 × 3 region of the central galaxy. This means that the bias is mainly
imputable to the remaining blur.

5 Conclusion

In this paper, we present a method for restoring hyperspectral data. We especially
focused on two points: (i) the design of an efficient operator modelling spectrally
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Fig. 3. (θ, λ) images of the cut materialized by the yellow line in Figure 2 magnified

between 567 nm and 574 nm. Top left : raw data. Top right: restored object x+
quad

with quadratic regularization. Bottom left: restored object x+
Spar with spatial sparsity

regularization. Top right: true object o.

varying blur and (ii) a comparison between quadratic and spatial sparsity regu-
larization functions.

We have shown that using PSF interpolation it is possible to design an effec-
tive operator approximating spectrally varying blur. Our formulation preserves
the positivity, the normalization and the symmetry of the PSF. The computa-
tional cost of such approximation, that is twice as much as spectrally invariant
convolution, remains tractable and it is possible to consider the processing of whole
MUSE data cubes (size: 300× 300× 3463) with nowadays CPU power. Further-
more, this type of operator can be easily extended to blurs that vary both spatially
and spectrally as in wide field observations with adaptive optics.

By exploiting jointly spatial and spectral correlations present in the data, our
method provides a strong spatial resolution enhancement and an effective denoising
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Fig. 4. Spectra of the brighter spaxel of the central galaxy of the data (thin grey line),

the quadratic restoration x+
quad (dark grey dash dotted line) and the spatial sparsity

restoration x+
Spar (thin dashed black line) compared to the true spectrum (thick grey

line).
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Fig. 5. Details (550 to 700 nm) of spectra integrated on a 3 × 3 region centered on the

brighter spaxel of the central galaxy of the data (thin grey line), the quadratic restoration

x+
quad (dark grey dash dotted line) and the spatial sparsity restoration x+

Spar (thin dashed

black line) compared to the true spectrum (thick grey line).

along the spectral dimension. Its deblurring performance is assessed on simula-
tions showing the clear improvement in terms of both resolution and denoising.
The comparison of a quadratic and a spatial sparsity regularization, shows that
spatial sparsity regularization are less prone to artifacts and preserves most of the
spatial and spectral features. However, the non linearity introduced by such regu-
larization slows down the convergence of the optimization algorithm. In that case,
optimization algorithms as Alternating Direction Method of Multiplier (ADMM)
seem to provides faster convergence than our VMLMB algorithm as we shown in
Thiébaut & Soulez (2012).

This study as well as the one of Bourguignon et al. (2011a) show clearly the
improvement given by a rigorous processing of hyperspectral astronomical data
cube. However, two main problems remains in this field (i) the settings of the
hyper-parameters, (ii) the estimation of the PSF. Our experience on SNIFS real
data cube (Bongard et al. 2011) indicates that the hyper-parameters remains ap-
proximately identical for similar observations conditions. For the problems of
the PSF estimation, we are currently studying blind deconvolution method where
PSFs is estimated conjointly with the restoration only using the observations.
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Bongard, S., Thiébaut, E., Soulez, F., & Pecontal, E., 2009, in Proceedings of the First
IEEE GRSS Workshop on Hyperspectral Image and Signal Processing, Evolution in
Remote Sensing (WHISPERS’09), cdrom (Grenoble, France)
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SUPERVISED NONLINEAR UNMIXING OF
HYPERSPECTRAL IMAGES

USING A PRE-IMAGE METHODS
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Abstract. Spectral unmixing is an important issue to analyze remotely
sensed hyperspectral data. This involves the decomposition of each
mixed pixel into its pure endmember spectra, and the estimation of
the abundance value for each endmember. Although linear mixture
models are often considered because of their simplicity, there are many
situations in which they can be advantageously replaced by nonlinear
mixture models. In this chapter, we derive a supervised kernel-based
unmixing method that relies on a pre-image problem-solving tech-
nique. The kernel selection problem is also briefly considered. We show
that partially-linear kernels can serve as an appropriate solution, and
the nonlinear part of the kernel can be advantageously designed with
manifold-learning-based techniques. Finally, we incorporate spatial in-
formation into our method in order to improve unmixing performance.

1 Introduction

Pixel-vectors in hyperspectral images are usually mixtures of spectral components
associated with a number of pure materials present in the scene (Keshava &
Mustard 2002). In order to reveal embedded information, one needs to identify the
endmembers present in each pixel and derive the relative proportions of different
materials. Under the assumption that the endmembers have been determined a
priori using some appropriate extraction approaches, see e.g., (Boardman 1993;
Nascimento & Bioucas-Dias 2005; Winter 1999), unmixing of hyperspectral images
then consists of estimating the fractional abundances.

The abundance estimation problem has most often been solved based on the
linear mixing model. Some examples are described in (Dobigeon et al. 2009; Heinz
& Chang 2001; Honeine & Richard 2012; Theys et al. 2009). For instance, the
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FCLS method presented in (Heinz & Chang 2001) estimates the abundances by
minimizing a mean-square-error criterion subject to linear equality and inequal-
ity constraints. The geometric strategy described in (Honeine & Richard 2012)
reduces to calculate ratios of polyhedra volumes in the space spanned by the hy-
perspectral pixel-vectors. The main advantage of the former is the convexity of
the optimization problem. A very low computational cost characterizes the latter.

In real-world scenes, the interaction between materials can generate nonlinear
effects that influence the precision in abundance calculation, and can cause the
abundance vectors to violate the non-negativity and the sum-to-one constraints.
Nonlinear models can then be introduced to account for these effects, e.g., the
generalized bilinear model (Halimi et al. 2011), the post non-linear mixing model
Jutten & Karhunen (2003), and the intimate model (Hapke 1981). Nonlinear un-
mixing methods attempt to invert these models and estimate the abundances. In
(Halimi et al. 2011), a nonlinear unmixing algorithm for general bilinear mixture
model was proposed. Based on Bayesian inference, this method however has a high
computational complexity and is dedicated to the bilinear model. In (Nascimento
& Bioucas-Dias 2009; Raksuntorn & Du 2010), the authors extended the collec-
tion of endmembers by adding artificial cross-terms of pure signatures to model
light scattering effects on different materials. However, it is not easy to identify
which cross-terms should be selected and added to the endmember dictionary. If
all the possible cross-terms were considered, the set of endmembers would expand
dramatically. Another possible strategy is to use manifold learning approaches
such as Isomap (Tenenbaum et al. 2000), and LLE (Roweis & Saul 2000), which
allow the use of linear methods in a linear space of non-linearly mapped data. Fi-
nally, in (Chen et al. 2013b), the authors formulated a new kernel-based paradigm
that relies on the assumption that the mixing mechanism can be described by a
linear mixture of endmember spectra, with additive nonlinear fluctuations defined
in a reproducing kernel Hilbert space. This family of models has a clear phys-
ical interpretation, and allows to take complex interactions of endmembers into
account.

The abundance estimation stage can be accomplished within the context where
the abundances of the endmembers are known for some pixels, called training data.
A learning process is then applied to estimate the abundances for the remaining
pixels. See, e.g., (Altmann et al. 2011b; Themelis et al. 2010; Tourneret et al.
2008). In (Altmann et al. 2011b), the map that approximates the abundances
for any pixel-vector is a linear combination of radial basis functions. Its weights
are estimated based on training samples. An orthogonal least-squares algorithm
is then applied to reduce the number of radial basis functions in the model. In
this chapter, we show that the learning process for abundance estimation based on
training data can be viewed as a pre-image problem (Honeine & Richard 2011).
While the mapping from input space to feature space is of primary importance in
kernel methods, the reverse mapping from feature space back to input space can be
also useful. Solving the pre-image problem within the context of our application
consists of approximating the reverse mapping from the high-dimensional space
of hyperspectral pixel-vectors to the low-dimensional space of abundance vectors.
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We also consider the problem of kernel selection. As in (Chen et al. 2013b),
we show that partially-linear kernels can serve as an appropriate solution. In
this case, the nonlinear part of the kernel can be advantageously designed with
manifold-learning-based techniques. We also investigate how to incorporate spatial
correlation into the abundance estimation process. Total-variation regularization
was introduced with success in (Iordache et al. 2011) to perform this task within
the context of linear unmixing, and used in (Chen et al. 2013a) to extend the
kernel-based framework presented in (Chen et al. 2013b). In the spirit of these
recent results, a pre-image method for nonlinear spectral unmixing coupled with
a �1-type spatial regularization is derived in this chapter.

This chapter is organized as follows. Section 2 describes the problem of non-
linear unmixing of hyperspectral data. It also introduces the pre-image problem
within the context of kernel-based data processing. Section 3 solves the pre-image
problem with kernel matrix regression in order to perform nonlinear unmixing of
hyperspectral data. Section 4 addresses the question of kernel selection. Section 5
aims at solving the same problem with spatial regularization. Section 6 shows
experimental results. Finally, Section 7 concludes the chapter.

2 Hyperspectral data unmixing formulated as a pre-image problem

2.1 Hyperspectral image mixing model

Let r = [r1, r2, . . . , rL]� be an observed hyperspectral pixel-vector, with L the
number of spectral bands. We shall assume that r is a mixture of R endmember
spectra mi. Let us denote by M = [m1, m2, . . . ,mR] the L-by-R endmember
matrix, and by α the R-dimensional abundance vector associated with r.

We first consider the linear mixing model where any observed pixel is a linear
combination of the endmembers, weighted by the fractional abundances, that is,

r = Mα + v (2.1)

where v is a noise vector. The abundance vector α is usually determined by
minimizing a cost function, e.g., the mean-square reconstruction error, under the
non-negativity and sum-to-one constraints

αi ≥ 0, ∀i ∈ 1, . . . , R

R∑
i=1

αi = 1. (2.2)

The above model assumes that abundance vector α lies on a simplex of R vertices.
A direct consequence is that pixel-vectors r also lie in a simplex with vertices the
R endmember spectra. There are many situations, involving multiple scattering
effects, in which model (2.1) may be inappropriate and could be advantageously
replaced by a nonlinear one. Consider the general mixing mechanism

r = Ψ(α, M) + v (2.3)
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Fig. 1. The basic pre-image problem.

with Ψ an unknown function that defines the interactions between the endmembers
in matrix M subject to conditions (2.2).

As illustrated in Figure 1, models (2.1) and (2.3) both rely on a mapping
from the low-dimensional input space A of abundance vectors α into the high-
dimensional output space R of hyperspectral data r. In this paper, we consider
the problem of estimating abundances as a pre-image problem (Honeine & Richard
2011). Solving the pre-image problem, within a supervised learning context, con-
sists of approximating the reverse mapping that allows to recover the abundance
vector α given any pixel-vector r, based on training data.

2.2 Estimating a pre-image

This section introduces an original framework, based on the pre-image problem,
for supervised unmixing of hyperspectral data. See Figure 2. In order to allow the
model to better capture some complex mixing phenomena, we use a reproducing
kernel Hilbert space (RKHS) framework in place of R. We shall now review
the main definitions and properties related to reproducing kernel Hilbert spaces
(Aronszajn 1950).

Let H denote a Hilbert space of real-valued functions ψ on R, and let 〈· , ·〉H
be the inner product in H. Suppose that the evaluation functional δr defined by
δr[ψ] = ψ(r) is linear with respect to ψ and bounded, for all r in R. By virtue of
the Riesz representation theorem, there exists a unique positive definite function
r �→ κ(r, r′) in H, denoted by κ(·, r′) and called representer of evaluation at r′,
which satisfies (Aronszajn 1950)

ψ(r′) = 〈ψ, κ(·, r′)〉H, ∀ψ ∈ H (2.4)

for every fixed r′ ∈ R. A proof of this may be found in (Aronszajn 1950). Re-
placing ψ by κ(·, r) in (2.4) yields

κ(r, r′) = 〈κ(·, r), κ(·, r′)〉H (2.5)

for all r, r′ ∈ R. Equation (2.5) is the origin of the generic term reproducing kernel
to refer to κ. Denoting by Φ the map that assigns the kernel function κ(·, r) to
each input data r, Equation (2.5) implies that

κ(r, r′) = 〈Φ(r),Φ(r′)〉H. (2.6)
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The kernel thus evaluates the inner product of any pair of elements of R mapped
to the space H without any explicit knowledge of Φ and H. Within the machine
learning area, this key idea is known as the kernel trick.

As shown in Figure 2, mapping back to the space A in order to recover α, given
any κ(·, r) in H, is a critical task. Generally, most of the features in H have no
exact pre-image in A. The pre-image problem in kernel-based machine learning
has attracted a considerable interest in the last fifteen years. See (Honeine &
Richard 2011) for an overview. In (Mika et al. 1999), Mika et al. introduced the
problem and its ill-posedness. They also derived a fixed-point iteration strategy,
potentially unstable, to find a solution without any guarantee of optimality. In
(Kwok & Tsang 2003), Kwok et al. suggested a relationship between the distances
in the feature space H and in the input space A. Applying a multidimensional
scaling technique yields an inverse map estimate, and thus a pre-image. This
approach has opened the way to a range of other techniques that use training
data in both spaces as prior information, such as manifold learning (Roweis &
Saul 2000; Tenenbaum et al. 2000) and out-of-sample methods (Arias et al. 2007;
Bengio et al. 2003).

In this chapter, we shall use an efficient method for solving the pre-image
problem that was recently proposed in (Honeine & Richard 2011). It consists
of deriving a transformation that preserves the inner products between training
data, in the input space A and, with some abuse of notation, in the feature space
H. Given any r, it thus allows to estimate α from κ(·, r). The next section is
dedicated to this approach, and its application to supervised unmixing.

3 Supervised unmixing

Given a set of training data {(α1, r1), . . . , (αn, rn)}, we seek the pre-image α in
A of some arbitrary κ(·, r) of H. The proposed approach consists of two stages:
First, learning the reverse map; Then, estimating the pre-image.

A

αi
κ(·, ri)

ΨH

?
κ(·, rj)

H

Fig. 2. The pre-image problem.

3.1 Stage 1: Learning the reverse map

By virtue of the Representer Theorem (Schölkopf et al. 2000), we know that
we can limit our investigation to the space spanned by the n kernel functions
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{κ(·, r1), . . . , κ(·, rn)}. Let us focus on only a subspace spanned by � functions to
be determined, denoted by {ψ1, . . . , ψ�} with � ≤ n, of the form

ψk =
n∑

i=1

λki κ(·, ri), k = 1, . . . , �. (3.1)

We consider the analysis operator C: H → IR� defined as

Cϕ = [〈ϕ, ψ1〉H . . . 〈ϕ, ψ�〉H]�. (3.2)

Note that the k-th entry of the representation of any kernel function κ(·, r) is given
by

〈κ(·, r), ψk〉H =
n∑

i=1

λki κ(r, ri). (3.3)

It is interesting to note that 〈κ(·, r), ψk〉H = ψk(r) by the reproducing property of
the space H. The kernel function κ(·, r) is thus represented by the �-length vector

ψr = [ψ1(r)ψ2(r) . . . ψ�(r)]� (3.4)

with ψk(r) defined in (3.3). In order to fully define the analysis operator C, that
is, to estimate the λki, we suggest to consider the following relationship between
any inner product in the input space A and, with some abuse of notation, with its
counterpart in the feature space H

α�
i αj = ψ�

ri
ψrj

+ εij , ∀ i, j = 1, . . . , n (3.5)

where εij denotes the lack-of-fit of the above model. Note that there is no con-
straint on the analysis functions ψk, except their form (3.1) and the goodness-of-fit
constraint (3.5), because reconstruction from expansion coefficients is not consid-
ered. Let us now estimate the λki in (3.3) so that the empirical variance of εij is
minimal, that is,

min
λ11,...,λ�n

1
2

n∑
i,j=1

(α�
i αj −ψ�

ri
ψrj

)2 + η P (ψ1, . . . , ψ�) (3.6)

where P is a regularization function, and η a tunable parameter used to control
the tradeoff between fitting the data and smoothness of the solution. We shall use
�2-norm penalization in this paper, defined as

P (ψ1, . . . , ψ�) =
�∑

k=1

‖ψk‖2H. (3.7)

The optimization problem can be expressed in matrix form as

min
L

1
2
‖A−KL�LK‖2F + η trace(L�LK) (3.8)
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where A and K are the Gram matrices with (i, j)-th entries defined as α�
i αj and

κ(ri, rj), respectively, and L is the matrix with (i, j)-th entry given by λij .
Taking the derivative of this cost with respect to L�L, rather than L, we get

L̂
�

L̂ = K−1(A− ηK−1)K−1. (3.9)

In the following, we shall show that only L̂
�

L̂ is needed to calculate the pre-image.

3.2 Stage 2: Estimate the pre-image

Let us first consider the case of any function ϕ of H, which can be written as
follows

ϕ =
n∑

i=1

φi κ(·, ri) + ϕ⊥ (3.10)

with ϕ⊥ an element of the orthogonal complement to the subspace spanned by the
kernel functions κ(·, ri). Note at this point that the parameters φi are supposed to
be known. In any case, they can be evaluated by projecting ϕ onto the subspace
spanned the n kernel functions κ(·, ri), that is, by solving

min
φ
‖ϕ−

n∑
i=1

φi κ(·, ri)‖2H. (3.11)

This yields the n-by-n linear system of equations Kφ = ϕ0, where ϕ0 is the vector
with i-th entry ϕ(ri), and φ stands for the vector with i-th entry φi, for i =
1, . . . , n. Referring back to Equation (3.10), the k-th entry of the representation
of ϕ by the analysis operator C, denoted by ϕ, is given by

〈ϕ, ψk〉H =
n∑

i,j=1

φi λ̂kj κ(ri, rj), (3.12)

where λ̂kj is the (k, j)-th entry of the matrix L̂ estimated during Stage 1. This
directly implies that ϕ = L̂Kφ. Minimizing now the lack-of-fit (3.5), with respect
to the pre-image α given ϕ, between α�αi and ϕ�ψri

for i = 1, . . . , n, leads to
the optimization problem

α̂ = argmin
α

1
2
‖Λ�α−KL̂

�
L̂Kφ‖2

= argmin
α

1
2
‖Λ�α− (A− ηK−1)φ‖2 (3.13)

subject to the non-negativity and sum-to-one constraints (2.2). Here Λ is the
matrix with i-th column the vector αi.

Let us now consider the particular case where one seeks the pre-image α of
some kernel function κ(·, r0). Substituting ϕ by κ(·, r0) in Equation (3.11) leads
us to the system Kφ = κ0, where κ0 is the vector with i-th entry κ(ri, r0).
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Minimizing the appropriate lack-of-fit (3.5) with respect to the pre-image α leads
us to the optimization problem

α̂ = arg min
α

1
2
‖Λ�α− (A− ηK−1)K−1κ0‖2 (3.14)

subject to the non-negativity and sum-to-one constraints (2.2). This convex opti-
mization problem can be solved using the FCLS strategy to deal with the equal-
ity constraints (Heinz & Chang 2001), associated with a nonnegative least-mean-
square algorithm. See, e.g., (Chen et al. 2011) for an overview.

4 Kernel selection

The kernel function κ(·, r) maps the measurements r into a very high, even infinite,
dimensional space H. It characterizes the solution space for the possible nonlinear
relationships between input data α and output data r. Classic examples of kernels
are the Gaussian kernel κ(ri, rj) = exp

(
−‖ri − rj‖2/2σ2

)
, with σ the kernel

bandwidth, and the q-th degree non-homogeneous polynomial kernel κ(ri, rj) =
(1 + r�

i rj)q, with q ∈ IN∗. We shall now make some suggestions for selecting
specific kernels, before testing it in the next section. On the one hand, we shall
briefly propose to design the kernel directly from data by using manifold learning
techniques. On the other hand, we shall present a partially-linear kernel that has
proved its efficiency for nonlinear unmixing (Chen et al. 2013b).

4.1 Kernel selection based on manifold learning techniques

In (Ham et al. 2003), the manifold learning problem is treated within the context
of kernel PCA. The process of revealing the underlying structure of data is viewed
as a nonlinear dimensionality reduction method, based on local information with
LLE (Roweis & Saul 2000), or geodesic distance with Isomap (Tenenbaum et al.
2000). These techniques can be used to design kernels that preserve some aspects
of the manifold structure of the space R to which the vectors ri belong, in the
feature space H of the functions κ(·, ri). We used such techniques in (Nguyen
et al. 2012) for unmixing of hyperspectral data.

As an example, we consider radial basis kernels of the form κ(ri, rj) = f(‖ri−
rj‖) with f ∈ C∞. A sufficient condition for this class of kernels to be positive-
definite, and thus valid, is the complete monotonicity of the function f , which can
be expressed as follows,

(−1)k f (k)(r) ≥ 0, ∀r ≥ 0 (4.1)

where f (k) denotes the k-th order derivative of f (Cucker & Smale 2002). In-
stead of using the euclidean distance dij = ‖ri − rj‖ with f , we can use pairwise
distances diso,ij = ‖ri − rj‖iso provided by Isomap. This approach consists of
constructing a symmetric adjacency graph using a nearest neighborhood based
criterion, and applying Dijkstra algorithm to compute the shortest path along
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edges of this graph, between each pair of data. Unfortunately, the Gram matrix
Kiso constructed in such a way has no guarantee of being positive definite. This
difficulty can be overcome by using multidimensional scaling, which maps the data
into a low-dimensional euclidean subspace where edge lengths are best preserved.
An alternative is to force matrix Kiso to be positive definite using one of the
approaches describes in (Muñoz & Diego 2006).

4.2 Partially-linear Kernel

Model (2.1)-(2.2) assumes that the relationship between the abundance vectors αi

and the hyperspectral pixel-vectors ri is linear. There are however many situa-
tions, involving multiple scattering effects, in which this model may be inappro-
priate and could be advantageously replaced by a nonlinear one. In (Chen et al.
2013a,b), we studied mixing models defined by a linear trend parameterized by the
abundance vector, combined with a nonlinear fluctuation term. Extensive experi-
ments, both with synthetic and real scenes, illustrated the flexibility and and the
effectiveness of this class of models. In the spirit of these derivations, we suggest
to consider kernels of the form

κ(ri, rj) = (1− γ) r�
i Σ rj + γ κ′(ri, rj) (4.2)

with κ′(ri, rj) a reproducing kernel, Σ a non-negative matrix, and γ a parameter
in [0, 1] to adjust the balance between the linear and the nonlinear kernels.

In all the experiments, we shall use the above kernel with Σ = (MM�)†

κ(ri, rj) = (1− γ) r�
i (MM�)† rj + γ κ′(ri, rj) (4.3)

where (·)† stands for the pseudo-inverse. Indeed, for γ = 0, it can be shown that
this kernel leads to the least-mean-square estimate of the abundance vector in the
case of a linear mixing scenario.

5 Spatial regularization applied to supervised unmixing

5.1 Formulation

In the previous section, we showed how to estimate the abundances by learning a
reverse mapping. This approach consisted of considering pixel vectors as if they
were independent from their neighboring pixels. However, a fundamental property
of remotely sensed data is that they convey multivariate information into a 2D
pictorial representation. Hyperspectral analysis techniques can thus benefit from
the inherent spatial-spectral duality in hyperspectral scenes. Following this idea,
researchers exploited spatial information for endmember estimation (Martin &
Plaza 2011; Rogge et al. 2007; Zortea & Plaza 2009) and pixel vectors classification
(Fauvel et al. 2012, to appear; Li et al. 2011). Recently, spatial processing methods
were also derived for semi-supervised unmixing (Chen et al. 2013a). In this section,
we aim at improving the pre-image method by incorporating such information.
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Following (Iordache et al. 2011), an optimization method based on split variable
iteration is proposed to deal with this problem that suffers the non-smoothness of
the regularization term.

Let us denote by Δ the matrix of the abundance vectors, that is, Δ =
[α1, . . . ,αn]. In order to take the spatial relationship among pixels into con-
sideration, we suggest to consider a general cost function of the form

J(Δ) = Jerr(Δ) + νJsp(Δ) (5.1)

subject to the non-negativity constraint imposed on each entry of Δ, and the
sum-to-one constraint imposed on each column of the matrix Δ, namely, on each
αi. For ease of notation, these two physical constraints will be expressed by

Δ � 0

Δ�1R = 1N . (5.2)

The function Jerr(Δ) represents the modeling error, and Jsp(Δ) is a regularization
term to promote similarity of the fractional abundances within neighboring pixels.
The non-negative parameter ν is used to control the trade-off between data fidelity
and pixel similarity.

To take spatial relationships among pixels into consideration, let us consider
the following regularization function

Jsp(Δ) =
n∑

i=1

∑
j∈N (i)

‖αi − αj‖1 (5.3)

where ‖ ‖1 denotes the vector �1-norm, and N (i) is the set of neighbors of the
pixel i. This regularization term promotes spatial homogeneity as neighboring
pixels may be characterized by similar abundances for most materials. Without
any loss of generality, in this paper, we restrict the neighborhood of the pixel i by
taking the 4 nearest pixels i−1 and i+1 (row adjacency), i−w and i+w (column
adjacency). In this case, let us define the (n×n) matrices H← and H→ as the two
linear operators that compute the difference between any abundance vector and its
left-hand neighbor, and right-hand neighbor, respectively. Similarly, let H↑ and
H↓ be the linear operators that compute that difference with the top neighbor and
the down neighbor, respectively. With these notations, the regularization function
(5.3) can be rewritten in matrix form as

Jsp(Δ) = ‖ΔH‖1,1 (5.4)

with H the (n×4n) matrix
(
H← H→ H↑ H↓

)
and ‖ ‖1,1 the sum of the �1-norms

of the columns of a matrix. Note that this regularization function is convex but
non-smooth.
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Considering both the modeling error and the regularization term, the optimiza-
tion problem becomes

min
Δ

n∑
i=1

1
2
‖Λ�αi − (A− ηK−1)K−1κi‖2 + ν‖ΔH‖1,1

subject to Δ � 0 and Δ�1R = 1N (5.5)

where ν controls the trade-off between model fitting in each pixel and similarity
among neighboring pixels. For ease of notation, in the following, we shall write
Δ ∈ S+1 to denote the non-negativity and sum-to-one constraints.

5.2 Solution

Even though the optimization problem (5.5) is convex, it cannot be solved easily
because of the non-smooth regularization term. In order to overcome this draw-
back, we rewrite it in the following equivalent form

min
Δ∈S+1

n∑
i=1

1
2
‖Λ�αi − (A− ηK−1)K−1κi‖2 + ν‖U‖1,1

subject to V = Δ and U = V H (5.6)

where we have introduced two new matrices U and V , and two additional con-
straints. The matrix U will allow us to decouple the non-smooth �1-norm regu-
larization functional from the main quadratic problem. The matrix V will relax
connections between pixels. This variable-splitting approach was initially intro-
duced in (Goldstein & Osher 2009).

As studied in (Goldstein & Osher 2009), the split Bregman iteration algorithm
is an efficient method to deal with a broad class of �1-regularized problems. By
applying this framework to (5.5), the following formulation is obtained

Δ(k+1), V (k+1), U (k+1) = arg min
Δ∈S+1,V ,U

n∑
i=1

1
2
‖Λ�αi − (A− ηK−1)K−1κi‖2

+ ν‖U‖1,1+
ζ

2
‖Δ−V −D

(k)
1 ‖2F +

ζ

2
‖U−V H−D

(k)
2 ‖2F
(5.7)

with

D
(k+1)
1 = D

(k)
1 +

(
V (k+1) −Δ(k+1)

)
D

(k+1)
2 = D

(k)
2 +

(
V (k+1)H −U (k+1)

)
(5.8)

where ‖ ‖2F denotes the matrix Frobenius norm, and ζ is a positive parameter.
Because we have split the components of the cost function, we can now solve the
above minimization problem efficiently by iteratively minimizing the cost function
with respect to Δ, V and U separately. We shall now describe the three steps
that have to be performed.
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5.2.1 Step 1: Optimization with respect to Δ

The optimization problem (5.7) reduces to

Δ(k+1) = arg min
Δ∈S+1

n∑
i=1

1
2

(
‖Λ�αi − (A− ηK−1)K−1κi‖2 + ζ‖αi − ξ

(k)
i ‖2

)
(5.9)

where ξ
(k)
i = V

(k)
i + D

(k)
1,i . Here, V

(k)
i and D

(k)
1,i denote the i-th column of V (k)

and D
(k)
1 , respectively. It can be observed that this problem can be decomposed

into subproblems, each one involving an abundance vector αi. This results from
the use of the matrix V in the split iteration algorithm (5.7).

Let us now solve the local optimization problem

α
(k+1)
i = arg min

αi

1
2
‖Λ�αi − (A− ηK−1)K−1κi‖2 + ζ‖αi − ξ

(k)
i ‖2

subject to αi � 0

α�
i 1R = 1. (5.10)

Estimating αi reduces to a quadratic optimization problem with linear equality
and inequality constraints, which can be efficiently solved by off-the-shelf methods.
This process has to be repeated for i = 1, . . . , n in order to get Δ(k+1).

5.2.2 Step 2: Optimization with respect to V

The optimization problem (5.7) now reduces to

V (k+1) = arg min
V

‖Δ(k+1) − V −D
(k)
1 ‖2F + ‖U (k) − V H −D

(k)
2 ‖2F . (5.11)

Equating to zero the derivative of (5.11) with respect to V leads to(
Δ(k+1) − V −D

(k)
1

)
+

(
U (k) − V H −D

(k)
2

)
H� = 0 (5.12)

whose solution is then given by

V (k+1) =
(
Δ(k+1) −D

(k)
1 + (U (k) −D

(k)
2 )H�

)
(I + HH�)−1. (5.13)

As a conclusion, this subproblem has an explicit solution that involves the inverse
of the matrix (I + HH�). The latter can be evaluated once the neighborhood
relationship is defined.

5.2.3 Step 3: Optimization with respect to U

The last optimization problem we have to consider is as follows

U (k+1) = arg min
U

ν‖U‖1,1 +
ζ

2
‖U − V (k+1)H −D

(k)
2 ‖2F . (5.14)
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Its solution can be expressed via the well-known soft threshold function

U (k+1) = Thresh
(

V (k+1)H + D
(k)
2 ,

ν

ζ

)
(5.15)

where Thresh(·, τ) denotes the component-wise application of the soft threshold
function defined as

Thresh(x, τ) = sign(x) max(|x| − τ, 0). (5.16)

As in Step 2, the third subproblem has an explicit solution. The computational
time is also almost negligible.

To conclude, the problem (5.6) is solved by iteratively applying (5.7) and (5.8),
where the optimization of (5.7) can be performed by applying Steps 1 to 3. These
iterations continue until some stopping criterion is satisfied. It can be shown that,
if the problem (5.7) has a solution Δ∗ given any ζ > 0, then the generated sequence
Δ(k) converges to Δ∗ (Eckstein & Bertsekas 1992).

6 Simulation results

In this section, we shall experiment the pre-image method with and without spatial
regularization in order to evaluate the benefit of using the latter. We shall compare
it with state-of-the-art methods.

6.1 Experiments with the pre-image method

Spatial regularization is not addressed in this subsection. Two synthetic scenes
were generated with real material spectra, on the one hand from abundance vectors
uniformly distributed in the simplex defined by the non-negativity and the sum-
to-one constraints, and on the other hand from abundance vectors lying on a
manifold.

6.1.1 Experiments on synthetic images with uniformly-distributed abundances

We shall first report some experimental results on synthetic images, which were
generated by linear and nonlinear mixing of several endmember signatures. The
materials that were considered are alunite, calcite, epidote, kaolinite, and bud-
dingtonite. There spectra were extracted from the ENVI software library, and
consisted of 420 contiguous bands, covering wavelength ranging from 0.3951 to
2.56 micrometers. They were used to synthesize 50 × 50 images with different
mixture models, each providing n = 2500 pixels for evaluating and comparing
several unmixing algorithms. These three models were: the linear model, the bi-
linear mixture model with attenuation factors γij = 1 (Halimi et al. 2011), and
the post-nonlinear mixing model (PNMM) defined by (Jutten & Karhunen 2003)

r = (Mα)ξ + v (6.1)
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where (·)ξ denotes the exponential value ξ applied to each entry of the input vector.
This parameter was set to 0.7. The abundance vectors αi, with i = 1, . . . , 2500,
were uniformly generated in the simplex defined by the non-negativity and the
sum-to-one constraints. In the first scene, only three materials were selected to
generate images: epidote, kaolinite, buddingtonite. In the second scene, five ma-
terials were used: alunite, calcite, epidote, kaolinite, buddingtonite. These scenes
were corrupted with an additive white Gaussian noise v with two levels of SNR,
15 dB and 30 dB.

The following algorithms were considered in our experiments.

• The Fully Constrained Least Square method (FCLS) (Heinz & Chang
2001): This algorithm relies on a semi-supervised learning setting in the sense
that unmixing is performed using endmember spectra as prior information.
It is based on a linear mixture model, and provides the optimal solution in
the least-mean-square sense subject to the non-negativity and the sum-to-
one constraints.

• The Kernel Fully Constrained Least Square method (KFCLS)
(Broadwater et al. 2007): This semi-supervised nonlinear algorithm is the
kernel-based counterpart of FCLS, obtained by replacing all the inner prod-
ucts in FCLS by kernel functions. In the experiments, as for our pre-image
algorithm, we used the Gaussian kernel with kernel bandwidth σ = 4.

• The Bayesian algorithm derived for generalized bilinear model
(BilBay) (Halimi et al. 2011): This semi-supervised method is based on
appropriate prior distributions for the unknown abundances, which must
satisfy the non-negativity and sum-to-one constraints, and then derives joint
posterior distribution of these parameters. A Metropolis-within-Gibbs algo-
rithm is used to estimate the unknown model parameters.

• The RBF-with-OLS method (RBF-OLS) (Altmann et al. 2011a): As
our pre-image method, this supervised algorithm aims at learning a nonlinear
reverse mapping fromR to A. The estimator is a linear combination of radial
basis functions with centers chosen from the training data through an OLS
procedure.

• The pre-image algorithm proposed in this paper: The inhomogeneous
polynomial kernel (P) of degree d = 2, the Gaussian kernel (G) with kernel
bandwidth σ = 4, and the partially-linear kernel (PL) associating a linear
kernel and a Gaussian kernel with σ = 4. The parameter γ combining these
two kernels, and the regularization coefficient η, were set to 10−1 and 10−3.

The cardinality of the training data set was fixed to 200 in order to reach an appro-
priate compromise between the computational cost and the performance. The root
mean square error (RMSE) between the true and the estimated abundance vectors
αi and α̂i was used to compare the performance of the five algorithms. Results
for Scene 1 and Scene 2 unmixing, with three and five endmember materials, are
reported in Table 1 and Table 2, respectively.
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Table 1. Scene 1 (three materials): RMSE comparison.

SNR = 30 dB SNR = 15 dB
linear bilinear PNMM linear bilinear PNMM

FCLS 0.0037 0.0758 0.0604 0.0212 0.0960 0.0886
KFCLS 0.0054 0.2711 0.2371 0.0296 0.2694 0.2372
BilBay 0.0384 0.0285 0.1158 0.1135 0.1059 0.1191

RBF-OLS 0.0144 0.0181 0.0170 0.0561 0.0695 0.0730
Pre-image method (P) 0.0139 0.0221 0.0129 0.0592 0.0601 0.0764
Pre-image method (G) 0.0086 0.0104 0.0103 0.0422 0.0561 0.0597
Pre-image method (PL) 0.0072 0.0096 0.0098 0.0372 0.0395 0.0514

Table 2. Scene 2 (five materials): RMSE comparison.

SNR = 30 dB SNR = 15 dB
linear bilinear PNMM linear bilinear PNMM

FCLS 0.0134 0.1137 0.1428 0.0657 0.1444 0.1611
KFCLS 0.0200 0.2051 0.1955 0.0890 0.1884 0.1572
BilBay 0.0585 0.0441 0.1741 0.1465 0.1007 0.1609

RBF-OLS 0.0200 0.0236 0.0259 0.0777 0.0805 0.0839
Pre-image method (P) 0.025 0.0267 0.0348 0.0905 0.0903 0.1000
Pre-image method (G) 0.0186 0.0233 0.0245 0.0775 0.0778 0.0875
Pre-image method (PL) 0.0148 0.0184 0.0203 0.0636 0.0616 0.0763

Consider first the semi-supervised algorithms. The FCLS method achieves
a very low RMSE for linearly-mixed images because it was initially derived for
the linear mixing model. As a consequence, it produces a large RMSE with
nonlinearly-mixed images. The KFCLS should have overcome this drawback. It
however performs worse than FCLS, even with nonlinearly-mixed images as it
does not clearly investigate nonlinear interactions between materials (Chen et al.
2013b). BilBay algorithm was derived for the bilinear mixing model, and thus
achieves very good performance with bilinearly-mixed images. Nevertheless, its
performance severely degrades when dealing with a nonlinear mixing model for
which it was not originally designed. Consider now the supervised algorithms.
The pre-image method and RBF-OLS outperforms all the semi-supervised algo-
rithms when dealing with non-linearly mixed images. Of course, they make use
of more information to achieve this performance. Our approach is however much
more flexible than RBF-OLS since it can be associated with any reproducing ker-
nel. In particular, as already observed in (Chen et al. 2013b), the experiments
demonstrate the benefit of using a partially-linear kernel.

6.1.2 Experiment on synthetic images: Test with swiss-roll data

In order to highlight the flexibility of our approach with respect to kernel selection,
we shall now show that kernels designed with manifold learning techniques can be
advantageously used. Let us consider the well-known swiss-role artificial data
set for illustration purpose. It consists of random samples in a two-dimensional
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Geodesic kernel

Partial linear kernel

ω

R
M
S
E

Fig. 3. Geodesic kernel vs. partially-linear kernel in the case where data lie in a manifold.

simplex, transformed into a three-dimensional nonlinear manifold by projection
on a swiss-roll structure. The non-linearity of the swiss-roll data is parameterized
by a variable ω. The coordinate of a data point ri as a function of the local
abundance αi are expressed by⎧⎪⎨⎪⎩

ri1 = αi1 sin(ωαi1) + 1
ri2 = αi1 cos(ωαi1) + 1
ri3 = αi2 + 1.

(6.2)

Following the sum-to-one constraint, the abundance of the third endmembers can
be generated by αi3 = 1− (αi1 +αi2). By setting a single abundance equal to one,
and the two others to zero, we obtain the endmember spectra⎧⎪⎨⎪⎩

m1 = [sin(ω) + 1, cos(ω) + 1, 1]�

m2 = [1, 1, 2]�

m3 = [1, 1, 1]�.

(6.3)

Swiss-roll data unmixing was performed with our pre-image algorithm, based on
100-sample training sets, for ω values in the interval [0, 2]. The partially-linear
kernel with Gaussian kernel whose bandwidth was set to σ = 4, and the kernel
based on geodesic distances provided by Isomap, were considered. The geodesic
kernel was constructed using the geodesic distance matrix provided by Isomap and
Djisktra algorithms. Note that this matrix was converted into a positive definite
matrix using a technique described in (Muñoz & Diego 2006). Figure 3 clearly
shows that the geodesic kernel is much more appropriate than the partially-linear
kernel in the case where the data lie in a manifold, and the performance of the
algorithm is quite steady even for large ω values.

6.2 Experiments with the spatially-regularized pre-image method

Two spatially correlated abundance maps were generated for the following ex-
periments. The endmembers were randomly selected from the spectral library
ASTER (Baldridge et al. 2009). Each signature of this library has reflectance
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values measured over 224 spectral bands, uniformly distributed in the interval
3 − 12 micrometers. Two synthetic abundance maps identical to (Iordache et al.
2011) were used.

The first data cube, denoted by IM1, and containing 50× 50 pixels, was gen-
erated using five signatures randomly selected from the ASTER library. Pure
regions and mixed regions involving between 2 and 5 endmembers, distributed
spatially in the form of square regions, were generated. The background pixels
were defined as mixtures of the same 5 endmembers with the abundance vector
[0.1149, 0.0741, 0.2003, 0.2055, 0.4051]�. The first row in Figure 4 shows the true
fractional abundances for each endmember. The reflectance samples were gener-
ated with the bilinear mixing model, based on the 5 endmembers, and corrupted
by a zero-mean white Gaussian noise vi with a SNR of 20 dB, namely,

ri = Mαi +
R∑

p=1

R∑
q=p+1

αn,p αn,q mp ⊗mq + vi (6.4)

with ⊗ the Hadamard product.
The second data cube, denoted by IM2 and containing 100× 100 mixed pix-

els, was generated using 5 endmember signatures. The abundance maps of the
endmembers are the same as for the image DC2 in (Iordache et al. 2011). The
first row of Figure 5 depicts the true distribution of these 5 materials. Spatially
homogeneous areas with sharp transitions can be clearly observed. Based on these
abundance maps, an hyperspectral data cube was generated with the bilinear
model (6.4) applied to the 5 endmember spectral signatures. The scene was also
corrupted by a zero-mean white Gaussian noise vi with a SNR of 20 dB.

Algorithms with and without spatial regularization were compared in order
to demonstrate the effectiveness of adding this type of information. Unsupervised
algorithms that do not use spatial information, were also considered for comparison
purpose. The tuning parameters of the algorithms were set using preliminary
experiments on independent data, via a simple search over predefined grids.

1. The linear unmixing method FCLS (Heinz & Chang 2001): The regulariza-
tion parameter λ was varied in {10−4, 10−3, 10−2, 10−1} in order to determine
the best configuration.

2. The pre-image algorithm without spatial regularization: The partially-linear
kernel with γ = 0.1 was considered. It was associated with the Gaussian
kernel. The bandwidth of the latter was varied in [0.5, 5], and finally set
to 4. The regularization parameter η of the pre-image algorithm was varied
in {10−4, 10−3, 10−2, 10−1}, and was finally set to 10−3. The size of the
training set was set to 200.

3. The pre-image algorithm with spatial regularization: The same parameter
values as above were considered for this algorithm in order to clearly evaluate
the interest of taking spatial information into account. The parameters ζ and
ν, which are specifically related to the spatial regularization, were tuned as
explained below.
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Fig. 4. Estimated abundance maps for IM1. From top to bottom: true abundance map,

FCLS, pre-image method, pre-image method with spatial regularization.

With the image IM1, the preliminary tests led us to λ = 10−2 for FCLS, and
ζ = 1, ν = 0.1 for the proposed algorithm. With the image IM2, these tests led to
λ = 0.01 for FCLS, and ζ = 20, ν = 0.5 for the proposed algorithm.

The estimated abundances are presented in Figures 4 and 5. The reconstruc-
tion errors (RMSE) are reported in Table 3. For both images IM1 and IM2, it can
be observed that when applied on nonlinearly mixed data, the linear unmixing
method FCLS has large reconstruction errors. The proposed pre-image method
allows to notably reduce this error in the mean sense, but the estimated abun-
dance maps are corrupted by a noise that partially masks spatial structures of
the materials. Finally, the proposed spatially-regularized method has lower recon-
struction error and clearer abundance maps. Using spatial information obviously
brings advantages to the nonlinear unmixing process.

Table 3. Comparison of the RMSE for IM1 and IM2.

Algorithms IM1 IM2
FCLS 0.1426 0.0984

pre-image 0.0546 0.0712
pre-image with reg. 0.0454 0.0603
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Fig. 5. Estimated abundance maps for IM2. From top to bottom: true abundance map,

FCLS, pre-image method, pre-image method with spatial regularization.

7 Conclusion

In this chapter, we introduced an hyperspectral unmixing algorithm based on
the pre-image principle, which is usually addressed by the community of machine
learning. Our contribution is two-fold in the sense that the pre-image algorithm
described here, and its spatially-regularized counterpart, are both original. We
showed that these techniques can be advantageously applied for supervised un-
mixing provided that labeled pixel-vectors are available.
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Bendjoya P., 131
Benisty M., 141
Berger J.-P., 141
Bertero M., 325
Bijaoui A., 265
Boccacci P., 325
Bremer M., 189

Cabot F., 203
Carbillet M., 59, 93
Carlotti A., 213
Chen J., 417
Coulon M., 381

Denis L., 403
Dobigeon N., 381
Domiciano de Souza A.,

131

Epaillard E., 203

Ferrari A., 93
Folcher J.-P., 93

Hadjara M., 131
Hero A.O., 381
Honeine P., 417

Jankov S., 131

Kerr Y.H., 203
Kluska J., 141

Labeyrie A., 5
Lantéri H., 303, 357
Lazareff B., 141
Le Bouquin J.-B., 141

Malbet F., 141
Mary D., 213
Millour F., 131
Mourard D., 25

Moussaoui S., 381

Nguyen N.H., 417

Petrov R., 131
Pinte C., 141
Prato M., 325

Rabbia and Y., 37
Richard C., 303, 357, 417
Roche M., 77
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