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Preface

This book has a rather long and complicated history. One of the authors,
Louis Michel, passed away on the 30 December, 1999. Among a number of
works in progress at that time there were a near complete series of big papers
on “Symmetry, invariants, topology” published soon after in Physics Reports
[75] and a project of a book “Lattice geometry”, started in collaboration with
Marjorie Senechal and Peter Engel [53]. The partially completed version of
the “Lattice geometry” by Louis Michel, Marjorie Senechal and Peter Engel
is available as a THES preprint version of 2004. In 2011, while starting to
work on the preparation of selected works of Louis Michel [19] it became clear
that scientific ideas of Louis Michel developed over the last thirty years and
related to group action applications in different physical problems are not
really accessible to the young generation of scientists in spite of the fact that
they are published in specialized reviews. It seems that the comment made
by Louis Michel in his 1980’s talk [70] remains valid till now:

“Fifty years ago were published the fundamental books of Weyl and of
Wigner on application of group theory to quantum mechanics; since, some
knowledge of the theory of linear group representations has become necessary
to nearly all physicists. However the most basic concepts concerning group
actions are not introduced in these famous books and, in general, in the physics
literature.”

After rather long discussions and trials to revise initial “Lattice geometry”
text which require serious modifications to be kept at the current level of the
scientific achievements, it turns out that probably the most wise solution is to
restrict it to the basic ideas of Louis Michel’s approach concentrated on the
use of group actions. The present text is based essentially on the preliminary
version of the “Lattice geometry” manuscript [53] and on relevant publica-
tions by Louis Michel [71, 76, 72, 73, 74], especially on reviews published in
Physics Reports [75], but the accent is made on the detailed presentation of
the two- and three-dimensional cases, whereas the generalization to arbitrary
dimension is only outlined.






Chapter 1

Introduction

This chapter describes the outline of the book and explains the interrelations
between different chapters and appendices.

The specificity of this book is an intensive use of group action ideas
and terminology when discussing physical and mathematical models of lat-
tices. Another important aspect is the discussion and comparison of various
approaches to the characterization of lattices. Along with symmetry and topol-
ogy ideas, the combinatorial description based on Voronoi and Delone cells is
discussed along with classical characterization of lattices via quadratic forms.

We start by introducing in Chapter 2 the most important notions related
to group action: orbit, stabilizer, stratum, orbifold, ... These notions are il-
lustrated on several concrete examples of the group action on groups and on
vector spaces. The necessary basic notions of group theory are collected in
appendix A which should be considered as a reference guide for basic notions
and notation rather than as an exposition of group theory.

Before starting description of lattices, chapter 3 deals with a more general
concept, the Delone system of points. Under special conditions Delone sets
lead to lattices of translations which are related to the fundamental physical
notion of periodic crystals. The study of the Delone set of points is important
not only to find necessary and sufficient conditions for the existence of peri-
odic lattices. It allows discussion of a much broader mathematical frame and
physical objects like aperiodic crystals, named also as quasicrystals.

Chapter 4 deals with symmetry aspects of periodic lattices. Point sym-
metry classification and Bravais classes of lattices are introduced using two-
dimensional and three-dimensional lattices as examples. Stratification of the
ambient space and construction of the orbifolds for the symmetry group action
is illustrated again on many examples of two- and three-dimensional lattices.
The mathematical concepts necessary for the description of point symmetry
of higher dimensional lattices are introduced and the crystallographic restric-
tions imposed on the possible types of point symmetry groups by periodicity
condition are explicitly introduced.
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Chapter 5 introduces the combinatorial description of lattices in terms
of their Voronoi and Delone cells. The duality aspects between Voronoi and
Delone tesselations are discussed. Voronoi cells for two- and three-dimensional
lattices are explicitly introduced along with their combinatorial classification
as an alternative to the symmetry classification of lattices introduced in the
previous chapter. Such notions as corona, facet, and shortest vectors are
defined and their utility for description of arbitrary N-dimensional lattices
is outlined.

Description of the lattices by using their symmetry or by their Voronoi
cells does not depend on the choice of basis used for the concrete realization
of the lattice in Euclidean space. At the same time practical calculations with
lattices require the use of a specific lattice basis which can be chosen in a very
ambiguous way. Chapter 6 discusses a very old subject: the description of
lattices in terms of positive quadratic forms. The geometric representation
of the cone of positive quadratic forms and choice of the fundamental
domain of the cone associated with different lattices is discussed in detail for
two-dimensional lattices. The reduction of quadratic forms is viewed through
the perspective of the group action associated with lattice basis modifica-
tion. The correspondence between the combinatorial structure of the Voronoi
cell and the position of the point representing lattice on the cone of positive
quadratic forms is carefully analyzed. The dimension of the cone of positive
quadratic forms increases rapidly with the dimension of lattices. That is why
the straightforward geometric visualization becomes difficult for three- and
higher dimensional lattices. Nevertheless, for three-dimensional lattices the
construction of the model showing the distribution of Bravais lattices and
combinatorially different lattices by taking an appropriate section of the cone
of positive quadratic forms is possible. This presentation is done on the ba-
sis of the very detailed analysis realized by Louis Michel during his lectures
given at Smith College, Northampton, USA. Generalizations of the combina-
torial description of lattices to arbitrary dimension requires introduction of a
number of new concepts, which are shortly outlined in this chapter following
mainly the fundamental works by Peter Engel and his collaborators. Symbolic
visualization of lattices via graphs is introduced intuitively by examples of
3-, 4-, and partially 5-dimensional lattices without going into details of
matroid theory.

Concrete examples of lattices in arbitrary dimensions related to reflection
groups are studied in chapter 7. These examples allow us to see important cor-
respondence between different mathematical domains, finite reflection groups,
Lie groups and algebra, Dynkin diagrams, ...

Chapter 8 turns to discussion of the comparison between different clas-
sifications of lattices introduced in previous chapters and some other more
advanced classifications suggested and used for specific physical and mathe-
matical applications in the scientific literature. Among these different classi-
fications we describe the correspondence between geometric and arithmetic



1. Introduction 3

classes of lattices and more general crystallographic classes necessary to clas-
sify the symmetry of the system of points which are more general than simple
regular point lattices. Among the most important for physical applications
aspects of lattice symmetry, the notion of enantiomorphism and of time rever-
sal invariance are additionally discussed. The simultaneous use of symmetry
and combinatorial classification for three-dimensional lattices is demonstrated
by using the Delone approach.

Some physical and mathematical applications of lattices are discussed in
chapter 9. These include analysis of sphere packing, covering, and tiling
related mainly with specific lattices relevant for each type of problem. More
physically related applications are the classification of the regular phases of
matter and in particular the description of quasicrystals which are more gen-
eral than regular crystals. Another generalization of regular lattices includes
discussion of lattice defects. Description of different types of lattice defects
is important not only from the point of view of classification of defects of
periodic crystals. It allows also the study of defects of more formal lattice
models, for example defects associated with lattices appearing in integrable
dynamical models which are tightly related with singularities of classical
dynamical integrable models and with qualitative features of quantum systems
associated with lattices of common eigenvalues of several mutually commuting
observables.

Appendices can be used as references for basic definitions of group the-
ory (Appendix A), on graphs and partially ordered sets (Appendix B), and
for comparison of notations (Appendix C) used by different authors. Also
the complete list of orbifolds for 17 two-dimensional crystallographic groups
(Appendix D) and for 3D-irreducible Bravais groups (Appendix E) is given
together with short explication of their construction and notation.

The bibliography includes a list of basic books for further reading on rele-
vant subjects and a list of original papers cited in the text, which is obviously
very partial and reflects the personal preferences of authors.






Chapter 2

Group action. Basic
definitions and examples

This chapter is devoted to the definitions and short explanations of basic
notions associated with group actions, which play a fundamental role in math-
ematics and in other fields of science as well. In physics group actions appear
naturally in different domains especially when one discusses qualitative fea-
tures of physical systems and their qualitative modifications.

We also introduce here much of the notation that will be used systemati-
cally in this book. Thus this section can be used as a dictionary.

Group action involves two “objects™ a group G, and a mathematical struc-
ture M on which the group acts. M may be algebraic, geometric, topological,
or combinatorial. Aut M, its automorphism group, is the group of one-to-one
mappings of M to itself.

Definition: group action. An action of a group G on a mathematical
structure M is a group morphism (homomorphism) G L Aut M.

The examples we give are designed for the applications we need in this
book. Let us start with a very simple mathematical object M, an equilateral
triangle in the (two-dimensional) Euclidean plane R?. The isometries of R?
that leave this triangle invariant form a group consisting of 6 elements (iden-
tity, rotations through 27/3 and through 47/3, and reflections across the lines
passing through its three vertices and the midpoints of the opposite sides).
In the classical notation used by physicists and chemists, this group is denoted
Dj3. (Alternative notations of groups are discussed in Appendix C).

We can also consider the action of D3 on other objects, for example on the
entire plane (see Figure 2.1). In this case the group morphism Ds 2 Aut R?
maps each group element to an automorphism (symmetry transformation) of
M = R?. This action is said to be effective because each g € G (other than
the identity) effects the displacement of at least one point of the plane.

As another example of the action of D3, we can take for M a single point,
the center of the equilateral triangle. This point is left fixed by every element
of Dj3; thus this action is not effective.
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(a)

Fi1G. 2.1 — Orbits of the action of D3 (the symmetry group of an equilateral triangle)
on the 2D-plane. (a) The sole fixed point of the D3 group action. The stabilizer of
this one-point orbit is the whole group Ds. (b) Two examples of orbits consisting of
three points. Each point of the orbit has one of the reflection subgroups r;, i = 1,2, 3,
as a stabilizer. The three stabilizers 7;, i = 1,2,3 form the conjugacy class r of D3
subgroups. (¢) Example of an orbit consisting of six points. The stabilizer of each
point of such an orbit and of the orbit itself is a trivial group C; = 1.

We can also extend the action of D3 from R? to R3. The rotations through
27 /3 and 47 /3 about the axis passing through the center of the triangle and
orthogonal to it generalize the plane rotations in a natural way.

There are two ways to generalize the reflections of D3 to transformations
of 3D-space.

First, we can replace reflection across a line ¢ by reflection in the plane
orthogonal to the triangle and intersecting it in ¢. This gives us a symmetry
group whose symbol is C3, (or 3m or %33). Alternatively, we can replace
2D-reflection across ¢ by rotation in space, through =, around the axis
coinciding with that line. This group is denoted D3 (or 32 [ITC|=[14], or
223 [Conway|=[31]). The groups D3 and C3, are isomorphic; thus one
abstract group has two very different actions on R?, while their actions on a
2D-dimensional subspace are identical.

We began this discussion with the example of an equilateral triangle in
the plane. What is the symmetry group if the triangle is situated in three-
dimensional space? Obviously, this group includes the six symmetry trans-
formations forming the two-dimensional group Ds. But now the complete set
of transformations leaving the triangle invariant also includes reflection in
the plane of the triangle and the composition of this reflection with all the
elements of D3. Thus in R? the symmetry group of an equilateral triangle
has 12 elements. We denote this larger group by Dsp, or 62m [ITC|, or %223
[Conway].

Notice that the action of D3z, on the plane of the triangle in R? is non-
effective, since reflection in that plane leaves all its points fixed. This action,
described by the homomorphism Ds;, - Aut RZ?, has a non-trivial kernel,
Kerp = Z, the group of two elements (the identity and reflection in the
plane).
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Returning now to the definition of group action, we introduce the following
notation. Since the action of a group G on a mathematical structure M is
specified by the homomorphism p(g) for all g € G, we will write p(g)(m) for
the transform of any m € M by g € G, and abbreviate it to g.m.!

Now we come to a key idea in group action.

Definition: group orbit. The orbit of m (under G) is the set of trans-
forms of m by G; we denote this by G.m.

For example (see Figure 2.1), each of the following sets is an orbit of Dj
acting on the two-dimensional plane containing an equilateral triangle:

e three points equally distanced from the center, one on each of the three
reflection lines;

e the centroid or, equivalently, the center of mass of the triangle; and

e any set of six distinct points related by the reflections and rotations of
the symmetry group Ds.

Figure 2.2 shows orbits of Cj,, D3, and Ds, acting on an equilateral
triangle in R3.

Under the action of a finite group, the number of elements in an orbit can-
not be larger than the order of the group, and this number always divides the
group order. Belonging to an orbit is an equivalence relation on the elements
of M and thus M is a disjoint union of its orbits.

For continuous groups an orbit can be a manifold whose dimension cannot
exceed the number of continuous parameters of the group. The simplest
examples of continuous symmetry groups are the group of rotations of a cir-
cle, SO(2) = Cw, and the circle’s complete symmetry group, O(2) = Do,
which includes reflections. Both C., and D, act effectively on the plane in
which the circle lies. In fact their orbits coincide (see Figure 2.3): there is one
one-point orbit, the fixed point of the group action, and a continuous family
of one-dimensional orbits, each of them a circle.

A second key notion is the stabilizer of an element of M.

Definition: stabilizer. The stabilizer of an element m € M is the
subgroup

Gm ={9€ G, gm=m}

of elements of G which leave m fixed.

If G,, = G, then this orbit has a single element and m is said to be a fixed
point of M (see Figure 2.1a and Figure 2.3a).

If G is finite, then the number of points in the orbit G.m is |G|/|G.,|. Thus
if, as in Figure 2.1 b, the stabilizer of a D3 orbit is a subgroup of order 2,
the orbit consists of three points. If G,, = 1 = e, the group identity

! When G is Abelian and its group law is noted additively, we may use g +m instead of
g.m as short for p(g)(m), though this use of + is an “abus de langage,” since g and m may
not be objects of the same type.
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C /CS
=4 G °
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°
° o7 ' ~D3n
2v N
C Cpl
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? NG
(@) (b) (c)

FIG. 2.2 — Generalizing the action of D3 from R? to R®. (a) Action of the group
C'3y: three orbits with stabilizers Cs, , Cs, and C; are shown (s stands for reflection
in the indicated plane); (b) Action of the group Ds: four orbits with stabilizers Ds,
(3, C2, and C; are shown. (¢) Action of the group Dsp: one point from each of six
different orbits (Dsp, Csy, Cav, Cs, Ch, and C1) is shown.

(@) (b)

Fi1a. 2.3 — Orbits of the action of Co and D on the 2D-plane. (a) The fixed point
of these group actions on R?. (b) Continuous circular orbits.

(Figure 2.1c¢), then the size of the orbit is |G| and the orbit is said to be
principal.?

It is easy to prove that Gy, = gG.ng~ ", from which it follows that the set
of stabilizers of the elements of an orbit is a conjugacy class [H]g of subgroups
of G. For example, the stabilizers of the three vertices of an equilateral triangle
are the three reflection subgroups, r;, of D3, which are conjugate by rotation.
This fact allows us to classify (or to label) orbits by their stabilizers, i.e. by
the conjugacy classes of subgroups of group GG. We recall that the conjugacy

2 Orbits with trivial stabilizer 1 are always principal but for continuous group actions
principal orbits can have nontrivial stabilizers. In that case principal orbits are defined as
orbits forming open dense strata, see below.



2. Group action. Basic definitions and examples 9

| [H] g| [H]
1 6

D3
e
C3\ 1|3
\/ P

1 111

F1a. 2.4 — The lattice of conjugacy classes of subgroups of D3 group. The table
on the right shows, in column 1, the number of elements |[H]¢| in the conjugacy
class [H]a of each type of subgroup. The numbers in the right-hand column are the
orders of the subgroup |H|.

classes of subgroups of any given group form a partially ordered set: one class
is “smaller” than another if it contains a proper subgroup of a group in the
other conjugacy class. This partial ordering for D3 is shown in Figure 2.4.

Orbits with the same conjugacy class of stabilizers are said to be of the
same type.

Next, we define the very important notion of stratum.

Definition: stratum. In a group action, a stratum is the union of all
points belonging to all orbits of the same type.

By definition, two points belong to the same stratum if, and only if, their
stabilizers are conjugate. Consequently we can classify and label the strata of
a group action by the conjugacy classes of subgroups of the group.

The three strata of the action of D3 on R? are shown in Figure 2.5. They
include the centroid of the triangle (Ds’s zero-dimensional stratum), three
mirror lines without their intersection point (the one-dimensional stratum),
and the complement of these two strata (the two dimensional stratum).

A disc D, minus its center, is one stratum of the action of D, on D; the
center is the other.

When they exist, as in the case of the D3 action on R? (Figure 2.1) or the
C action (Figure 2.3) the fixed points form one stratum and the principal
orbits form another. Belonging to the same stratum is an equivalence relation
for the elements of M or for orbits of a G-action on M. Thus M can be
considered as a disjoint union of strata of different dimensions.

We will denote the set of orbits of the action of G on M by M|G and
the corresponding set of strata as M||G. To belong to the same stratum is
an equivalence relation for the elements of M and for elements of the set of
orbits, M|G. The set of strata M||G is a (rather small in many applications)
subset of the set of conjugacy classes of subgroups of G. Thus M||G too has
the structure of a partially ordered set S; € M||G, where by S; < S we mean
that the local symmetry of S is smaller than that of S5 — i.e. the stabilizers
of the points of S; are, up to conjugation, subgroups of those of 5.



10 Introduction to lattice geometry through group action

FI1G. 2.5 — The strata of D3 action on R?. Black point in the center represents the
zero-dimensional Ds-stratum. The rays without their common intersection point
form the one-dimensional r-stratum. The six two-dimensional regions of the plane
form the two-dimensional principal stratum with trivial stabilizer.

F1a. 2.6 — Strata of the action of Cos (or Do) on R?. The black point forms the
zero-dimensional stratum. The whole plane without the point is the two-dimensional
principal stratum.

Beware: a less symmetric stratum might have a larger dimension than a more
symmetric one. The set of strata is partially ordered by local symmetry, not
by size.

The example of the action of D3 on R?, discussed above, leads to three
strata: the zero dimensional stratum D3, the one-dimensional stratum r, and
the two-dimensional principal stratum 1, which is open and dense. Only three
conjugacy classes of subgroups of D3 (see Figure 2.5) appear as local symmetry
of strata. The natural partial order between strata is 1 < r < Ds.

The action of C (the group of pure rotational symmetries of a circle or
of a disk) on R? leads to two strata (see Figure 2.6). The zero-dimensional
stratum consists of one point, the center. The two-dimensional principal stra-
tum is the whole plane minus that point. Note that the action of D, on R?
has the same two strata, but their stabilizers now are different.

Finally, we define the notions of orbit space and orbifold.

Definition: orbit space. The set of orbits appearing in an action of G
on M is the orbit space M|G.
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F1G. 2.7 — Orbifold of D3 action on R%. The black point represents the D3-orbit con-
sisting of one point. Two rays form 1D-set of r-orbits consisting each of three points.
The shaded region is a two-dimensional set of principal Cy = 1 orbits, consisting
each of six points.

L-m=e Dt circle
A s
" \ : \ 1

’/50(2)

F1G. 2.8 — Orbifold of the action of Cs on R?. Black filled point - the orbit with
stabilizer SO(2) consisting of one point. Solid line - the set of 1D-orbits, each orbit
being a circle.

If M contains only one orbit, i.e. if any m € M can be transformed into
any other element of M by the group action, the action is said to be transitive
and M is called a homogeneous space (with respect to G and p). Examples of
homogeneous spaces and their associated groups include

e a circle (not a disk!), G = D;
e R" and G the group of translations in R™.
e a sphere S, in (n + 1)-dimensional space and G = SO(n + 1).

Definition: orbifold. The orbifold of a group action is a set consisting
of one representative point from each of its orbits.

Thus, the space of orbits for the action of D3 on R? can be represented
as a sector of the plane (see Figure 2.7). The space of orbits for the action of
Co on R? can be represented as a one-dimensional ray with a special point
at the origin (see Figure 2.8).

Let us consider the space of orbits of a (three-dimensional) D3 action on
a two-dimensional sphere surrounding an equilateral triangle (see Figure 2.9).
Assume that its action on R? (see Figure 2.2 b) coincides with the action of
the 2D-point group Ds.
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(a) (c)

Fi1G. 2.9 — (a) Schematic view of the sphere surrounding an equilateral trian-
gle. (b) Action of group D3 on the sphere represented on orthographic projection.
The shaded region represents a fundamental domain. Parts of boundaries indicated
by the same letters should be identifies. (¢) Orbifold for action of D3 group on the
sphere - sphere with three special points, 223.

The action of D3 on the two-dimensional sphere yields one orbit with
stabilizer C3. This orbit consists of two points (two poles of a sphere lying
on the C5 axis). Another zero-dimensional stratum is formed by two three-
point orbits with stabilizer Cy. These points have stabilizers C&, i = 1,2, 3.
The three subgroups C4 of order two belong to the same conjugacy class Cy,
which is used to label these orbits. All other points of the sphere belong to
principal orbits with stabilizer 1; each of these orbits consists of six points.

To construct the orbifold (or the space of orbits) we take one represen-
tative point from each orbit. From the physical point of view this procedure
corresponds to selecting a fundamental domain of the group action (the choice
is not unique). The so obtained space of orbits is (from the topological point
of view) a two-dimensional sphere with three singular points, corresponding
to three isolated orbits. One isolated orbit has stabilizer C3 and forms itself
(3 stratum. Two other isolated orbits (each consisting of three points) have
stabilizer Cy and form another zero-dimensional stratum. The topology of an
orbifold can be quite complex; for a primer on orbifold construction, see [4],
[21], and a number of examples in chapter 4.

2.1 The action of a group on itself

Let us consider the set of elements forming group G. Then Aut G is the
permutation group of the elements of the set G.

Example 1 G acts on its elements by conjugation. That is, M = G, and
p(9)(m) = gmg~t. Then Ker p = C(G), the center of G (the subset of elements
of G commuting with all g € G). Im p is the group of inner automorphisms
of G.
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The orbit of x € G is called the conjugacy class of z in G; we denote it by
[z]e. The fixed points of this action are the elements of the center of G. If G
is Abelian, then there is only one stratum, that of fixed points.

We illustrate the action of G on itself by conjugation with the exam-
ple of D3j, the symmetry group of an equilateral triangle in 3D space (see
Figure 2.2, ¢). Group Ds), consists of the 12 elements listed in the first line
and the first column of Table 2.1. Column z and line ¢ intersect in the
entry gxg~'. All of the entries in each column belong to the same orbit,
that is, they form one conjugacy class. The notation for the conjugacy class
and the number of elements in it are listed in the two last lines of the table.
The elements x € G invariant under conjugation with one g € G constitute
the stabilizer of g, listed in the last column. In group theoretical terminology
the stabilizer of a group element is its centralizer.

The action G % Aut M defines an action of G on the subsets of
M in a natural way. In particular, the action of G on its elements by
conjugation induces the action of G on the set of its subgroups. The orbit
G.H of a subgroup H is the conjugacy class [H]g of the subgroups of
G conjugate to H. The stabilizer G is the normalizer of H in G, Ng(H).
If H is fixed by this action, it is by definition an invariant subgroup
of G.

The lattice of subgroups of Dsj is shown in Figure 2.10, and the action
of Dgp on its subgroups is illustrated in Table 2.1. Note that Dsj has several
subgroups of order two describing reflection in different planes. There are three
vertical planes and one horizontal plane (see figure 2.2, ¢). The three subgroups
of reflections in vertical planes form one conjugacy class. The subgroup C}, of
reflection in the horizontal plane h is an invariant subgroup. Moreover, C}, is
the center of Dsy,.

We denote the set of subgroups of G by {< G} and the set of conjugacy
classes of subgroups of G by {[< G| }. For a large family of groups — including
all those we will meet in this monograph — there is a natural partial ordering
on {[< G]¢} by subgroup inclusion up to conjugation. By definition, the set
of possible types of G-orbits defines a partial ordering on the stratum space
M]||G. (As we shall show, the role of this space is essential.) Its elements
correspond to the different symmetry types of the elements of M.

For infinite groups, |{[< G| }| is infinite in general®, but in most problems
we shall study, M||G is finite. In that case, there exist maximal and minimal
strata, corresponding to maximal and minimal symmetry.

The set of strata of Dsj in R? consists of six elements (see figure 2.2, c):
D3y, Csy, Coy, Cy, Cp, Cq. They form the partially ordered lattice shown
in Figure 2.11. The maximal stratum is the zero dimensional D3, stratum,

3 This is the case, for example, for Uy, the one dimensional unitary group i.e. the multi-
plicative group of complex numbers of modulus 1. This group is Abelian and has an infinite
number of subgroups Z,, the cyclic group of n elements. Moreover, since the Zj, for different
n are not isomorphic, every group containing U; has an infinite set of conjugacy classes of
subgroups. That is also the case of O, and GL(n, R) for n > 1.
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F1a. 2.10 — Lattice of subgroups of Ds, group. The order of subgroups is indicated
in the right column.

TAB. 2.1 — Action of the group D3, on the set of its subgroups.

H G-H Normalizer
Dgh D3h DSh
Cs, Cs, D3y,
Cap, Cap, D3y,
D3 D3 D3y,
8, {C8,Ch, C5,) cs,
b {Cs.Ch,C ct,
s, {Cs,,C5,,C5,} C3,
Cs Cs D3y,
cy {ce,ch,Cc} C3,
cY {cy,C, Cs} cs,
(O {Cg,Ch, 0} Cs,
Cy {cs,C3,Cs} C3,
s {cs,C8,Cs} Cs,
Ch Ch DSh
Cl Cl D3h

while the minimal is a generic C three-dimensional stratum with a trivial
stabilizer.

Example 2 G acts on itself by left multiplication: g.m = gm.

Under this action, G has a single orbit, the entire set G is a single
G-orbit. That is, G is a principal orbit. If we restrict this G-action to a proper
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F1a. 2.11 — Lattice of strata of Dsj; group action on three dimensional space.
Numbers before symbols of conjugacy classes of subgroups indicate the number of
subgroups in the class. Right column shows the order of the stabilizer written on
the left in the diagram.

subgroup H, then the orbit of x € G is the right coset Hx. The set (G : H)r
of right cosets Hx is the orbit space G|H.

The group action of G on G by right multiplication is defined by g,.x =
xg~!. Restricting to H < G, the H-orbits are the left cosets 2 H and the orbit
space can be identified with (G : H), the set of left H-cosets.

2.2 Group action on vector space

Let M be an n-dimensional real vector space V;, and GL,(R) the real
general linear group. Then Aut M = GL,(R) and the action GL,(R)
Aut V,, defines a real linear representation of GL,(R) on V.

The elements of V,, are called vectors; we denote them by &,7,....
The action of GL,(R) on V,, has only two orbits, the origin o, which is fixed,
and the rest of the space. We leave it as an exercise to the reader to find the
stabilizer of a nonzero vector?.

Two linear representations p and p’ are said to be equivalent if they are
conjugate under G L, (R):

p=p & IyeGL,(R), Vg e G, p'(g) =vplg)y " (2.1)

Moreover, for a € GL,,(R), the determinant det(a) defines a homomorphism

GL,(R) 4 R whose kernel is the special linear group SL,(R), the group of
matrices with determinant +1.

4 The answer is given later in this subsection.
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L L
e

F1G. 2.12 — Action of a group of translations on two-dimensional Euclidean space

leads to a parallel displacement of a reference frame. A space with this action is said
to be “homogeneous”.

Example 3 For any two bases {b;} and {b;} of V,,, there is a unique
g € GL,(R) transforming {b;} into {b/}: in the basis {b;}, the elements of the
5 column of the matrix representing ¢ are the components of the vector 5;
Thus the set of bases B, is a principal orbit of GL,,(R).

V., together with the scalar product (Z, %) is an orthogonal space that we
denote by F,,. Then Aut E,, = O,,, the n-dimensional orthogonal group, and
p defines an orthogonal representation of G. When we are only interested in
the Abelian group structure of the elements of V,, or E,, we use the notation
R™. Figures 2.12 and 2.13 illustrate the action of translations and rotations
on two-dimensional space.

Example 4 When n > 0, Aut E,, = O,, and there are only two strata:
the fixed point 0, and n-dimensional open dense stratum formed by points
with stabilizers belonging to the conjugacy class [O,,—1]o, . The orbits of this
stratum are the spheres (centered at the origin) of vectors of the same norm.

The set of elements of V,, with translation, the “natural” action of R", is
an affine space that we denote V,,; it is a principal orbit of R™. We denote its
elements, the points, by z,vy,.. ..

Let x,y be any pair of points in V,,. The unique translation vector taking
z to y will be denoted by ¢ =y — z or by ¢ = ZJ.

By extension, every algebraic sum of points of the affine space, the sum of
whose coefficients is 1, is a well defined point of V.

Any m+1 points of V,,, m < n, are said to be independent if they span an
m-~dimensional linear manifold. A simplex is the convex hull of n+ 1 indepen-
dent points in V,,; the independent points are its vertices. Two dimensional
simplices are triangles; in three dimensions they are tetrahedra.

The affine space &, built from an orthogonal space E,, has a richer struc-
ture than V,, as it inherits a metric from the orthogonal scalar product of
E,: the distance d(z,y) between the pair of points z,y € &, is the positive
square root of the scalar product, or norm, N(y — ).
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M
N

F1G. 2.13 — The action of a group of rotation on two-dimensional Euclidean space
around a fixed point shows that the space is isotropic. The dashed and dash-dot
frames are the results of action on the initial black frame.

Example 5 Special cases of affine objects include:

- For any A € R, Az + (1 — \)y is the straight line defined by the two
distinct points x,y € Vy;

- The sum ), a;x;, where ). o; = 1 is the linear manifold defined by the
points x;.

- When 0 < XA <1, Az + (1 — Ny is the line segment joining x,y; when
Y,a;=1land 0 < a; <1, ) oy is the convex hull of the points ;.

Similarly, any algebraic sum of points, the sum of whose coefficients vanishes,
defines a unique translation of R"; e.g. a +c—b—d = ba + de = d—>a + be.
An arbitrary choice of a point of V,,, called the “origin”, reconstructs the
structure of a vector space in the affine space.

Example 6
The affine and Euclidean groups

Aff, =R" ><GL,(R) = Aut V,, and Eu, = R" =<0, = Aut &,. (2.2)

are semi-direct products (see appendix A).

To represent the action of Aff,, on V,, by matrices, we have to choose a
basis in the underlying vector space V,, and an origin o in V,. This yields
a system of coordinates: the coordinates of o vanish and those of o + ox
(or, more simply, o + &) are the coordinates of the vector Z. An element of
Aff,, can be written in the form (@A) with @ € V,,, A € GL,(R). Then the
group law of Aff, is

(@ A)(b,B) = (@+ Ab,AB), (@, A™")=(-A"'a, A7) (2.3)
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and the action on V), is, explicitly,
(@, A).x =0+ d+ AZ. (2.4)
Note that the map 7 given by

(@ 4)) = < L ) (2.5)

gives a (n+1)-dimensional linear representation of Aff,,.
By definition, the contragredient representation of 7 is

(@, A)) = (é _((ﬁ:f)aT)T ); det 7((@, A)) = (det A)~L.  (2.6)

Since the determinant is invariant under conjugation, 7 and 7 are inequivalent
representations.

Now we can give the answer to the exercise proposed in example 2. Im 7
leaves invariant the vectors whose first coordinate is the only nonzero one,
and obviously no larger subgroup does. So the stabilizers of Aut V,, for the
non-vanishing vectors of V,, form the conjugacy class of Im 7.

Example 7 Euclidean geometry.

&, is the principal orbit of R™ or, equivalently, the orbit of Fu, : O,. Let
EX2 be the set of pairs x # y of distinct points of &,. Its dimension is 2n.
The action of Eu, on this set contains a unique generic open dense stratum
formed by a continuous set of orbits each labeled by a positive real num-
ber, the distance d(x,y). Each orbit is a 2n — 1-dimensional subspace of £2.
In order to find the stabilizer let m be the midpoint of the segment Ty, and
En—1 the bisector hyperplane of the pair =, y. Figure 2.14 illustrates schemat-
ically this construction. It is easy to see from the figure that the stabilizer
of this stratum is [O,,—1 X Zs]g, where O, _; is the stabilizer of m in the
Euclidean group of £, 1 and Z, is the 2 element group generated by the
reflection (in E,,) through the hyperplane &, ;.

Let us now consider the more interesting case of the action of Eu, on &3,
the set of triplets z,y, z of distinct points of &,.

The distances &, 7,  between the 3 pairs of points are a Euclidean invariant,
but they are not arbitrary positive numbers. We will choose three invariants
A, i, v defined by the conditions

1

E=dly,2) = 5(1tv) >0, n=d(zz)= L +N) >0,

(=d(z,y) = %()\ +u) > 0. (2.7)
Then

A=—E4n+¢>20, p=&-—n+¢>0, v=+n—-(>0, (2.8)
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FIG. 2.14 — Construction of orbits of the action of Eu, on £2, the set of pairs of
distinct points of &,,.

and — it is easy to prove — no more than one of these 3 invariants A, p, v
vanishes. It is sufficient to verify that if any two of invariants become zero,
the third is zero as well and the three points coincide. The surface s(z,y, z)
of the triangle (z,y, z) satisfies

4s(x,y,2)% = (N + pu+ v) v, (2.9)

This implies that if one of the parameters A, u, or v equals zero, the three
points belong to a single line.

We have the one-to-one correspondence between orbits and points in
the three dimensional space of parameters A, u,v situated in the octant
A >0, > 0,v > 0 excluding three axes A\ = y = 0, A = v = 0, and
pn=v=0.

To find the stabilizers we need first to distinguish two cases and several
subcases.

i) None of A, p, v is equal to zero:

a) The 3 invariants have different values. There exists a three-
parameter family of orbits corresponding to generic triangles with
three different sides.

b) Exactly two of the parameters are equal. This is a two-parameter
family of orbits corresponding to isosceles triangles.

c) Three parameters are equal. The triangles are equilateral. In this
case there exists a one-parameter family of orbits.

ii) Among the three invariants A, i, v exactly one is zero. Then the 3 points
are collinear.

a) The 3 invariants have different values. There is a two-parameter
family of orbits corresponding to three points on a line with differ-
ent distances between them.
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(a) (b)

F1G. 2.15 — Orbifold for Eu, action on &% represented in the space of A, j,v
parameters. Two images (a) and (b) are given in order to see better the stratification.
The boundary is shown by a shaded area in subfigure (a). It corresponds to orbits of
three aligned points with different distances between them. The ray A = = v cor-
responds to one-parameter family of equilateral triangles. Three rays A = v, A = p,
1 = v correspond to a one-parameter family of orbits associated with three points
on a line with equal distance between them. Three internal differently shaded planes
shown in subfigure (b) correspond to a two-parameter family of isosceles triangles.

b) Two invariants are equal and positive, while the third is zero. This
means that one point is the midpoint of the segment formed by the
other two. There is a one-parameter family of such orbits.

We shall determine the stabilizers of orbits in the 2- and 3-dimensional
cases.

Orbits corresponding to a generic triangle have a trivial stabilizer in the
2D-case and a C}, stabilizer in the 3D-case. The symmetry transformation
leaving a generic triangle in the 3D-space invariant includes reflection in the
plane of a triangle.

Orbits corresponding to isosceles triangles have the stabilizer Zs in the two-
dimensional case. This group is generated by reflection through the symmetry
axis of the triangle. In the three-dimensional case the stabilizer of the isosceles
triangles is the Cy, group generated by two reflections (in the plane of the
triangle and in the plane orthogonal to the triangle and passing through the
symmetry axis of the triangle).

For equilateral triangles the stabilizers are respectively (see Figure 2.16)
a group of permutation of three objects S5 = D3 and Dsy,.

Three points on a line with different distances possess in the 2D-case only
one non-trivial symmetry transformation leaving these configuration of points
invariant, namely reflection in that line. In the three dimensional case this
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FI1G. 2.16 — Point configurations for different orbits of Eu, action on £% together
with their stabilizers for 2D- and 3D-cases. See text for details.

configuration of points is invariant with respect to any rotation around the line
and any reflection in planes passing through this line. This group is known as
the O(2) group of orthogonal transformations or C,, - the three dimensional
point symmetry group.

At last, three points equally spaced on the line have in the two-dimensional
case the stabilizer Zs X Zs generated by in line reflection and reflection in
the orthogonal line. In the three-dimensional case the stabilizer is Do, =
0(2) X ZQ.

To summarize, in the case of two-dimensional space we have found 4 strata:

- the minimal one (trivial stabilizer), which corresponds to generic trian-
gles; its dimension is six;

- the unique strata above it (stabilizer ~ Z), which contains the orbits
of the same type for two different kinds of geometric objects, cases i-b)
and ii-a); both components of this stratum have a dimension of five;

- two maximal strata, i-¢) (equilateral triangles) and ii-b) (equidistant
points on a line) with stabilizers isomorphic to S3 and Z3 respectively.
Both these maximal strata have a dimension of four.

In the n = 3 case and even in any n > 3 space, there are the same five
different geometric arrangements of three non-equal points. The difference
with the n = 2 case consists in the following fact. Now all five arrangements
have different stabilizers and consequently there are five strata. In the three
dimensional case the stabilizers are

e The three invariants have different values. The stabilizer is Cy = Zo -
reflection in the plane of triangle. The dimension of the C stratum is
nine.

e Exactly two of the parameters are equal. The stabilizer is the Cy, =
Zs X Zs group including Cs rotation around the bissectrisse (symme-
try axis) of the triangle, reflection in plane of the triangle, and reflec-
tion in the plane orthogonal to the triangle and including the Cy axis.
The dimension of the Cs, stratum is eight.
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e Three invariants are equal. The triangle is equilateral. The stabilizer is
the D3, group or S X Zs. The dimension of the Ds, stratum is seven.

e One of invariant is zero, two other are non-zero and different. The sta-
bilizer is the O(2) = Cw,, group, the continuous group of rotations and
reflections around the line going through three points. The dimension
of the C, stratum is seven.

e One invariant is zero, two others are equal and non-zero. The stabilizer
is O(2) X Zg = Doop,. The dimension of the Do), stratum is six.






Chapter 3

Delone sets and periodic lattices

3.1 Delone sets

We begin our study of lattices in a more general setting.

In the 1930s B.N. Delone (Delaunay) and his colleagues in Moscow began
a long-term project of reconstructing mathematical crystallography from the
bottom up. The family of point sets we now call Delone sets was their principal
tool. The Delone school called them (r, R) systems but after Delone’s death
in 1980 they were renamed to honor him.

Delone sets are used to model very different phases of matter, from gases
to liquids, glasses, quasicrystals and periodic crystals, and the differences are
instructive. Delone sets are characterized by two simple but surprisingly pow-
erful postulates inspired by physics: a “hard-core” condition — two atoms can-
not overlap; and a “homogeneity” requirement — atoms are distributed more
or less homogeneously throughout the medium.

The mathematical setting for Delone sets is a real orthogonal space E,,
by which we mean a vector space V,, endowed with a positive definite scalar
product (Z,y). We associate to E,, a principal orbit of its translation group;
we call this orbit a Euclidean space &,. (For the definition of “orbit” and
related group-theoretic concepts, see Chapter 2.) We choose an origin in &,
arbitrarily and label it o.

The length of a vector ox € E,, is the square root of the scalar product
(Z,7); its squared length is the norm N(Z) of & (we abbreviate oz to Z).
Obviously N(Z) < N(¥) if and only if Z is shorter than .

The distance between two points x and y of &, is the length of the vector
—_— s
x —y € E,, which is the square root of N(z — ).

In this abstract setting the “hard-core” and “homogeneity” conditions
translate into axioms: there must be a minimal distance rg between any two
points of a Delone set A, and the radius of a sphere containing no points of
A cannot exceed a fixed positive number R.
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F1a. 3.1 — A portion of a two-dimensional Delone set. The parameter 7o is the
minimal distance between two points of the set; Ry is the maximum for the radius
of any empty hole in the set. Delone set on the right subfigure differs from the Delone
set on the left subfigure by adding one extra point (marked by the black dot). This
local effect results in drastically decreasing of the ro parameter.

That is, we define:

Definition: uniformly discrete A point set A C &, is uniformly discrete
if there is an 1o > 0 such that every open ball of radius rg contains at most
one point of A.

Definition: relatively dense A point set A C &, is said to be relatively
dense (in &,) if there is an Ry > 0 such that every closed ball of radius Ry
contains at least one point of A.

With this terminology we say:

Definition: Delone set An n-dimensional Delone set is a point set
A C &, that is uniformly discrete and relatively dense in &,.

Note that rg can be less than, equal, or greater than Ry. For an example
of the case of ry > Ry, note that the Euclidean plane can be tiled (that is, it
can be covered without gaps or overlaps) by congruent equilateral triangles of
edge-length 1. Let A be the set of vertices of this tiling. Then A is a Delone set
with parameters ro = 1 and Ry = 1//3, the radius of the circle circumscribing
any triangle.

For a Delone set of dimension n > 1, the minimal ratio Ry/r¢ is the ratio
of the radius of the sphere circumscribing a regular n-simplex to the length
of an edge; the formula is

Ro _ [ n
7“07 2(71—1—1).

This formula is easy to prove if we situate the n-dimensional simplex in (n+1)-
dimensional space. The points (1,0,...0),...(0,...,0,1) are the vertices of a
regular n-dimensional simplex in the hyperplane xy + -+ - 4+ 2,41 = 1; their
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F1G. 3.2 — The vertices of a tiling of the plane by equilateral triangles is a Delone
set.

1 1

barycenter is (TH’ aT -

. %H) Thus in every dimension n we have

Ry 1
12< 20 o~
/_7”0 V2

with the ratio approaching the upper bound as n — oc.

Proposition 1 A Delone set A is countably infinite.

Proof. A is infinite, otherwise all of its points would lie in some half-space,
contradicting relative density. Countability follows from uniform discreteness:
E™ can be partitioned into a countable number of unit cubes and, since a unit
cube can contain only a finite number of balls of radius rg, there is only a
finite number of points of A in each cube. O

To study Delone sets we begin, as Delone did, with the “method of the
empty sphere.” Consider an n-dimensional sphere S in &, which contains no
points of A in its interior. S may, or may not, have points of A on its boundary.
If these points — that is, the set SN A —lie in an (n— 1)-dimensional subspace,
then as we increase the radius of .S it will remain empty. Indeed, by moving the
sphere if needed, we can increase its radius until S N A contains n + 1 linearly
independent points. (We say that n + 1 points of &, are linearly independent
if they span &,.)

Definition: hole (of a Delone set) An empty hole or, more simply, a
hole (of &, with respect to a Delone set A) is a sphere S with no points of
A in its interior and at least n + 1 linearly independent points of A on its
boundary.

The maximal radius of an empty hole of &, (with respect to A) is the
parameter Ry of A.

Proposition 2 Let A be a Delone set. We can cover &, by closed balls con-
taining n + 1 independent points of A on their boundaries and no points of A
in their interiors.
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F1a. 3.3 — Consecutive steps in the construction of an empty hole for a two-
dimensional Delone set. (A) A sphere S containing no points of the Delone set,
A. (B) Increase the radius of the sphere untill one point appears on its boundary
(i.e., until SN A spans a zero-dimensional subspace). (C) Increase the radius of the
sphere keeping one point on its boundary untill the second point appears on its
boundary (now SN A consists of two points and spans a one-dimensional subspace).
D - Increase the radius of the sphere keeping the two points on it untill the third
point appears on its boundary (now S N A consists of three points and spans the
plane). The resulting sphere is an empty hole of radius R < Ro, where Ry is the
parameter of the Delone set.

Proof. The proof uses the method of the empty sphere. Let = be any point
of &,; we will show that it lies in at least one such sphere. Let p be a point of
A at minimal distance r from z. Then

r = |pZ| < Ry.

Let B, (r) be the sphere of radius r with the point x as its center, and suppose
that it contains fewer than n + 1 independent points A. Then B, (r) N A lies
in a hyperplane H of dimension d < n — 1. Leaving x fixed, we can expand
the sphere along the (n — d)-dimensional subspace orthogonal to H until it
encounters a point of A independent of those in H. We continue this process
until the sphere contains n + 1 independent points. O

The convex hull of the points of A on the boundary of a hole H is a
polytope Ly, called a Delone polytope. (This terminology and notation follows
the Russian tradition.)

We will show in Chapter 5 that just as &, is covered by the holes of A, it
is tiled by the Delone polytopes {L} of its holes: that is, the Delone polytopes
of A fit together with no gaps or overlaps.

The Delone polytopes show the empty spaces of A in £,; another construc-
tion, called the Voronoi construction, focuses attention instead on the regions
“belonging” to the points of A.

Definition: Voronoi cell The Voronoi cell D(p) of p € A is the set of
points x € E™ which are at least as close to p as to any other point of A.
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Fic. 3.4 — A covering of a Delone set represented in Figure 3.1 by holes. Left:
Arbitrarily chosen three initial holes. Right: Complete set of overlapping holes.

F1G. 3.5 — A Delone set of point with Delone polygons drawn in.

That is,
D(p) = {z € E"|N(z —p) < N(z — q),¥q € A}. (3.1)

Voronoi cells — which appear in many contexts and variations — are
evidently very old. In 1644, Descartes used what appears to be a variant
to describe the structure of the heavens [40] but he did not bother to explain
it. The construction first appeared in mathematics in 1850 in the context of
the arithmetic theory of quadratic forms; Dirichlet proved that the cells of
two dimensional lattices are either rectangles or centrosymmetric hexagons
(see [45]). This is why Voronoi cells are also known as Dirichlet domains (as
well as by other names, since the construction has been rediscovered many
times). We call them Voronoi cells because Voronoi performed the first deep
study of their properties for point lattices in an arbitrary dimension n (see
[94]), but we denote them by the letter D in honor of Dirichlet’s contribution.

To construct the Voronoi cell of a point p € A, we note that, for any
point ¢ € A, the hyperplane orthogonally bisecting the vector gp divides
&, into two half spaces, one of them the set of points in z € &, for which
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F1G. 3.6 — Two stars of two different points for a Delone set shown in Figure 3.1.
Only “arms” between a chosen point and points of the Delone set represented on a
fragment are shown. (The star is partial because the figure is finite.)

N(x —q) < N(z — p), and the other the zs for which N(x —p) < N(x — q).
Points lying on the bisecting hyperplane are equidistant from p and q.

Next we define:

Definition: global star (of a point of a Delone set) The global star
ST,(A) of a point p of a Delone set A is the configuration of line segments
obtained by joining p to all of the other points of A.

Since A is countable, the star has a countable number of “arms”.

To construct D(p), we orthogonally bisect the arms of ST,(A) by (n —1)-
dimensional hyperplanes. Then D(p) is the smallest polytope about p bounded
by such hyperplanes.

Fortunately it is not necessary to bisect a countable infinity of line seg-
ments to construct D(p):

Theorem 1 Let A be a Delone set with parameters ro and Ry. The Voronoi
cell of any point p € A is contained in the ball B,(Ry).

Proof. Assume D(p) ¢ B,(Ryp), i.e., that 3z € D(p) such that |zp| > Ry.
Then B, (|zp|)NA = (), since z is nearer to p than to any other point of A. But
this contradicts the assumption that Ry is the maximum radius of an empty
hole. O

This means that D(p) is completely determined by a finite set of vectors
issuing from p, all of length < 2R. To say this concisely, we define

Definition: local star (of a point of a Delone set) The r-star
ST, (A, r) of a point p of a Delone set A is the configuration of line segments
obtained by joining p to all of the other points of A that lie within a sphere
about p of radius r: ST,(A,r) = ST,(A) N By(r).

Thus

Corollary 1 D(p) is completely determined by the 2Rg-star of p,
ST, (A, 2Ry).
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F1a. 3.7 — Constructing the Voronoi cell of a point of the Delone set represented
in Figure 3.1.

Proof. By Theorem 1, all the points of A contributing faces to D(p) must
lie in B, (2Ry). O

Voronof cells play a large role in lattice theory, as we will see in Chapter 5.
We note here (but will prove there, proposition 11) that the Voronof cells of
the points of A also tile E™, and this Voronoi tiling is orthogonally dual to
its Delone tiling. (That is, each k-dimensional face of one tiling corresponds
to an (n — k)-dimensional face of the other, and the corresponding faces are
orthogonal.) In particular, each edge (1-face) of a Delone tile is orthogonal to
a facet ((n —1)-face)of a Voronof cell. We will also see that the vertices of the
Voronofi cells of A are the centers of its holes.

3.2 Lattices

We denote the number of congruence classes of stars of a Delone set A
by [ST(A)|. This number is a very rough measure of the randomness of A.
Thus if we are using A to model the set of centers of atoms in a gas or liquid
(distributed homogeneously in infinite space), we would expect the number of
congruence classes to be countably infinite; that is, |ST(A)| = No. If on the
other hand |ST'(A)| is finite, then the Delone set is highly ordered. In this
case A is said to be multiregular. Some authors (see [46]) call a multiregular
Delone set an ideal crystal, because (one can prove that) it is a union of a
finite number of orbits of a “crystallographic” group (for more on these groups,
see below).

A regular system of points is the special case of a multiregular Delone set
when all stars are congruent:

Definition: regular system of points The Delone set A is said to be a
regular system of points when |[ST(A)| = 1.



32 Introduction to lattice geometry through group action

F1G. 3.8 — System of Voronoi cells for the Delone set represented in Figure 3.1.

F1G. 3.9 — A multiregular system of points formed by three orbits of the symmetry
group; here |ST'(A)| = 3.

Delone introduced “r, R systems” in the 1930s to focus crystallographer’s
attention on local order. In 1976 he and his students Shtogrin, Dolbilin, and
Galiulin proved the remarkable fact that global regularity — in the sense of a
regular system of points — is a consequence of local regularity: a Delone set is
a regular system of points if all its local stars of a certain radius are congruent.

Theorem 2 Let A be a Delone set in E™ with parameters ro and Ry. There
exists a C = C(Rg/ro,n) > 0 such that if r > CRy and |ST(A,r)| = 1, then
A is a regular system of points.

For a proof see [43] and [46].

In two dimensions, C' = 4; the exact value of the constant C' has not been
determined for Delone sets of any higher dimension. There is an analogous
result for multiregular Delone sets [46].

The symmetry group of a regular system of points in E™ is still called
a crystallographic group for historical reasons, though today the definition
of “crystal” has been broadened to include non-periodic crystals. In 1910
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F1c. 3.10 — Three examples of regular systems of points which are more general
than a lattice.

F1G. 3.11 — A point lattice in the plane.

addressing the 18th problem on Hilbert’s famous list (1900), Ludwig
Bieberbach proved that every crystallographic group G < E™ has an invari-
ant subgroup of translations 7' of rank n [28]. In slightly different words this
means that every group of symmetry operations in E™ which acts transitively
on a regular point system X contains n linearly independent translations.

Definition: point lattice A point lattice in £" is a regular system of
points whose stars are orbits of a rank-n translation group 7' C E™.

Because a point lattice is an orbit of a translation group, the Voronoi cells
of its points are congruent polytopes that tile £™ by translation; the technical
term for polytopes with that property is parallelotope.

In group theory, the word “lattice” is also used for the translation subgroup
T of which the Delone set is an orbit. Thus an n-dimensional lattice is any
subgroup of a real vector space V,, that is isomorphic to Z".

Considering a lattice L as a Delone set, we have ro = d(L), where d(L) is
the length of the shortest vector in the lattice.

A point lattice can also be defined as an orbit of a crystallographic group
with stabilizer of maximal symmetry. We will discuss lattices from this point
of view in Chapter 4.

Definition: basis A basis for an n-dimensional lattice L is any set of
n vectors {gj} C L, 1 < j < nsuch that every vector in L is an integral linear

combination of the vectors Ej_
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F1a. 3.12 — Three different bases of the point lattice represented in Figure 3.11.

That is, with respect to a given basis {b;} the lattice vectors have integral
coordinates:

Vie L, (=Y kb, k€L (3.2)
J

The determinant of the vectors of a basis is the oriented volume of the
parallelepiped built on it. (We will see in Chapter 5 that this is also the volume
of a Voronoi cell of the lattice.)

The basis of a lattice L is not unique: any set of n vectors in L with
determinant +1 is a basis.

Let {b}} be another basis for L and m;; the coordinates of the vector b
in the basis {b;}:

b; = Zmijbj, m;; € 7. (33)
J
Since every basis has determinant +1, the integers m;; are the elements of a
unimodular integral matrix A. Similarly the components of the vectors {5]} in
the basis {8/} form the matrix A~ which is also integral. Thus A € GL,(Z),
the group of n x n integral matrices.

Each matrix A € GL,(Z) corresponds to a basis in L and left multiplica-

tion by elements of GL,(Z) maps each basis to the others. Thus

Proposition 3 The set of bases of a lattice L is an orbit of GL,(Z).

For specificity and for computation, it is useful to work with a specific
representative of this conjugacy class. As we will see in later chapters, the
various methods of classifying lattices are all concerned with this problem.

The elements of V,,/L, the quotient group of the vector space V;, by the
lattice, are identified with the cosets ¥+ L, Z € V,,. A choice of representatives
of each of these cosets constitutes a fundamental domain of the translation
group T'. For example, the interior of the parallelepiped formed by any set of
k basis vectors is a fundamental domain for T'. Or, given a basis {b; }, one can
choose as fundamental domain

Py={3=>) &b, —1/2<& < 1/2}. (3.4)
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Fi1c. 3.13 — A fundamental domain for the lattice of Figure 3.11. The choice of
fundamental domain follows equation (3.4).
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F1G. 3.14 — Primitive and non-primitive cells for the lattice of Figure 3.11. The
volume of the non-primitive cell is twice as large as the volume of the primitive cell.

The topological closure Py, of P, is obtained by replacing < by < in (3.4).
P, is the translate, by the vector ¥ = —(%, . %), of a parallelepiped that in
crystallography is called a primitive unit cell.

When its opposite faces are identified, P, becomes a torus; Thurston and
Conway made this property the basis of their “orbifold notation”, which we
describe in Chapter 4.

A primitive unit cell has lattice points only at its vertices. Crystallogra-
phers often prefer to work with non-primitive cells (unions of two or more
primitive cells) to maximize symmetry, but we mainly use primitive cells in
this book.

3.3 Sublattices of L

A sublattice is a lattice L’ which is a subset of another lattice L (a subgroup
if we are speaking of groups).

If L is one-dimensional, then it has one generator @, and L = {ja, j € Z}.
Any sublattice of L has one generator too, say mda; the sublattice is the set
mL, and the quotient % is the cyclic group of order m.

Every lattice L, of any dimensions, has sublattices consisting of the vectors
m[, le L, 1 < m € Z. The quotient group L/mL has m" elements and its
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automorphism group is GL,(Z/mZ). As we shall see in Chapter 5, the case
m = 2 plays a key role in the theory of Voronoi cells.

Most sublattices of L are not of this special type. For example, if the
vectors 51, e En are a basis for L, then 51, e gn,l, 25n generate a sublattice
of index 2.

For lattices of dimension n > 1 we distinguish two types of sublattices:
those for which the dimension is also n, and those of lower dimension. Sub-
groups of the first type are of finite index and the corresponding quotient is
a finite group; we consider them first. The ratio volL/volL’ is the index of L'
in L.

Each sublattice L’ of finite index of an n-dimensional lattice L is char-
acterized by an integer matrix A’, whose columns are the coordinates of its
basis. L’ has, of course, a countable infinity of bases and thus is described by
a conjugacy class of matrices under the action of GL,(Z). Again, it is conve-
nient to select a basis; that is, to work with a specific representative of this
conjugacy class. The Hermitian normal form serves our purposes here.

A matrix is in Hermite normal form if it is upper triangular, all matrix
elements are non-negative, and each column has a unique maximum entry,
which is on the main diagonal.! For example, the matrix

31 3
0 4 5
0 0 7

is in Hermitian normal form.

Any integer matrix can be transformed to the Hermitian normal form by
left multiplication by a unimodular integer matrix. The form is unique in its
conjugacy class. Thus it identifies the sublattice. We call the columns of the
Hermitian matrix the sublattice’s Hermitian basis.

Figure 3.15 illustrates different choices of sublattices of index two and
three. Basis vectors for these sublattices corresponding to the Hermitian nor-
mal form are respectively:

A (D=}
GO} ) (o ()3}

What is the number of distinct sublattices of a lattice L of a given index m,
and how can we describe their bases explicitly? The answer to both questions
is to list the n x n Hermitian normal forms of determinant m.

Consider, for example, the case where m is a prime p. Since the determi-
nant of a triangular matrix is the product of its diagonal entries, if the index
is a prime p, one diagonal entry must be p and the others 1. By the definition

1 Some definitions specify lower triangular matrices; either can be transformed into the
other. For more on this, and how the transformation is effected, see [16].
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F1a. 3.15 — L, the square lattice in the plane, is shown here with the “Hermitian
choice” of basis vectors (3.5) for its three sublattices (a,b,c) of index 2 and four
sublattices (d, e, f, g) of index 3.

of Hermitian form, all the entries above each 1 must be 0; thus we need to
fill in only the column containing p. Suppose, for example, that n = 3 and
koo = 5 = p. Then the (single) entry above 5 can be any of 0,1, 2, 3,4.

Considering all possible positions for p, we see that the complete number
of different n x n Hermite normal matrices with prime determinant p is

2, .3 ne1_ Pt =1

We immediately have the useful corollary that the number of sublattices
of index 2 for an n-dimensional lattice is 2" — 1. Otherwise, for the two-
dimensional lattice the number of sublattices of index p, with p being prime,
is p+1. See figure 3.17 for an explicit example of three sublattices, D5, D5, DF |
of index 2 for the DY lattice.

If the index m is not prime, we first find all factorizations of m into primes,
and then calculate the number of different choices for the off-diagonal elements
for each diagonal pattern.

Figure 3.15 suggests that “distinct” sublattices may or may not be of the
same “type.” This raises the question of equivalence of lattices (and sublat-
tices), and questions of symmetry. We turn to them in Chapter 4.

To conclude this subsection, we mention briefly sublattices of L that are
not of finite index.

The intersection of L with an arbitrary j-dimensional subspace of V,, spans
a vector subspace of dimension j' < j. In general, j' < j; it is useful to give a
name to the subspaces V; such that j" = j.
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F1G. 3.16 — Examples of construction of dual bases.

Definition: j-plane of a lattice. The vector subspace V; <V, is called
a j-plane of the lattice L if L NVj; is a j-dimensional lattice.

Definition: j-sublattice. An L-subgroup isomorphic to Z7, j < n, is
called a j-sublattice if it is the intersection of L by a lattice j-plane.

A good algorithm for studying the sublattices of L and, for any pair of
sublattices, their intersection and the sublattice they generate, is given in [39].

3.4 Dual lattices.

The scalar product allows us to define duality between lattices of the same
rank in the same vector space. The lattices L and L* are said to be dual if
the scalar product (E_; E_’;) of any pair of vectors, one from each lattice, is an
integer.

Definition: dual lattice. The dual lattice L* of the lattice L is defined
by {7 € E,, V(e L, (§,0) € Z} .

Properties of dual lattices following directly from the definition include:

1. L™ = L.

2. f B= {EJ} is a basis of L, then the vectors g;ﬂ i =1,...,k satisfying
(Ef, EJ) = §;; are a basis B* for L*;

3. B = (B H)T;
4. vol(L)vol(L*) = 1;

5. If L is a sublattice of L, then the dual of L’ is a sublattice of the dual
of L: L' < L*;

6. The quotient groups L'/L and L*/L"™ are isomorphic.

An interesting particular case of lattices are the:
Definition: integral lattice. Integral lattices are defined by

Vil e L, (6.0{") ez, (3.7)
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Fi1G. 3.17 — Examples of two-dimensional lattices. I» - simple quadratic lattice.
D5 - index two sublattice of I>, defined in (3.10). D5’ is the lattice dual to D5. Open
circles indicate points added when compared with the I lattice (see eq. (3.11)).
D2i are two intermediate lattices between D3 and its dual D§. DJ is dual to
D5 . Open circles indicate points added when compared with the Dj lattice (see
eq. (3.14)). The basis vectors are represented by solid and dash lines in such a way
that for dual lattices the scalar product of basis vectors of the same type is equal
to 1, and the scalar product of basis vectors of different types is zero.

—

and the set of integers (£,¢") is reduced, i.e. they have no common divisor
> 1.

From (3.7), a lattice is integral if and only if it is contained in its dual.
The following relation:

L < L' integral, L<L' <L" <L (3.8)

will be very useful. Particular examples of integral lattices are the self-dual
ones:
Definition: self dual lattice. A lattice L is said to be self-dual if L = L*.

As a consequence of property vol(L)vol(L*) = 1, if L is self-dual then
det(L) = 1.

Dual lattices play an important role in the physics of x-ray diffraction by
crystals; they are the “reciprocal” lattices observed in diffraction diagrams.
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Fic. 3.18 — Examples of three-dimensional lattices. I3 - simple cubic lattice.
D5 - index two sublattice of Is. This sublattice is defined in eq. (3.10). DY is the
lattice dual to D3. Open circles indicate points added when compared with the Is
lattice (see eq. (3.11)). The basis vectors are represented by solid, dash, and dash-
dot lines in such a way that for dual lattices the scalar product of basis vectors of
the same type is equal to 1, and the scalar product of basis vectors of different types
is zero. Basis vectors of the D3 lattice are shown on D5 by thin lines.

Examples of lattices: We give here some examples of dual and self-
dual n-dimensional lattices together with their most frequent notations.
Figures 3.17, 3.18 illustrate discussed examples in two- and three-dimensional
cases.

a) The n-dimensional lattice generated by an orthonormal basis is often
denoted by I,,:

(é},é}) = 61’]‘7 I, = ZAié’h A € Z; VO](In) =1. (39)

In crystallography it is called the cubic P lattice. It is self-dual.



3. Delone sets and periodic lattices 41

b) A sublattice of index 2 of I,, is

D;:{Zkiez-, ZM€2Z}; In/D}, = Z; vol(D}) =2
(3.10)

Note that D] is an even integral lattice.

c) The dual lattice of D], is usually denoted by DY. With the use of (3.8)
we find:

DI < I, < DY :=(Dl)* = I, U (@, + I,,), (3.11)
with . 1
T = 5 Zg vol(Dyy) = 5.

With the remark that 2w,, € D! when n is even and 2w, ¢ D] when n is
odd, one easily proves:

73 when n is even,

DY/D" = { (3.12)

Z4 when n is odd.

So when n is even, there must be three intermediate lattices (corresponding to
the three subgroups of index 2 of Z3) between D! and its dual. To construct
them we define:

n—1
1 -2
n even, zﬁfz2<i€n+;5¢>; N(U_fi):ga (“72_,117;):”4 :

(3.13)
We have seen that I,, is one of these intermediate lattices. The two others are:

neven: DX =DruU(wt +DL); det(DE) = 1. (3.14)

With the remark that V/ € D7, (£,1*) € Z and equations ((3.13) and (3.14))
one obtains

Proposition 4 For n = 0 mod 4, D are self-dual lattices. For n = 2
mod 4, they are dual of each other: D, = (D;})*.

We note (see chapter 7 for more details) that the two lattices Dfm are
identical and that DZ = I, and D; is the remarkable lattice Eg.






Chapter 4

Lattice symmetry

4.1 Introduction

In this chapter we study periodic lattices from the point of view of their
symmetry. That is, we describe the different classes of transformations leav-
ing lattices invariant. Depending on the class of allowed transformations the
symmetry of lattices will be different and thus symmetry classification can be
more or less detailed. For physical applications we choose the classification
best suited to the problem.

A related important notion is the equivalence of lattices. We need to specify
which two lattices could be considered equivalent and which should be treated
as different, and this varies with the type of classification.

For a simple example, let us consider three dimensional physical space as
a realization of an abstract Euclidean space &, with a chosen basis defining
a frame F. This allows us to associate with each point P of the three dimen-
sional space three real numbers z,y, z, the coordinates of the point P in the
frame F.

Since &, is homogeneous and isotropic, two lattices related by an arbitrary
translation or rotation should be considered equivalent (or, simply, to be the
same intrinsic lattice). Sometimes simultaneous scaling of the coordinates also
can be treated as “uninteresting” and the lattice can be supposed to be nor-
malized, that is, the volume of its primitive parallelepiped (primitive cell) can
be chosen to be equal to one.

Obviously the same lattice can be constructed in different frames and the
corresponding transformation between different frames can also be treated as
a symmetry transformation of the lattice.

4.2 Point symmetry of lattices
Let us start by looking for the groups of orthogonal transformations leaving

one lattice point invariant; these are called point groups. (The point symmetry
groups of lattices are also called the holohedries in crystallography.)
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F1G. 4.1 — The only point group for a one-dimensional lattice is the group of
order two.

Looking at the actions of O,, on n-dimensional lattices that fix at least one
point of the lattice, and finding their stabilizers we establish the classification
of lattices by their point symmetry.

If one such transformation exists, any power of this transformation is a
symmetry transformation as well. If there exist only a finite number of dif-
ferent powers, these transformations form a cyclic subgroup of the symmetry
group of a lattice. Finding cyclic groups compatible with the existence of the
lattice is a first step in the description of lattice symmetry. The restrictions
imposed by the lattice have, historically, been called “crystallographic restric-
tions”, though this terminology is out of date after the discovery of aperiodic
crystals (quasicrystals).

In this section we find the cyclic groups compatible with one-, two-, and
three-dimensional lattices. Generalizations to the arbitrary n-dimensional case
will follow in section 4.6.

One-dimensional lattices. All one-dimensional lattices have the same
point group, the group Cy = 2 of order two consisting of the identity trans-
formation and reflection (inversion) in one point (see Figure 4.1).

Two-dimensional lattices. Two-dimensional lattices can have as sym-
metry elements only rotation axes of order 2, 3, 4, 6 and reflection. This
restriction is rather obvious (see figure 4.2). Let o be a center of k-fold
rotation of the lattice and op be the shortest translation for the lattice. Then
p is also a center of k-fold rotation. Let the rotation through 27/k about
o transform p into p’, and let the same kind of rotation about p (realized in
the opposite direction) transform o into p”. If k = 6 the points p’ and p” coin-
cide. In all other cases we must have p'p”’ > op, since a lattice is a Delone set.
This is possible only if k¥ < 4. Thus, the only possible rotational symmetries
for two-dimensional lattices are k = 2, 3,4, 6.

The point group of a lattice in any dimension has the subgroup of order two
generated by reflection in a fixed point. This restricts the possibilities for two-
dimensional lattices to four point groups. We give here both the Schoenflies
and ITC notations!: Cy = 2 (oblique), Dy = 2mm (rectangular), Dy = 4mm
(square), Dg = 6mm (hexagonal). The associated polygons are shown in
figure 4.3 together with their symmetry elements.

Three-dimensional lattices. The crystallographic restrictions for three-
dimensional lattices are exactly the same as for two-dimensional: only reflec-
tions and rotations of order 2, 3, 4, and 6 are allowed. We accept this fact, for
now, without proof; in section 4.6.3 we will explain that more generally the

I See Appendix C for discussion of different notations.
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F1G. 4.3 — Four point groups for two dimensional lattices. Black rhombus - rotation
axis of order two; black square - rotation axis of order four; black hexagon - rotation
axis of order six. Dashed lines - reflection lines.

crystallographic restrictions for lattices of dimensions 2k and 2k + 1 coincide,
for any positive integer k.

Every lattice in any dimension is invariant with respect to reflection
in a fixed point. In three-dimensional space, inversion is an “improper”
orthogonal transformation (“improper” means its determinant is —1).
Consequently, the point groups of three-dimensional lattices have sub-
groups of index two consisting of proper orthogonal transformations (pure
rotations). Thus point groups are characterized by their rotation subgroups;
indeed their axes of order two suffice. Any rotation of higher order for three-
dimensional lattices is generated by axes of order two (see, for example [42],
Ch.1, sect. 5).
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There are three possibilities:

e The point group has no axes of order two.
e The point group has only one axis of order two.

e The point group has several axes of order two.

If the point group has more than one axis of order two, the crystallographic
restriction implies that the angles between the axes must be /6, 7/4,7/3 or
/2. These four possibilities yield five different sub-cases.

e 7/6: system of axes of a hexagonal prism;
e 7/4: system of axes of a quadratic prism;
e 7/3: system of axes of a rhombohedron;
e 7/3: system of axes of a cube.

e 71/2: system of axes of an orthogonal parallelepiped.

The specific arrangements of these two-fold axes are shown in Figure 4.4,
where the cases with several order-two axes are labeled H, Q, R, C, and O
respectively and shown together with case M (one order-two axis) and case T’
(no two-fold axes).

Adding inversion we get the complete set of generators for the seven lattice
point groups listed in Table 4.1.

4.3 Bravais classes

In the last section, we classified lattices by their point groups. But this
classification is not fine enough for applications in crystallography and physics.
Figure 4.5 shows a pair of two-dimensional lattices that are evidently “differ-
ent” — the primitive cell of one is a rectangle, while the primitive cell of the
other is a rhombus. Yet they have the same point group, 2mm = Ds.

How can we characterize this difference mathematically? Let us use bases
shown in figure 4.5. The matrices o3 and o; that describe reflections across
the vertical mirror lines in these two lattices are, left to right:?

o5 = ((1) _01>; o = ((1) é) (4.1)

In fact o3 and o1, though they describe the “same” reflection, are not inter-
changeable, in the sense that neither matrix can be obtained from the other

2 This notation introduced by Pauli is usual in physics. In 1925, Pauli wrote the first
paper in quantum mechanics computing the spectrum of the hydrogen atom in a vacuum
and in a constant magnetic or electric field including the spin effects.
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C

R 0 H

F1a. 4.4 — The seven three dimensional point groups for lattices represented through
arrangements of their order-two symmetry axes. T - triclinic crystallographic
system has no two-fold axes. M - monoclinic crystallographic system has one two-
fold axis. O - orthorhombic system has three mutually orthogonal order two axes.
R - rhombohedral (or trigonal) system has three two-fold axes belonging to plane
with 7/3 angle between them. @ - Tetragonal system has four two-fold axes
belonging to the plane with 7/4 angle between them. H - hexagonal system has
six two-fold axes belonging to the plane with 7/6 angle between them. C' - cubic
system has six two-fold axes of a cube with 7/3 or m/2 angles between them.

TAB. 4.1 — The seven three dimensional point groups for lattices and the associated
names of Bravais crystallographic systems.

Bravais CS  Triclinic Monoclinic Orthorhombic Tetragonal Rhombohedral Hexagonal Cubic

Abbreviation T M 0] Q R H C
Schoenflies Ci Cgh D2h D4h D3d D6h Oh
ITC 1 2/m mmm  4/mmm 3m 6/mmm m3m

by a change of lattice basis. That is, though these matrices are conjugate
in the general linear group GLs(R), they are not conjugate in GLy(Z).

To convince yourself, let A = ¢ b> be any matrix in GL2(Z); that is,

d
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F1G. 4.5 — These lattices have the same point group — the points of each are stabi-
lized by a pair of orthogonal mirror lines — yet they are “different.”

a, b, ¢, d are integers and ad — bc = 1. Then A~! = _dc _ci) and an easy
computation shows that there is no choice of integer entries for A for which
Aos Al = oq.

These two lattices are said to be different Bravais types. Since the other
three two-dimensional point groups do not subdivide in this way, there are
five Bravais lattices in two dimensions.

Bravais himself classified lattices by choosing minimal possible cells
(preferably rectangular) which keep the point symmetry of the lattice.
Lattices having the same point symmetry group but associated with different
cells are referenced now as belonging to different Bravais classes.

In more formal mathematical terms

the conjugacy class [Pf]qr, (z) defines the Bravais class of L;

the conjugacy class [Pr]qr, (r) defines the crystallographic system of L.

Correspondingly, we call P; the Bravais group of L, while Pr, is the point
group of L.

It is clear that several Bravais classes [Pf]cr, (z) can correspond to the
same conjugacy class [PL]gr, r) defining the point symmetry group of the
lattice up to conjugation within the GL,(R) group because GL,(Z) is obvi-
ously a subgroup of GL, (R).

To see more examples of lattices with a given point symmetry group
and a different number of associated Bravais classes, let us now consider the
n-dimensional case.

In every dimension the generic lattices form only one Bravais class: by
definition the point group includes only {I,,, —I}.

The situation changes, however, if we consider lattices with just one
additional reflection symmetry. In every dimension n > 2, although reflec-
tions through a hyperplane are all conjugate in GL, (R), this is not true in
GL,(Z). To see this, from the matrices o; and o3 above, we build two reflec-
tion matrices M; = o; @ I,,—2. They cannot be conjugate in GL,(Z); if they
were, this would also be true of the two matrices I,, + M3 and I,, + M. That
is not possible: indeed, the greatest common divisor (ged) of the elements of
these matrices is 2 for the former and 1 for the latter; but conjugation by an
element of GL, (Z) cannot change the ged of the elements of a matrix.
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So there are at least two conjugacy classes of reflections in GL,(Z);
in fact there are only two. Here we give a direct proof for n = 2. A reflection
in GL2(Z) has trace 0 and determinant —1; so its general form is

S:(CCL ba>, a,bc€Z, a*+bc=1. (4.2)
If S # +o3, it is not diagonal. We may not be able to diagonalize it by conju-
gation in GLo(Z), but we can make it upper triangular. Indeed, corresponding
to the eigenvalue 1, it has, up to a sign, a unique integral, visible eigenvector
U= (g) with « = b/k, 8 = (1 — a)/k where k = ged(b,1 — a). Then we can
choose a pair o/, 3’ of relatively prime integers such that a8’ — fa’ = 1, to
complete a conjugating matrix:

(—ﬁ/ﬁ o > (Z —ba> (g E:) = (é —wl> =T, (4.3)

where z = 2aa’3 + b3? — ca’?. Depending on whether z is even (z = 2y), or
odd (x = 2y + 1), the matrix T can be conjugate to o3 or o1 by the matrices
((1) g{) and <1 1 _Z(_ y) respectively. Thus there are exactly two conjugacy
classes of reflections in GLy(Z).

Although explicit expression for x given above depends on a, b, c and o/, 3,
it is possible to give more direct and more simple formulae expressing parity
of x or equivalently class mod 2 in terms of matrix elements of matrix S only.

Proposition. z mod 2 = (b + ¢+ bc) mod 2.

We leave derivation of this expression for the interested reader.

The two classes of reflections corresponding to the classes 0,1 of z(mod2)
are labeled in [14] by pm and em respectively. These symmetry groups cannot
be symmetry group of a lattice because lattice symmetry always includes point
reflection. These groups are subgroups of a larger lattice symmetry group
and naturally subgroups of GL,(Z). More generally, classes of conjugated
subgroups of GL, (Z) are named “arithmetic classes”.

A reflection from either class and —I, generates a point group isomor-
phic to Z2; they define two Bravais classes, pmm and cmm. Since the two
matrices of (4.1) have the same determinant and the same trace, they have
the same characteristic polynomial, so they are conjugate in GL2(R). This
conjugacy class describes the 2D-crystallographic system called rectangular
or orthorhombic.

Generalizing the n-dimensional lattices of the orthorhombic crystal system
leads to lattices with point symmetry described by the group of n xn diagonal
matrices with diagonal elements 1. The conjugacy class in GL,,(R) of this
group is named A} = A; x A;--- x Ay in the spirit of notations used for
groups generated by reflections and Coxeter groups [5, 7|.> The number of

3 n = 3: ITC=mmm, SCH=Dy,,. For n = 2, ITC=2mm, SCH=Cs,.
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F1G. 4.6 — 2D Bravais crystallographic systems (left) and corresponding Bravais

classes of lattices (right).

corresponding Bravais classes for n = 2, 3,4 is 2, 4, and 8. With increasing n,
the number of Bravais classes grows exponentially.

Another example of a family of lattice point symmetry groups and cor-
responding Bravais classes defined for arbitrary n is given by the symmetry
group of the cube (or the cross-polytope) in dimension n. Three Bravais classes
correspond to this conjugacy class in GL,(R) for every n except n = 1,2,4;
there is one Bravais class for n = 1,2 and two for n = 4. Following crystal-
lographic convention, for n = 3 one calls the three Bravais classes Cubic P
(or simple), Cubic F (or face centered), Cubic I (or body centered).

4.4 Correspondence between Bravais classes
and lattice point symmetry groups

In any given dimension n all lattice point symmetry groups form a partially
ordered set of subgroups of O(n) or GL,(R). Considered up to conjugation
in GL,(R) they characterize crystallographic systems.

In a similar way, the Bravais classes of lattices (as subgroups of GL,,(Z))
form themselves a partially ordered set of subgroups of GL,(Z). There
exists correspondence between these two partially ordered sets which maps
all isomorphic Bravais groups on corresponding crystallographic system.

Figures 4.6 and 4.7 show this correspondence for two-dimensional lattices,
where only one among four existing crystallographic systems has more than
one Bravais class.

The same correspondence for three-dimensional lattices is given in
Figures 4.8 and 4.9.



4. Lattice symmetry 51

Dy = @ 6mm

Dy @ 4mm

Dy =s—— @ @ 2mm

|

o < ® 2

FiGc. 4.7 — Surjective map {BC}2 — {BCS}s from the partially ordered set of
Bravais classes (right) to a partially ordered set of Bravais crystallographic systems
(left) for two-dimensional lattices.
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Fi1a. 4.8 — 3D Bravais crystallographic systems (left) and corresponding Bravais
classes of lattices (right).
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FiGg. 4.9 — Surjective map {BC}s — {BCS}s from the partially ordered set of
Bravais classes (right) to partially ordered set of Bravais crystallographic systems

(left) for three-dimensional lattices.

4.5 Symmetry, stratification, and fundamental
domains

The symmetry group of a lattice acts on the ambient Euclidean space and
thus we can classify all points of space into orbits according to their stabiliz-
ers. Orbits of the same type (i.e., those whose stabilizers are conjugate within
the symmetry group) form strata. Selecting one point from each orbit, we
get a fundamental domain of the lattice. This suffices to describe any local
properties of the physical system because any properties at other points can
be obtained by applying symmetry operations to points of the fundamental
domain. Moreover, the topological properties of the fundamental domain,
i.e. topological properties of the space of orbits, correspond to important
global topological properties of physical systems.

In this subsection we describe the strata, fundamental domains, and
orbifolds for two- and three-dimensional lattices.

We will use orbifold notion interchangeably with the space of orbits
when we want to introduce or to stress the topological representation of the
fundamental domain of the lattice taking into account the symmetry group.
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a=b=c=d

F1G. 4.10 — Torus construction from a plane rectangle by identifying points on its
boundary.

We analyze the action of the symmetry group of the lattice on the ambient
space, find its orbits, and represent each orbit as a single point. Since each
orbit is characterized by its stabilizer and orbits with the same stabilizer form
strata, the orbit space is represented as stratified topological space.

If there are no additional symmetry transformations except the transla-
tion symmetry defining the lattice, the space of orbits (or orbifold) for a
n-dimensional lattice is a n-dimensional torus, obtained by taking the funda-
mental cell of the lattice and identifying those points on its boundary which
belong to the same orbit of the translation group action.

The two-dimensional case can be easily visualized with a little imagination.
To pass from the fundamental cell to the orbifold (see Figure 4.10) we can
first take a rectangle made of paper and identify respective points on one pair
of opposite sides. This gives us a cylinder. Now we need to identify points on
the other two sides of the rectangle (which have become circles). Replacing
the paper cylinder by an elastic cylindrical tube, we see how this identification
leads to a torus.

Adding symmetry transformations of the lattice is equivalent to introduc-
ing group action on the torus.

Let now construct the system of strata, fundamental cells, and orbifolds
for the five different Bravais symmetry groups of two-dimensional lattices.

The Bravais group p2 has four C5 orbits within a fundamental cell, forming
four different zero-dimensional strata as shown in Figure 4.11. In ITC these
four Cy orbits are called Wyckofl positions with site symmetry 2 = Cs. It is
important to note that although these four orbits have the same stabilizer
as an abstract group, these four C; subgroups are not conjugate and belong
to different strata. This can be easily seen because there is no symmetry
operation which transform one orbit into another. All other internal points of
the fundamental cell belong to generic orbits with trivial stabilizer.
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F1G. 4.11 — Group action on the fundamental cell for p2 and the corresponding
orbifold.

Each generic orbit is formed by two points per primitive cell, related by
C5 symmetry. The pair of points forming the generic orbit transform one into
another by Cy symmetry transformation. To pass from the primitive crystal-
lographic cell representation to the orbifold we need to keep only one repre-
sentative point from each orbit. For example, we can keep the points in the
shaded part of the unit cell and identify points on the boundary of this part
which belong to the same orbit. This means that intervals of the boundary
labeled by the same letters should be identified. Identifying first two ab
intervals and next two cd intervals we get a topological disk whose bound-
ary consists of two intervals ac to be identified as well. This final identifica-
tion leads to a topological two-dimensional sphere with four special points.
For an orbifold which is a topological sphere, the Conway-Thurston notation
indicates only the singular points. Thus, the notation for the p2 orbifold is
2222.

To see the correspondence with the torus, we note that selecting one point
from each generic orbit on the torus is equivalent to taking one half of the
torus, which is a cylinder with two boundary circles aba and cdc. Identifying
the two ab half circles and two cd half circles leads to a topological sphere
with four marked points a, b, ¢, d.

The next two Bravais groups are p2mm and ¢2mm. The action of the
symmetry group on the crystallographic cell for these two groups is shown in
Figures 4.12 and 4.13.

It is easy to see that the space of orbits for the p2mm group has a bound-
ary formed by symmetry reflection lines. Thus the space of orbits for p2mm
is a topological disk. There are four singular points on the disk boundary
corresponding to Cy orbits; they belong to different strata (their stabilizers
are not conjugate in GLy(Z)). The boundary of the disk in its turn consists
of four intervals again belonging to four different strata.

The orbifold notation indicates the presence of a boundary by a *, followed
by stabilizers of singular points on the boundary. Thus, the orbifold notation
for p2mm is %x2222.
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F1c. 4.12 — Group action on the primitive crystallographic cell for p2mm and the
corresponding orbifold.

F1c. 4.13 — Group action on the crystallographic cell for c2mm and the correspond-
ing orbifold.

To construct the orbifold for the Bravais group ¢2mm we note that the
ITC uses a double cell, rather than a primitive cell of this lattice. Figure 4.13
shows the traditional ITC choice of a fundamental (double) cell for the c2mm
group together with one possible choice of a primitive cell (grey shading).
To take one representative point from each orbit of the symmetry group
action on the primitive fundamental cell means to take the triangular
region shown by light shading together with its two mirror boundaries marked
ab but belonging to two different strata and to identify two subintervals bc
on the third boundary. The resulting orbifold is a topological disk with two
singular points on its boundary corresponding to two non conjugated stabi-
lizers and one singular point inside. The two intervals of the boundary again
correspond to two different stabilizers. The orbifold notation for the space of
orbits is 2%22.

The action of the Bravais group p4mm on a primitive fundamental cell
of a two-dimensional lattice is shown in figure 4.14, where the primitive cell
is drawn. The shade region together with its boundary contains one repre-
sentative point from each group orbit. Points with different stabilizers be-
long to different strata and different strata are marked by different letters.
The space of orbits is a topological disk with three isolated orbits on its
boundary. Two Cy, orbits belong to different strata which are not conjugate,
the third Csy, orbit forms also its own isolated stratum. Three intervals on
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F1a. 4.15 — Orbifold for p6mm.

the disk boundary form three different strata. The orbifold notation of p4dmm
orbifold is x442.

The action of the Bravais group P6mm on a primitive fundamental cell is
shown in figure 4.15. The shade region together with its boundary contains one
representative point from each group orbit. Points with different stabilizers
belong to different strata and different strata are marked by different letters.
The space of orbits is a topological disk with three isolated orbits on its
boundary whose stabilizers are Cg,,, C3,, and Cy,,. The three intervals on the
boundary of the disk are formed by orbits belonging to two different strata.
The orbifold notation is %632.

The construction of orbifolds for the symmetry groups of three-dimensional
lattices is naturally a more complicated task. We need to split this problem
into several subproblems.

One sub-problem is to describe local neighborhoods for representative
points of different strata of the orbifolds. For this purpose it is sufficient
to find spaces of orbits for the local action of the three-dimensional point
symmetry groups. Moreover, as soon as we suppose that one point is fixed,
we can restrict our analysis from three-dimensional space to a surface of a
two-dimensional sphere surrounding that point. (The action of a group fixing
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one chosen point is independent of the radius.) Naturally, we analyze only
point groups compatible with three-dimensional lattices.

Three dimensional group actions can be divided into two cases, called
reducible and irreducible. In 1776, Euler proved that every rotation in R?
is a rotation about an axis which maps all planes orthogonal to that axis
into themselves. The so called reducible point groups are those which leave
one rotation axis invariant; the irreducible groups are those with no invariant
axis. Passing from group action on the space to orbifold, the invariant axis
remains an invariant axis of the orbifold. In other words, a fibration of the
space becomes a fibration of the orbifold. Each fiber becomes either a circle
or an interval.

If you imagine looking along the invariant direction of a fibered symme-
try group you will see one of the Euclidean plane groups. Thus orbifolds for
reducible symmetry groups can be constructed starting from two-dimensional
orbifolds.

Orbifolds for irreducible three dimensional groups must be studied each
in turn. Since only the cubic point group, O, = Pm3m is irreducible,
only the three corresponding Bravais classes, Pm3m, Im3m, and F'm3m are
irreducible.

Let us consider first spherical orbifolds for point group actions on a two-
dimensional sphere. We restrict ourselves to point groups which appear as
symmetry groups (holohedries) of three-dimensional lattices, C;, Cap, Dap,
D34, Dap, Dgp, and Oy

4.5.1 Spherical orbifolds for 3D-point symmetry groups

The lowest symmetry for holohedry of 3D-lattices is the C; group.
The action of the C; group on a two-dimensional sphere in three-dimensional
space leads to only one type of orbit. Each orbit is formed by two
opposite points on the sphere (see Figure 4.16). This means that the set of
orbits can be equivalently interpreted as a set of straight lines passing through
origin in three-dimensional space. (This is real projective space.) Alterna-
tively, the set of orbits can be considered as a set of points on the half-
sphere with additional identification of opposite points on the boundary
circle.

The action of the three-dimensional Cs;, point symmetry group on three-
dimensional space is shown in Figure 4.17, a. There are four strata formed by
orbits of different type. Restriction of this action on a two-dimensional sphere
leads to

i) zero-dimensional Cy stratum which includes two opposite points at the
intersection of the Cy axis and the sphere,
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(@)

F1c. 4.16 — Construction of the orbifold for the 3D-point group C; acting on
two dimensional sphere. (a) Action of the group C; consists in forming two-point
orbits. Each orbit includes two diametrically opposite points on the sphere.
(b) To represent the space of orbits it is sufficient to take demi-sphere and to identify
the diametrically opposite points on the boundary circle. The resulting orbifold is
real projective space RP;.
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F1c. 4.17 — Construction of the orbifold for the 3D-point group Cy, acting on
a two dimensional sphere. (a) Action of the group C2; on the 3D-space. Stabiliz-
ers of points and the number of points in the corresponding orbit are indicated.
(b) Schematic view of the action of the C, group on a two-dimensional sphere. The
rhombus indicates points belonging to the C2 orbit. Thick solid line corresponds to
the reflection plane. All other points of the sphere belong to the generic C orbits.
The fundamental domain of the Cy), group action fills half of the upper demi-sphere.
Its projection is shown as a shaded region together with its boundary. Two dashed
intervals of the boundary of the fundamental domain should be identified. (¢) Rep-
resentation of the orbifold 2% for the action of the C2, group on the sphere as a disk
with one special point (Cs orbit) inside.
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ii) one dimensional stratum formed by points at the intersection of the
symmetry plane and the sphere,

iii) two-dimensional generic stratum.

Keeping one point from each orbit leads, for example, to taking half of
the upper demi-sphere and to identify points on the meridianal section which
belong to the same orbit under the Cy symmetry operation (see Figure 4.17,
b). The resulting space of orbits is a topological disk with one singular point
inside (see Figure 4.17, c).

The construction of orbifolds for Dy, Dyp, and Dgj, groups can be studied
through analysis of the whole D, family of groups.

The group D, has order 4n. It can be obtained by adding to the C,,
group the symmetry reflection plane orthogonal to the C,, symmetry axis.
The system of conjugacy classes for the D,,;, group is quite different for even
n = 2p and for odd n = 2p + 1. Thus we treat these two cases separately.

Group D,,;, with n = 2p > 2 has 2(p + 3) conjugacy classes. In particular,
there are two different classes of order two rotation axes Co and C%, and
of vertical symmetry reflection planes o,, 4. The third class of symmetry
reflection planes includes one element - reflection in the horizontal symmetry
plane. There are seven different strata for the action of D, with n = 2p > 2
on the sphere. There are three zero dimensional strata with stabilizers C,,,
Cy, and C4, . There are three one-dimensional strata with stabilizers Cs, C?,
C!. At last, a generic stratum has orbits with trivial stabilizer Cy. There
is only one orbit with stabilizer C,,, consisting of two points (poles of the
sphere). There is one n-point orbit with stabilizer Cs, and one n-point orbit
with stabilizer C4,. Each orbit with stabilizer Cy, or C? or C¥' consists of 2n
points. Each generic orbit consists of 4n points. To form the space of orbits we
can take the part of the sphere bound by three symmetry planes. As a result
the orbifold is a topological disk with a boundary which has three singular
orbits Cyy, Coy, and CY, . The regular points on the boundary belong to three
different strata Cs, C! and C?7. Three singular orbits on the boundary also
belong to three different strata. The notation of the orbifold is *n22.

The group D,,;, with n = (2p + 1) > 3 has 2(p + 2) conjugacy classes.
In particular, all vertical symmetry reflection planes belong to the same con-
jugacy class. All Cy rotations also belong to the same conjugacy class. These
facts modify the stratification of the D,,;, with n = (2p+ 1) > 3 as compared
to Dy, with the n = (2p) > 2 case. There are only two zero dimensional strata
with stabilizers C,,, and Cy,. Stratum C),, includes one two-point orbit.
Stratum Cy, includes two 2n-point orbits. There are two one-dimensional
strata with stabilizers Cs and C.. Cs orbits are formed by points lying on
all vertical symmetry planes. C” orbits are formed by points belonging to
the horizontal symmetry plane. The space of the orbits takes the form of
a topological disk with three singular orbits on the boundary. One of these
singular orbits is C,,, two others are of the Cs, type. Three intervals of
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(a) (b) (c)

FiG. 4.18 — (a) Action of the group D2y, on the sphere. (b) Action of the group Dsp,
on the sphere. Shade regions represent fundamental domains. (¢) The orbifold for
action of the D, group on the sphere: xn22. There are seven strata for D, groups
with even n; there are five strata for D,,;, groups with odd n. See text for details.

regular points on the boundary of the orbifold are filled by two types of
orbits. There are C,, orbits between C,,, and C5,,, whereas there are C, orbits
between two Cy, singular orbits on the boundary. The notation of the orb-
ifold of the D, action on the sphere, namely *n22 is the same for even n and
odd n.

Although we need only a D3y point group for description of holohedries
of three-dimensional lattices we can easily consider orbifolds for all D,,4 point
groups simultaneously.

The group D,q with n > 2 has order 4n. It can be obtained from D,, by
adding n symmetry planes which include a C), axis and are situated between
neighboring C5 axes. For the D,4 group in both cases of even or odd n all
symmetry planes belong to the same conjugacy class. All Cs axes also belong
to the same conjugacy class. This means that we can describe strata of the
D,,4 action on a sphere simultaneously for all n > 2. There are four strata:
two zero dimensional, one one-dimensional, and one two-dimensional generic
stratum. One zero dimensional stratum is formed by one two-point orbit with
stabilizer C,,, (two poles of the sphere). Another zero dimensional stratum
consists also of one orbit which has 2n points. The stabilizer of this 2n-point
orbit is Cs. A one-dimensional stratum is formed by 2n-point orbits with
stabilizer Cs. These points belong to the symmetry planes. Finally the generic
stratum is formed by 4n-point orbits. In order to form the space of orbits and
to take one representative point from each orbit it is sufficient to take a 27 /n
sector of the north half-sphere together with the boundary formed by the
intersection of the sphere with the equatorial plane. Moreover, two halves
of the equatorial arc should be identified according to the action of the Cs
rotation. This identification shows that the space of orbits is a topological
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F1c. 4.19 — Construction of the orbifold for the 3D-point group D,q acting on
a two dimensional sphere. (a) Action of the group Dsq on the 3D-space. Stabiliz-
ers of points and the number of points in the corresponding orbit are indicated.
(b) Schematic view of the action of the D34 group on a two-dimensional sphere.
The rhombus indicates points belonging to the C2 orbit. The filled triangles corre-
spond to points belonging to the Cs, orbit. The thick solid lines indicate C orbits.
All other points of the sphere belong to generic Cy orbits. The fundamental domain
of the D34 group action is shown as a shaded region. Respective points on two parts
of the boundary marked by letter a should be identified. (¢) Representation of the
orbifold 2#n of the group D,q action on the sphere as a disc with one special point
on the boundary (Ch. orbit) and one special point inside (C orbit).

disc with a boundary. There is one singular C),,, point on the boundary and
one singular point C5 inside the disk. The notation of the orbifold is 2xn.
The point symmetry group Oy, is a full symmetry group of a cube. There
are 48 symmetry operations in the Oj group. The presence of two differ-
ent conjugacy classes of Cy rotations for the group O implies the existence
of two different conjugacy classes of reflection planes for the Oj group.
One conjugacy class of reflection planes consists of three planes (orthogonal to
the C4 axes and named often “horizontal’). Another conjugacy class consists
of six reflection planes. These planes are orthogonal to the Cy axes of a cube
going through the middle of the edges. They are named often “diagonal’.
Taking these facts into account, the action of the group O on the
sphere yields three zero-dimensional strata, two one-dimensional strata,
and one generic two-dimensional stratum. The Cy, zero-dimensional stra-
tum consists of one six-point orbit. The C3, zero-dimensional stratum
consists of one eight-point orbit. The (b5, zero-dimensional stratum con-
sists of one twelve-point orbit. The Cy and C? one-dimensional strata
are formed by 24-point orbits situated on “horizontal” and “diagonal”
planes associated with two different conjugacy classes of elements of the
Op group. These two different strata are marked by solid and dash
lines in Figure 4.20, b. A generic stratum is formed by 48-point orbits
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Cx (12)

C; (48)

(a) (b) (c)

F1a. 4.20 — Construction of the orbifold for the 3D-point group O, acting on a
two dimensional sphere. (a) Action of the group Op on the 3D-space. Stabilizers
of points and the number of points in the corresponding orbit are indicated. Only
one Cy axis, one (3 axis, one Cy axis, and one symmetry plane from each of the
two classes of conjugated elements are shown. (b) Schematic view of the action of
the Oy, group on a two-dimensional sphere. A rhombus indicates points belonging
to the C, orbit. Triangles correspond to points belonging to Cs, orbits. Squares
show points belonging to the Cu, orbit. Thick solid lines correspond to reflection
planes forming a conjugacy class of three reflection planes which do not contain Cs
axes. Thick dash lines correspond to six reflection planes containing Cs axes and
forming one conjugacy class of so called “diagonal planes”. All other points of the
sphere belong to generic C; orbits. The fundamental domain of the Oy, group action
is shown as a shaded region together with its boundary. (¢) Representation of the
orbifold %432 as a disk with three special points on its boundary.

with trivial stabilizer. The fundamental domain of the sphere including one
point from each orbit can be chosen as the shaded region (Figure 4.20, b) with
the boundary. This means that the orbifold is a topological disc with three
special points (Cy, orbit, Cs, orbit, Cy, orbit). The fact that the boundary
is formed by two different strata is ignored in the Conway orbifold notation,
*432.

4.5.2 Stratification, fundamental domains and orbifolds
for three-dimensional Bravais groups

Because the number of three-dimensional Bravais groups is relatively large
(14 groups), we treat here only two examples, P4/mmm and I4/mmm.
Irreducible three-dimensional Bravais groups are illustrated in appendix E.
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4.5.3 Fundamental domains for P4/mmm and I4/mmm

We have chosen P4/mmm and I4/mmm Bravais lattices to illustrate the
stratification and fundamental domain construction because these two Bravais
groups belong to the same point symmetry group Dy, and being relatively
simple they allow us to demonstrate dependence of stratification and topology
of orbifolds on Bravais groups within the same holohedry.

The zero-, one-, and two-dimensional strata of P4/mmm are shown in
Figure 4.21.

There are four zero dimensional strata with stabilizer Dy, = 4/mmm,
marked on the first sub-figure of Figure 4.21 by small Latin letters a,b,c,d
in accordance with I'TC notation for Wyckoff positions. These four stabilizers
are different non-conjugate subgroups of the Bravais group. Two more zero
dimensional strata, e, f have stabilizer Do, and they are also non-conjugate
subgroups of P4/mmm. There is one point per cell for strata with stabilizer
Dy, and there are two points per cell for strata with stabilizer Dyy,. Note that
there are eight points of type a which are shown in sub-figure 4.21 because
each point a belongs to eight cells and only one point a should be chosen as
a representative of its stratum when constructing the fundamental domain
and orbifold. In a similar way, there is a quadruplet of points b (each point
belongs to four cells) and doublet of points ¢ (each point ¢ belongs to two
cells). In contrast, there is only one point d in Figure 4.21 because this point
lays inside the primitive cell. Four points of type e are shown in Figure 4.21.
This corresponds to two points of type e par primitive cell because each point
belongs to two cells. There are eight points of type f with stabilizer Dy,
because each point f belongs to four cells and this gives exactly two points
per cell.

There are two one dimensional strata g,h with stabilizer Cyj;. Each of
these strata has two points per cell in each orbit. Each stratum consists of two
intervals per cell situated symmetrically with respect to the middle symmetry
plane. Each interval includes one point from every orbit. One pair of intervals
is shown for the h stratum because this stratum belongs to the interior of the
primitive cell. Four pairs of intervals are shown for the g stratum because now
each interval (being an edge of a primitive cell) belongs to four cells.

There are seven different non-conjugate strata i, j, k, [, m,n, o with stabi-
lizer Cy,. Fach of these strata has four points per primitive cell in each orbit
and consists of four intervals per primitive cell. Again each interval includes
one point from each orbit with stabilizer Cs,.

There are five two-dimensional strata p, ¢, 7, s, t. All have stabilizer Cy, but
they are non-conjugate within the lattice symmetry group. Each stratum has
eight points per primitive cell in each orbit. Each two-dimensional stratum
consists of eight open domains per cell. For p and ¢ strata these domains
are triangles. For r, s, t strata the corresponding domains are rectangles. Each
such domain includes one point from every orbit belonging to the stratum.
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F1a. 4.21 — Different strata for P4/mmm.

The detailed description of strata given above and their geometrical rep-
resentation in Figure 4.21 allows us to single out the fundamental domain
for the action of P4/mmm on the three-dimensional space. This fundamen-
tal domain including one point from each orbit is shown in Figure 4.22. It is
the triangular prism whose internal points are representative of generic orbits
with the trivial stabilizer C; = 1 (stratum u in ITC notation for Wyckoff
positions). The boundary of the prism consists of six zero-dimensional strata
(vertices of the prism), nine one-dimensional strata (edges of the prism) and
five two-dimensional strata faces of the prism). From the topological point of
view the fundamental domain (or the space of orbits, or orbifold) is a three-
dimensional disk.

Let us now study I4/mmm. We can choose a double cell which shows
explicitly the Dy, point symmetry. The stratification of the double cell by
Bravais group action is shown in Figure 4.23 for zero- and one-dimensional
strata and in Figure 4.24 for two-dimensional strata. It is instructive to com-
pare the stratification of the ambient space by the I4/mmm group with that
by the P4/mmm group studied earlier.
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Fi1G. 4.22 — Representation of the fundamental domain for the P4/mmm three-
dimensional Bravais group. Five faces of the prism are formed by five different two-
dimensional strata (see Figure 4.21). All internal points belong to generic stratum
with the trivial stabilizer C.

There are two zero-dimensional strata for I4/mmm action with Dy, sta-
bilizer (a,b ITC notation). Each of these strata consists of two points per cell
(this reflects the fact that the cell is a double one). Stratum a of I4/mmm
includes two strata ¢ and d of P4/mmm. Stratum b of I4/mmm includes
strata b and ¢ of P4/mmm.

There is one stratum ¢ of I4/mmm action with stabilizer Dayy,. It consists
of four points per (double) cell and includes strata e and f of P4/mmm action.

The zero-dimensional stratum d of I4/mmm action has stabilizer Dag.
It consists of four points per cell. The zero-dimensional stratum f of I4/mmm
action has stabilizer Cy,. It consists of eight points per cell. There are no
analogs of zero-dimensional strata d and f of the I4/mmm group in the
action of the P4/mmm group.

Action of I4/mmm yields formation of six one-dimensional strata. Stratum
e with stabilizer Cy, includes four points in each orbit per cell and unifies
strata g and h of P4/mmm action.

Strata g, h,i,j of I4/mmm action have stabilizer Cs, and consequently
have eight points of each orbit per (double) cell. Stratum g of I4/mmm action
coincides with the stratum ¢ of P4/mmm action. But each eight-point orbit
of type g of I4/mmm includes points from two orbits of type i of P4/mmm
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FiG. 4.23 — Different zero- and one-dimensional strata for the I4/mmm three-
dimensional Bravais group. For one dimensional strata one orbit is shown by a set
of open and filled dots. Filled and open dots distinguish subsets of points related by
GL(2,Z) transformation. The point symmetry group transformations relate points
of the same type only (transform open points among themselves and filled points
among themselves).
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Ci=m;l Ci=m;n Ci=m;n

Fic. 4.24 — Different two-dimensional strata for the I4/mmm three-dimensional
Bravais group.

action. In a similar way stratum h of I4/mmm includes two strata j and k
of the P4/mmm action; the stratum ¢ of I4/mmm includes [ and o strata of
P4/mmm, and stratum j of I4/mmm includes strata m and n of P4/mmm.

One dimensional stratum k of I4/mmm has stabilizer Cy. It possesses
16 points per (double) cell in each orbit. There is no analog for this one-
dimensional stratum for P4/mmm.

There are three two-dimensional strata [, m,n of I4/mmm action. Each
stratum consists of 16 points per cell in each orbit. Stratum [ consists of 16
open disconnected components (interiors of 16 triangles). Each such triangle
includes one point from each orbit. One such triangle should be included in
the fundamental domain and in the orbifold.

Stratum m consists of eight open domains (interiors of rectangles - rep-
resenting 1/4 part of a diagonal section of the prism). Each such rectangle
includes two points from each orbit. Consequently the fundamental domain
should include 1/8 part of a diagonal section.

Stratum n consists of 16 open rectangles (each rectangle is a quarter of a
side of the prism). One such rectangle includes one point from each orbit of
the stratum n.

Stratum [ of I4/mmm includes strata p and ¢ of P4/mmm; stratum m
of I4/mmm coincides with stratum r of P4/mmm; stratum n of I4/mmm
includes strata s and t of P4/mmm.

To construct the fundamental domain for I4/mmm action we need to
keep one point from each orbit. This should be done with care to exclude
appearance of several points from one orbit. We comment now on the con-
struction illustrated in Figure 4.25. We keep five points a, b, ¢, d, f representing
each of five zero-dimensional strata. A one dimensional stratum e is shown in
Figure 4.25 consisting of two edges of a prism (without points a and b). These
two edges consist of points belonging to different orbits except two upper
end points which form one orbit because of the Co symmetry transformation
present at point f. Four other one-dimensional strata g, h,i,j represented in
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Fi1G. 4.25 — Representation of the fundamental domain for the I4/mmm three-
dimensional Bravais group. Pairs of points on the upper base of the prism situated
symmetrically with respect to stratum & should be identified (equivalently, only one
point from each pair should be used to represent the fundamental domain).

Figure 4.25 as edges of the prism without end points include each one point
from each orbit. The one-dimensional stratum k is represented as a median
of the upper face of a prism without end points and also includes one point
from each orbit. Thus, they should be included in the fundamental domain
and in the orbifold.

The two dimensional stratum [ includes all internal points of the triangular
base of the prism. All these points belong to different orbits and should be
included in the fundamental domain and orbifold.

The two dimensional stratum m fills one rectangular face of the prism
but the pairs of points belonging to the upper edge of this face and located
symmetrically with respect to point f form one orbit. We need to take only
one point from each pairs, or (saying in other way) to identify respective pairs
of points on the upper edge. Two other rectangular sides of the prism are filled
by points belonging to stratum n. Again all points of these two sides belong
to different orbits except for points lying on the two upper edges. These two
edges should be identified because Cy symmetry transformation produced by
the stabilizer of k stratum transforms one edge into another.
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Fi1a. 4.26 — Schematic representation of the orbifold for the I4/mmm three-
dimensional Bravais group as a topological three-dimensional disk. Interior points
belong to generic three-dimensional stratum o and to one-dimensional stratum k.
All other zero-dimensional (a,b,c,d, f), one-dimensional (e,g,h,1,j,k), and two-
dimensional (I, m,n) strata belong to the boundary surface of the disk.

All internal points of the prism represent generic C; orbits. The upper face
of the prism is formed also by generic C points but points of this face located
symmetrically with respect to stratum k belong to the same orbit and should
be identified.

It is possible to imagine the topology of the resulting space of orbits by
joining two halves of the upper edge of the m face together with two halves
of the upper side simultaneously joining two upper edges of the prism. The so
obtained object can be described topologically as a three-dimensional disk
with five special points on its boundary representing five different zero-
dimensional strata. The zero-dimensional strata d and f are connected by
one-dimensional stratum k situated inside the disk. All other one-dimensional
and two dimensional strata are located on the disk boundary. Their relative
positions are shown schematically in Figure 4.26.

4.6 Point symmetry of higher dimensional
lattices

In order to describe point symmetry groups for n-dimensional lattices,
it is necessary to take into account first of all the crystallographic restrictions
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TAB. 4.2 — Several first values of the Euler function.

on) +0 +1 +2 +3 +4 +5 +6 +7 +8 49
0+ 1 1 2 2 4 2 6 4 6
10+ 4 10 4 12 6 8 8 16 6 18
20+ 8 12 10 22 8 20 12 18 12 28
30+ 8 30 16 20 16 24 12 36 18 24

on possible types of rotation transformation. The useful observations for this
analysis are:

Every rotation in E™ can be represented through rotations in a set of
mutually orthogonal one- and two-dimensional subspaces.

Every rotation symmetry of a lattice has a representation in £™ through
a unimodular n X n matrix with integer coefficients.

There is a natural bijection map between the conjugacy classes of the finite
subgroups of GL,(R) and that of O,.

4.6.1 Detour on Euler function

Definition. Euler function ¢(n) is an arithmetic function which gives
for a positive integer n the number of integers k in the range 1 <[ < n for
which ged(n, k) = 1, where “ged” means greatest common divisor.

The Euler function is multiplicative. This means that if ged(m,n) = 1,
then p(mn) = ¢(m)p(n).

If p is prime, then evidently ¢(p) = p — 1. For o(p?) we immediately get
©(p?) = p* — p and more generally for any integer k > 1 ¢(p¥) = pF —pF~1 =

P =)

As soon as for any n > 1 we have a unique expression n = p’fl ~p§2 phr
in terms of the prime integers p1,ps, ..., p, with k; > 1, applying repeatedly
the multiplicative property of ¢ and the formula for ¢(p*) we get the Euler
product formula for ¢(n):

9@%“WWﬁ:ﬁ“p?G_l>“G_l>

p1

”(1_;)11>"'(1_plr>' (4.4)

Several initial values of the Euler function are given in Table 4.2

In order to see why the Euler function is relevant to the construction
of possible cyclic symmetry groups of n-dimensional lattices let us first
remember the relation between the Euler function, roots of unity, cyclotomic
polynomials, and companion matrices.

e(pt* - pkr)
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4.6.2 Roots of unity, cyclotomic polynomials,
and companion matrices

The roots of 2™ — 1 are called m-th roots of unity. They are
{ekmi/m — cos(2km/m) +isin(2kn/m): k=1,2,...,m}. (4.5)

In the complex plane, the roots of unity are placed regularly on the unit circle
starting at 1. They form a cyclic group of order m under operation of mul-
tiplication of complex numbers. Generators of this group are called primitive
m-th roots of unity. Obviously, the root €2*7*/™ is primitive if ged(k, m) = 1,
where ged stands for greatest common divisor. Alternatively, we can say that
k and m should be relatively prime. Consequently, the number of different
primitive m-th roots of unity is given by ¢(m), Euler’s totient function.

The d-th cyclotomic polynomial ®4(z) is defined by

0q(z) = [[(z —w) (4.6)

w

where w ranges over all primitive d-th roots of unity. By construction the
degree of ®4(z) is the values of the Euler function ¢(d). The cyclotomic poly-
nomials ®,4(z) have integer coefficients?.
For d prime the cyclotomic polynomial has degree d — 1 and the explicit
form
d—1
D4(Z) = Zzi for d prime. (4.7)
i=0

For several other low d values the cyclotomic polynomials are

O1(Z)=2—1; ®uZ)=2*+1;, Os(Z)=2*>—2+1; (4.8)
Bg(Z) =2+ 1; <I>9(Z) =204+28+1; (4.9)
®10(Z) = 4—2 + 22241 Bp(Z)=2"—22+1. (4.10)

Using cyclotomic polynomials one can for a given integer m construct a matrix
of order m and of dimension ¢(m) x ¢(m). For this it is sufficient to take a
“companion” matrix whose characteristic polynomial is ®,,(z). Generically,
for a polynomial p(z) = 2% + b1 2* =1 4+ .- 4+ b _1 2 + by, the companion matrix
C, i.e. matrix with characteristic polynomial being p(z), has the following

4 When k < 105, all coefficient values are 1,0, —1 but for k = 105 (this is the smallest
integer product of three distinct odd primes), some +2 appear. The absolute value of the
coefficients of the cyclotomic polynomials are unbounded when k& — oo.
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form
0 1 0 0
0 0 1 0
0 0 0 .. .0
C = . . . . . . (4.11)
b, —bp_1 —bp_o . . . —=b

In particular in (4.11) we have
b = (—1)Fdet(C); b = —Tr(0). (4.12)

For a cyclic group Z,, its regular representation is generated by the “com-
panion matrix” M whose characteristic polynomial is Py; = 2™ — 1. This
polynomial can be expressed as a product

Zm =1 =[] ®al2), (4.13)
dlm

of cyclotomic polynomials over all divisors d of m. For example, z* — 1 =
Oy P01 = (22 +1)(z+1)(z —1).

Since the coefficients of ®4(Z) are integers the corresponding companion
matrix A of ®4(Z) is an integer matrix. Also, since ®4(Z) is an irreducible
factor of Z™ — 1, A™ = I, because the matrix satisfies its own characteristic
equation, and this is true for no lower power of A. This means that the matrix
A has order m.

4.6.3 Crystallographic restrictions on cyclic subgroups
of lattice symmetry

We formulate now a theorem giving possible orders of elements of finite
symmetry groups of a lattice. The formulation of the theorem below and its
proof follows [64].

€1,,62

Theorem 3 Let m = p'ps?---p;" with p1 < pa < --- < p;. Then GL,(Q),
and hence GL,(Z), has an element of order m if and only if

l
pi—1pi Tt —1<n for pft =2, (4.14)
=1
or
l

Z(Pi —1)pf~t <n otherwise. (4.15)
i=1
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Proof. Let W : Z — Z be defined for m = p{'p5*---p;" by W(m) =
Zizl(pi—l)pfi_l —1 when p* =2 and W(m) = Zizl(]?i—l)pf”_l otherwise.
Then theorem 3 can be reformulated as: GL,,(Q) has an element of order m if
and only if W (m) < n. Suppose that m is a positive integer with W(m) < n;
we produce an element of GL,,(Q) of order m. First suppose m = p{'p5* - - - p;’
with p* # 2. For each 7 we can construct matrix A; of dimension
(pi — D)pS ™ x (pi — 1)pfi™", ie of dimension ¢(p;) x ¢(p;), and of order
p;*. Then we can construct matrix B

A0 0
0 A 0

B=AoAd  --0A=| " : (4.16)
0 0 - - - A

which has order m. If W(m) = n, then A = B is the desired matrix.
If W(m) < n, then A = B @ I is the desired matrix, where s = n — W(m).
Now suppose p{' = 2. Then W(m/2) = ZE:Q(Pi — 1)1)?_1 < n, and applying
the previous construction, GL, (Q) has an element A of order m/2. Since m/2
is odd, the matrix (—A) has order m. For the proof of the inverse statement
which is more technical we refer to [64]. O

Note, that both sums (4.14, 4.15) introduced in theorem 3 are always even.
This leads to the following interesting Corollary

Corollary 2 GLok(Q) has an element of order m if and only if GLok+1(Q)
does.

We have already seen that both two-dimensional and three dimensional
lattices have elements of order 2, 3,4, and 6. Similarly, both four-dimensional
and five-dimensional lattices have elements of orders 2, 3,4, 5,6, 8,10, and 12.

Table 4.3 (taken from [26]) gives the orders of cyclic groups which are
allowed symmetries of n-dimensional lattice but do not appear for smaller
dimensions due to crystallographic restrictions.

4.6.4 Geometric elements

Now we can construct the geometric elements for n-dimensional lattices.
Following Hermann [60], we denote simply by (k) the companion matrix with
characteristic polynomial ®;. For example:

1)=I=-(2), 3= (_01 _11> =—(6), (4) = (_01 (1))

0o 1 0 0 0 100
0 0 1 0 0 0 10
G ==00=14 o o 1|'®=0o 001
-1 -1 -1 -1 -1.0 0 0
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TAB. 4.3 — The orders of cyclic groups which are allowed symmetries of an
n-dimensional lattice but do not appear for smaller dimensions due to crystallo-
graphic restrictions [26].

n orders of cyclic groups appearing for this n

1 1,2

2 3,4,6

4 5,8,10,12

6 7,9,14,15,18,20,24,30

8 16,21,28,36,40,42,60
10 11,22,35,45,48,56,70,72,84,90,120
12 13,26,33,44,63,66,80,105,126,140,168,180,210
14 39,52,55,78,88,110,112,132,144,240,252,280,360,420

16 17,32,34,65,77,99,104,130,154,156,165,198,220,264,315,330,336,504,630,840

18 19,27,38,51,54,68,91,96,102,117,176,182,195,231,234,260,308,312,390,396,
440,462,560,660,720,1260

20 25,50,57,76,85,108,114,136,160,170,204,208,273,364,385,468,495,520,528,

546,616,770,780,792,924,990,1008,1320,1680

22 23,46,75,95,100,119,135,143,150,152,153,190,216,224,228,238,255,270,286,

288,306,340,408,455,480,510,585,624,693,728,880,910,936,1092, 1155, 1170,
1386,1540,1560,1848,1980

24 69,92,133,138,171,189,200,266,272,285,300,342,357,378,380,429,456,476,

540,570,572,612,672,680,714,819,858,1020,1040,1232,1365,1584,1638,1820

0 10 0
0 0 1 0

@@= 0 00 1 (4.17)
-1 0 1 0

The Q-irreducible representations of Z,, are generated by the matrices
(d), dlm with d dividing m; the only faithful one is that generated by (m).
But can one obtain faithful reducible representations? Indeed any faithful
n-dimensional integral representation of Z,, is generated by the matrix A,, =
@;ci(k;) (the ¢;’s are the multiplicities of the matrices (k;)) where the set of
different integers k; satisfies the two conditions: ), ¢;o(k;) = n, lem;(k;) = m.

That establishes the “crystallographic condition”; we have proven more
since we know how to build all Q-inequivalent integral representations of the
cyclic subgroups of GL,,(Z). Their generators are all the possible matrices A,,;
they form a set of representatives of the conjugacy classes of the elements of
finite order of the group GL,(Q); they are called the geometric elements of
dimension n by the crystallographers. We shall use the Hermann notation®

5 In [60] Hermann did not impose to the matrices (k;) to be distinct, so it did not exhibit
the ¢;’s in the notation.
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TAB. 4.4 — Orders of transitive cyclic subgroups of point symmetry groups of
n-dimensional lattices. Only orders of transitive groups which do not appear in
lower dimensions are indicated for lattices of dimension n < 16.

allowed orders

n

1 1,2

2 3,4, 6

4 5,8, 10, 12

6 7,9, 14, 18

8 15, 16, 20, 24, 30

10 11, 22

12 13, 21, 26, 28, 36

14 -

16 17, 32, 34, 40, 48, 60

TAB. 4.5 — Number 7, of geometric elements in dimension n.

n 1 2 3 4 ) 6 7 8 9
Yn 2 6 10 24 38 78 118 224 330

(Hi kf) for the matrix A,, = ®;c;(k;). We summarize these results by the
theorem.

Theorem 4 The geometric classes of the cyclic point groups in dimension
n can be labeled by the Hermann symbols: (1], k") with . cio(k;) = n.
The order of the corresponding cyclic group is m = lem;(k;), the least common
multiple of the k;’s.

The last equality was introduced in Hermann’s paper [60] in the English
abstract (the paper is in German). For the dimension n, he called the cyclic
groups Z,, with ¢(m) = n transitive and called intransitive the cyclic groups
Zy, which are reducible on Q.

A list of orders of transitive cyclic groups which do not appear in smallest
dimensions is given in Table 4.4. It follows directly from inversion of the Euler
function (see Table 4.2).

We denote by ~,, the number of geometric elements of dimension n. In his
paper Hermann gave the value of ~,, for n < 6 and n = 8. Some values of v,
are listed in Table 4.5:

We illustrate the construction of all geometric elements on the example of
an 8-dimensional lattice. We look for different possible splitting of dimension
n = 8 into Z-irreducible blocks of dimension 8, 6, 4, 2, 1, and count the
number of different cyclic groups with a prescribed block structure.

i) First, there are five transitive groups represented by eight-dimensional
irreducible (over Z) integer matrices of orders: 15, 16, 20, 24, and 30.
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This follows from the inversion table of the Euler totient function
(see Table 4.4).

ii) Next, let us consider geometric elements having a 6-dimensional irre-
ducible (over Z) block and two one-dimensional or one two-dimensional
block. There are four different choices for a six-dimensional block -
elements of order 7, 9, 14, and 18 - as follows from Table 4.4. There
are three possibilities for two one-dimensional blocks, (12),(1.2), and
(22) and three possibilities for two-dimensional irreducible blocks,
(3),(4), and (6). Combining these six possibilities with four choices for
6-dimensional irreducible blocks we have 24 different elements.

iii) The mnext possibility is: two irreducible (over 7Z) blocks of
dimension 4. There are 10 different cases: (52), (82), (102), (122), (5.8),
(5.10), (5.12), (8.10), (8.12), and (10.12).

iv) One four-dimensional irreducible block can be combined with a four-
dimensional block formed in its turn from one and two-dimensional
blocks. For a four-dimensional block with structure 1111 there are five
elements (1), (13.2), (12.22), (1.2%), and (2%). A four-dimensional block
with structure 211 gives nine elements (m.12), (m.2.1), and (m.2?) with
m = 3,4,6. The block structure 22 corresponds to six elements (32),
(4%), (6%), (3.4), (3.6), and (4.6). After combination with four possibili-
ties for a 4-dimensional irreducible block we get 80 geometric elements.

v) Finally we need to analyze eight-dimensional blocks having at most two-
dimensional irreducible sub-blocks. There are 15 elements with block
structure 2222. There are 30 elements with block structure 22211, 30 ele-
ments with the block structure 221111; 21 elements with block structure
2111111, and nine elements with only one-dimensional blocks 11111111.

The total number of geometric elements for an eight-dimensional lattice is
equal to 224.

Since @(m) is even when m > 2, one obtains these classes for the odd
dimension 2n + 1 from those of the even dimension 2n by adding one of the
two one dimensional matrices (1) or (-1) of order 1, 2, respectively. To compute
the values of the table, or more, we define the following expressions:

Vam = the number of integers k satisfying the equation (k) = 2m and ng,z =
(”2’”;1‘““) (remark that 1/52 = Vo, ). We define also:

(2) (3)

o =1, po=wvo, pa=va+vy’', pug=vs+raa+vy ,
g = Vg + vgo + Vf) + y41/§2) + 1/54), e (4.18)
then
n
Y2n+1 — V2n = T2n = V2n — V2n—1; where 7, = Z H2m,- (419)

m=0
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Let us denote by p(m), the smallest n such that GL, (Q) contains a cyclic
group of order m. As a corollary of Theorem 4, when m is a power of a prime
number, p(m) = ¢(m); but when m is divisible by different primes one has
always the inequality® p(m) < ¢(m) as was noted first in [60]. Indeed the
value of p(m) is for all cases:

7

p(m) = (k> 2)p(2%) —I—Z(ppz (k > 2)2F~ 1+Z s — DplTt (4.20)

where p; are odd primes and (k > 2) is an example of a Boolean function;
its value is 1 or 0 depending whether the relation between the brackets is true
or false. Because p(m) is the sum of the ¢’s of the essential factors of m while
©(m) is their product, the more factors has m the smaller is p(m) compare
to ¢(m); examples p(210) = 12, ¢(210) = 48, p(2310) = 22, p(2310) = 480.
Notice also that (4.20) shows that the same orders of cyclic groups appear in
GL2,(Q) and G L3y, 11(Q).

Table 4.6 gives the list of the geometric elements for dimension 2, 3, and
4; they define the cyclic point groups in these dimensions. Table 4.7 gives
for even dimensions up to 10, the geometric elements whose order does not
appear in smaller dimensions.

6 Although many papers, books and dictionaries of mathematics (at the entry “crystal-
lography”) state the contrary. This error was already pointed to in [61].
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TAB. 4.6 — List of geometric elements in dimension 2, 3, 4. For each dimension,
we give first the Hermann notation, then the notation in [14] for n =2, 3; for n = 3
we give also the Schoenflies notation in [14] for the generated cyclic group; then the
values of the order of the elements, and the values of the independent coefficients of
the characteristic polynomial (defined in (4.12)); notation: t=trace, d=determinant.

O RC)

2 (19 (12 (@9 () @ ©

ITC 1 m 2 3 4 6

order 1 2 2 3 4 6

d=by 1 -1 1 1 1 1

t=—b 2 0 -2 -1 0 1

n=3 (13) (221) (3.1) (4.1) (6.1) (2%) (2.1%) (6.2) (4.2) (3.2)
ITC 1 2 3 4 6 1 m 3 4 6
SCH 1 Cy Cy Cy Cs C; Cs Oy Sy Csp
order 1 2 3 4 6 2 2 6 4 6
d= —bs 1 1 1 1 1 -1 -1 -1 -1 -1
t=—b 3 -1 0 1 2 -3 1 -2 -1 0
n=4 (1%) (13.2) (12.22) (1.23)  (2%) (3.12) (3?) (4.1%) (4.2.1) (4.2%)
order 1 2 2 2 2 3 3 4 4 4
d=by 1 -1 1 -1 1 1 1 1 -1 1
t=—b 4 2 0 -2 -4 1 -2 2 0 -2
b 6 0 -2 0 6 0 3 2 0 2
n=4  (4?) (3.2.1) (3.2%) (6.1%) (6.2.1) (6.2%) (6.3) (6%) (5 (8)
order 4 6 6 6 6 6 6 6 5 8
d=by 1 -1 1 1 -1 1 1 1 1 1
t=—b 0 -1 -3 1 0 -1 0 2 -1 0
ba 2 0 0 4 0 0 1 3 1 0
n=4 (10) (4.3) (6.4) (12)

order 10 12 12 12

d=by 1 1 1 1

t=—b 1 -1 1 0

ba 1 2 2 -1
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TAB. 4.7 — For each dimension given in the left part, the orders of cyclic groups
of GL2,(Q), 1 < n <5 which do not appear in a smaller dimension; in the right
part, the Hermann notation of a generator for each representation of this dimension

is given for the cyclic group with the new order.

iz, 0 )

2 3,4,6, (3)7(4)7(6)7

4 581012 (5):(8):(10): (12)(30)

6 7,9,14,15,18,20, (7);(9);(14);(3.5);(18
21,30, (3.8).(6.9): (3.10),(6

8 16,21,28,36, (16):(3.7): (4.7), (4.1
40,42, (5.8),(8.10);(6.7),(6.
60, (3.4.5),(3.4.10),(4 6.

10 11,22,35,45,48,56, (11);(22);(5,7); (5.9
70,72, (5.14),(10.14):(8.9),
84, (3.4.7),(3.4.14),(4.6.
90,120 (10.9),(10.18):(3.5.8

6), 8.7), (8.14),

),(12.7),(12.14);
,(6.5.8),(6.10.8);







Chapter 5

Lattices and their Voronoi
and Delone cells

In this section we study lattices from the point of view of their tilings by
polytopes.

5.1 Tilings by polytopes: some basic concepts

Definition: polytope A polytope P is a compact body with a nonempty
interior whose boundary 9P is the union of a finite number of facets, where
each facet is the (n — 1)-dimensional intersection of P with a hyperplane.

Two-dimensional polytopes are called polygons; three-dimensional poly-
topes are called polyhedra.

Definition: k-face (of a polytope) For k =0,...,n—2, a k-dimensional
face (or k-face, for short) of a polytope is an intersection of at least (n — k)
facets that is not contained in the interior of a j-face for any j > k.

Thus a 0-face of a polytope is a point that lies in the intersection of at
least n facets but not in the interior of any 1-face, 2-face, etc. As a customary,
we use the terms vertex and edge, respectively for the 0-dimensional and
1-dimensional faces of tiles, and facets for faces of dimension n — 1.

In the tilings we will study, the tiles will be convex polytopes in E™.
Remember that the polytope P is convex if P contains the line segments
joining any two points in P or on its boundary.

Definition: tiling A tiling 7 of E" is a partition of E™ into a countable
number of closed cells with non-overlapping interiors:

T={TTp,...}, JTi=E", imtT,nint T; =0 if i# j. (5.1)

The words tiling and tessellation are used interchangeably; similarly, tiles
are often called cells.

Definition: prototile set A prototile set P for a tiling 7 is a set of
polytopes such that every tile of 7 is an isometric copy of an element of P.
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F1G. 5.1 — Two-dimensional tiling with a single prototile T". Left: Corona of a
tile 7. Middle: Corona of a 1-face fi (facet) of a tiling. Right: Corona of a 0-face fo
(vertex) of a tiling.

When the prototile set contains a single tile T, the tiling is said to be mono-
hedral. A prototile set does not, in general, characterize a tiling completely.
Indeed a single prototile may admit different tilings. There are uncountably
many Penrose tilings of the plane with the same prototile set of two rhombs.

Definition: convex, facet-to-facet, locally finite (tilings) A convex
tiling is one whose tiles are convex. A tiling is said to be facet-to-facet if the
intersection of the interior of any two facets is either empty or coincides with
both facet interiors. A tiling is said to be locally finite if every ball in E™ of
finite radius meets only finitely many tiles.

We state without proof the important fact [59]:

Proposition 5 (Gruber and Ryshkov) A locally finite convex tiling in E™ is
facet-to-facet if and only if it is k-face-to-k-face (k=0,1,...,n—2).

Definition: corona of a k-face. Let fx be a k-face of a tiling 7, where
0 < k < n. The (first) corona of fi is the union of fi. and the tiles that meet it,
i.e., the tiles whose intersection with fi is nonempty. When k = 0, the corona
is called a vertex corona. When k = n (i.e. when fi is a tile T') the corona is
called the corona of T'.

Figure 5.1 shows different corona for an example of a two-dimensional
tiling.

Definition: parallelotope A convex prototile P of a monohedral tiling
in which the tiles are translates of P is called a parallelotope. Every convex
parallelotope admits a facet-to-facet tiling; this is a corollary of the Venkov-
McMullen’s theorem [92, 67] characterizing convex parallelotopes in arbitrary
dimension. To formulate this theorem, we need the concept of a belt:

Definition: belt A belt of a parallelotope P is a complete set of parallel
(n — 2)-faces of P.

Note that when n = 3, the (n — 2)-faces of P are edges. Figure 5.2 shows
the two belts of a hexagonal prism.

Theorem 5 (Venkov, McMullen) A convex polytope P is a parallelotope if
and only if it satisfies the following three conditions:

1. P is centrosymmetric;
2. all facets of P are centrosymmetric;
3. all belts of P have length four or six.
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F1G. 5.2 — Different belts for a hexagonal prism. Left: Belt formed by six edges, i.e.
by six (d — 2)-faces. Right: One of three belts formed by four edges.

Corollary 3 Of the five Platonic (regular) solids in E3, only the cube is a
parallelotope.

It follows immediately that all other Platonic solids have triangular or
pentagonal facets which are not centrosymmetric. (See figure 5.10.)

Central symmetry of faces implies also that within a belt the number of
(n — 2)-faces equals the number of facets.

5.1.1 Two- and three-dimensional parallelotopes

Two-dimensional parallelotopes are called parallelogons; in three dimen-
sions they are parallelohedra. Since a monohedral tiling of the plane by convex
polygons can have at most six edges, parallelogons are either parallelograms
or centrosymmetric hexagons. To characterize their combinatorial type it is
sufficient to use single labels indicating the number of edges (1-faces) or num-
ber of vertices (0-faces) which coincide. In order to use the same notation
for two-, three-, and arbitrary d-dimensional parallelohedra we prefer to use
symbols N(4_1).Ny indicating both, the number of facets, i.e. (d — 1)-faces,
and the number of 0-faces.

Two combinatorial types of two-dimensional parallelogons are therefore
4.4 and 6.6. They were described by Dirichlet in 1850 [45]. For n = 3 Fedorov
found five combinatorial types of parallelohedra in 1885 [12].1 We label combi-
natorial types of three-dimensional parallelohedra by N5.INy showing number
of 2-faces and of 0-faces of a parallelohedron. The five combinatorial types of
three-parallelohedra are: the cube 6.8, the hexagonal prism 8.12, the rhombic
dodecahedron 12.14, the elongated dodecahedron 12.18, and the truncated
octahedron 14.24. They are shown in Figures 5.4-5.8.

These five combinatorial types of parallelohedra can be related by the
operation consisting in shrinking one of the belts. Such operation is very

I In 1929 Delone found 51 combinatorial type for n = 4; this was corrected to 52 by
Shtogrin in 1972 [41, 87]. The number, 103769, of combinatorial types in five dimensions
was determined by Engel [51].
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14.24

12.18

/N

12.14 8.12

N

6.8 6.6

|~

44

F1G. 5.3 — Zone contraction family of three- and two-dimensional parallelohedra.
For three-dimensional polytopes the zone contraction can be equivalently described
as belt shrinking.

important for a general classification of parallelohedra in arbitrary dimen-
sion. But instead of belts (set of parallel (n — 2)-faces) one needs to consider
zones (the set of all edges (1-faces) parallel to a given vector). Obviously, for
three-dimensional parallelohedra zones are equivalent to belts. Nevertheless,
to be consistent with more general treatment we prefer to name the operation
of shrinking of belts for three-dimensional parallelohedra the zone contraction
operation. The zone contraction family of three-dimensional parallelohedra is
represented in Figure 5.3. It includes the zone contraction operation which
reduces three-dimensional polytopes to two-dimensional ones and also the
zone contraction between two-dimensional polytopes. Concrete geometrical
visualization of a zone contraction for all possible pairs of three-dimensional
Voronoi parallelohedra is shown in Figures 5.4-5.8. Contractions for three di-
mensional parallelohedra are complemented in Figure 5.3 by zone contraction
operations transforming three-dimensional cells into two-dimensional: These
are 8.12 — 6.6 and 6.8 — 4.4. Also there is one zone contraction between
two-dimensional cells: 6.6 — 4.4. Note, that with each zone contraction op-
eration we can associate inverse operation which is named zone extension.

5.2 Voronoi cells and Delone polytopes

We return to Delone sets A and to Voronoi cells and Delone polytopes
introduced briefly in Chapter 3.

First we note that the Voronol cells of the points of A tile E™; that is,
they fill E™ without gaps or overlapping interiors. We denote the tiling by 7y .
This follows from the fact that every point of E" is closer to a unique point
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F1G. 5.4 — Contraction of the 8.12 cell (hexagonal prism) into the 6.8 cell (cube).
Four edges shrink to zero, two quadrilateral facets disappear, two hexagonal facets
transform into quadrilateral ones. There are three 4-belts to shrink.

F1G. 5.5 — Contraction of the 12.18 cell (elongated dodecahedron) into the 12.14
cell (rhombic dodecahedron). Four edges shrink to zero and four hexagonal facets
transform into quadrilateral ones. There is only one 4-belt to shrink.

of A, or is equidistant from two or more of them. The tiling 7, is locally finite
and facet-to-facet.

Theorem 6 The vertices of the Voronot cells of A are the centers of its holes.
Proof. A vertex v of a Voronoi cell D(p) is the intersection of at least
n+ 1 hyperplanes bisecting the vectors from p to other points ¢1, ..., qr of A,

where k > n. Consequently, the distances r; = ... = r, = r between p and
qi, © = 1,...,k are all the same and v is the center of a ball of radius r.
By construction, there is no other point of A in this ball. O

Figure 5.9 illustrates construction of the Voronoi cell for a Delone set.
The construction consists of two steps:

i) construct the 2Ry star for a chosen point p,
ii) construct the orthogonal bisectors of the arms of the star.

Then the Voronoi cell is the intersection of the half-spaces containing p
determined by these bisectors.
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Fi1G. 5.6 — Contraction of the 12.18 cell (elongated dodecahedron) into the 8.12 cell
(hexagonal prism). Six edges shrink to zero and four quadrilateral faces disappear.
There are four 6-belts to shrink.

F1G. 5.7 — Contraction of the 12.14 cell (rhombic dodecahedron) into the 6.8 cell
(cube). Six edges shrink to zero and six quadrilateral facets disappear. There are
four 6-belts to shrink.

Definition: corona vector A vector f € A is said to be a corona vector
of the Voronoi cell D(o) if it joins o to the center of a Voronoi cell in the
corona of D(o).

We denote the set of corona vectors of D(0) by C,.

Definition: facet vector A facet vector f € A is a corona vector joining
o to a Voronoi cell with which it shares a facet.

Alternatively we can say that a vector f € A is a facet vector of the
Voronoi cell D(o) if a facet f of D(0) is contained in its orthogonal bisector.
We denote the set of facet vectors of D(o) by F,.

The equation of the bisecting hyperplane is ( j?, ) = %N (f). Thus the
Voronoi cell of the point o is the set

—

D(o) = {z € E"(Z, f) < =N(f), Vfe F}. (5.2)

DN | =

When z € 0D(0), equality must hold in (5.2) for at least one f € F.
The definition of facet vector does not imply that the midpoint % fef
it may lie outside of D(0). But %fe f when A is a lattice.



5. Lattices and their Voronoi and Delone cells 87

F1G. 5.8 — Contraction of the 14.24 cell (truncated octahedron) into the 12.18
cell (elongated dodecahedron). Six edges shrink to zero and two quadrilateral facets
disappear. Four hexagonal facets transform into quadrilateral facets. There are six
6-belts to shrink.

Fi1G. 5.9 — Construction of the Voronoi and Delone cells for a two-dimensional
Delone set.

Proposition 6 Let f;, be a k-face of D(0), 0 <k <n—1, and let o,p1,...,pm

be the centers of the Voronoi cells in its corona. The m vectors py,pa, ..., Pm
span an (n — k)-dimensional subspace E"~* orthogonal to £y, so fi, N E"~F is
a single point x,, and 0,p1,...,pm lie on a sphere in E"F centered at x,.

Proof. Since f}, is the intersection of at least n — k facets of D(0), and since
D(o) is convex and compact, the corresponding facet vectors span an (n — k)-
dimensional subspace of E™. Thus m > n — k. By construction, these vectors
and thus this subspace are orthogonal to f;. The intersection E"FNf,isa
single point x, (otherwise the points of fj could not all be equidistant from
0,P15--,Pm)- Thus 0,p1,...,pn, lie on a sphere about z,. O

Next we describe the Delone tiling Ay, obtained by connecting points
of A. This tiling was in fact first introduced by Voronoi; later it was thor-
oughly studied by Delone. Today it is known as the Delone tessellation
induced by A, except in Russian literature, where Delone tessellations are
called L-tessellations, the name that Voronoi had given them.

Definition: Delone polytope The Delone polytope of a hole of A is the
convex hull of the points of A that lie on its boundary.
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From this definition it follows immediately that the set Ay = A(z;,1;),
1 € Z of Delone polytopes is a facet-to-facet tiling of E™.

To make the connection with the Voronof tiling induced by A, we remem-
ber that the center of any empty hole must be a vertex of the Voronoi tiling.
For, the vertices y;, j = 1,...,k of A(z;,7;), all points of A lie on the sphere
about z; and are the closest points of A to x;. Thus x; belongs to the all
Voronoi cells D(y;). Since there are n + 1 independent points among the
vy, O D{y;) = {w:).

We will denote the Delone polytope associated with the vertex v of a
Voronof tiling by A(v), the set of vertices of D(0) by V(0), and the set of
vertices of the Voronoi tiling 7o by Vj.

Proposition 7 For each v € V(0), the polytope A(v) is circumscribable, and
so are its k-faces, k=10,...,n — 1.

Proof. The first statement follows immediately from the fact that the
vertices of D(o) lie on the boundary of an empty hole; the second is
immediate since the intersection of a ball with a plane of lower dimension
is again a ball. O

5.2.1 Primitive Delone sets

Definition: primitive (Delone set and Voronoi tessellation) A
Delone set and the Voronoi tessellation it induces are said to be primitive if
all of its Delone polytopes are simplices.

By the definition of the Delone polytope, we have

Proposition 8 A Delone set is primitive if and only if every vertex of the
Voronoi tessellation belongs to exactly n + 1 Voronoi cells.

More generally we have

Proposition 9 In the Voronoi tessellation of a primitive Delone set, every
k-face, k =0,...,n— 1 belongs to exactly n + 1 — k adjacent Voronoi cells.
Proof. Voronoi proved this proposition for the case when A is a lattice but
it is true more generally. If a k-face f}, is shared by exactly n+1—k cells, then
it lies in the intersection of exactly n+ 1 —k hyperplanes. Now let f(; 1) be a
(k+ 1)-face containing fy. It lies in the intersection of m < n — k hyperplanes,
and since it is (k + 1)-dimensional, we must have m = n — k. O

Proposition 10 Primitivity is generic.
Proof. Since n + 1 independent points determine a sphere in E™, any
additional points are redundant. O
Indeed in discrete geometry literature Delone tessellations are known as
Delone triangulations. In addition to “most” lattices, many other important
Delone sets are primitive.
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F1G. 5.10 — Examples of combinatorial duality of regular polyhedra. The tetrahe-
dron is auto-dual. The cube and octahedron are combinatorially dual. The icosahe-
dron and dodecahedron are also combinatorially dual.

5.3 Duality

We discussed dual lattices in Chapter 3. Here we introduce dual polytopes
and dual tilings, for which duality has a different meaning.

Definition: combinatorially dual convex polytopes Two convex
polytopes are said to be combinatorially dual if there is an inclusion-reversing
bijection between the k-faces of one and the (n — k)-faces of the other.

For example, the cube and the regular octahedron are combinatorially
dual, while the combinatorial dual of a tetrahedron is again a tetrahedron
(see figure 5.10).

Definition: orthogonally dual polytopes Two combinatorially dual
polytopes P and P’ are said to be orthogonally dual if the corresponding k
and (n — k)-faces are orthogonal.

Notice that we restrict these definitions to convex polytopes.

Duality for tilings is defined in an analogous way.

Definition: combinatorial and orthogonally dual tilings Two tilings
by convex prototiles are combinatorially dual if there is an inclusion-reversing
bijection between the k-faces of one and the (n — k)-faces of the other. When
the corresponding k and (n — k)-faces are mutually orthogonal, the duality is
said to be orthogonal.

Now we can formulate the duality relation between Voronoi and Delone
tilings.

Proposition 11 The tilings Ay and Ty are orthogonally dual.
Proof. This is an immediate consequence of Proposition 6. We select a
nested sequence of k-faces

D(o)>f>of,_2D---Dfy=w. (5.3)
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To construct an inclusion-reversing bijection ¢ between 75 and A,, we first
set 1(D(0)) = o. Let D(p1) be the Voronoi cell that shares f with D (o). Then

op1 = ﬂ A(v) (5-4)

vef

and hence op; is an edge of Ay, so we set ¥(f) = op;. Next we set

P(£,—2) = convex hull {o,p1,...,pm}, (5.5)

where D(p2), ..., D(pm) are the cells, in addition to D(o0) and D(p;), to which
f,,_2 belongs; this polygon is a 2-face of Ay. We continue in this way, taking
for ¥ (fy) the (n — k)-face of A, that is the convex hull of the points of A
whose Voronoi cells share fj,. Finally, the vertex v is associated to A(v). O

5.4 Voronoi and Delone cells of point lattices

5.4.1 Voronol cells

When a Delone set A is a regular system of points (point lattice), its
Voronoi tilings Vs is monohedral and we can speak of “the” Voronoi cell of
the set. Thus by the Voronoi cell of a point lattice we will mean the Voronol
cell of the origin, D(0). In this section we will discuss some of the fundamental
properties of Voronol cells of point lattices.

Since point lattices are orbits of translation groups, their Voronof cells are
parallelotopes. Since the Voronoi cell is the closure of a fundamental region
for the translation subgroup of the symmetry group of the lattice, the volume
of the Voronoi cell is equal to the volume of a lattice unit cell.

The Voronoi cell of a lattice is invariant under the lattice’s point symmetry

group.

Proposition 12 The point symmetry group of a lattice L with fized point o
is also the symmetry group of the Voronoi cell D(o); the full symmetry group
of L is the symmetry group of the Voronot tiling.

Proof. This follows immediately from the definition of D(o). O

Proposition 13 D(o0) and its facets are centrosymmetric.

Proof. Every lattice point is a center of symmetry for the lattice; thus D(o)
is centrosymmetric by construction. The midpoint between any pair of lattice
points is also a center of symmetry for L; in particular if f is a facet vector,
then % f is a center of symmetry for L. Thus it is the center of symmetry of

D(o) U D(f) and of D(0) N D(f), and hence %fis the center of symmetry for
the facet f. O

Note: The k-faces of D(0), 2 < k < n — 2, need not be centrosymmetric;
for example, there are lattices in E* whose Voronoi cells have triangular or
pentagonal 2-faces.
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Since every point of D(0) is a representative of a coset of L in R™, we can
reformulate the definition of D(0) in the following way.

Proposition 14 The Voronoi cell of a lattice in E™ is the set of vectors
T € E™ of minimal norm in their L-coset T + L:

— —

D, ={Fe€ E"|N(Z) < N(@@—1), Vl € L}. (5.6)

The interior points are unique in their coset but two or more boundary points
may belong to the same coset: for example, if x is a point on the boundary
0D(o0) of the Voronoi cell, then so is —z and these points are congruent

modulo L. This point = belongs to at least one intersection D(o) N D(f), and
translation by —f carries that intersection, and with it z, to D(—f) N D(o),

5.4.2 Delone polytopes

As in the case of general Delone sets, the tiles of the Delone tessellation
induced by a lattice are convex polytopes whose vertices are the lattice points
lying on the boundaries of empty spheres and the Delone and Voronoi tessel-
lations are dual.

In general the Delone tiling has several prototiles. However, when n = 2,
not only is the tiling monohedral, it is isohedral, i.e. the tiles form an orbit of
the symmetry group of the tiling.

Proposition 15 The Delone tiling associated to a lattice L in E? is isohedral.

Proof. Since the midpoints of the edges of the Voronoi cell of L in E? are
centers of symmetry for L, any pair of adjacent vertices can be interchanged
by inversion in the center of the edge joining them. Thus all the vertices of
the Voronof cell are equivalent under the symmetry group of the lattice, from
which it follows that the Delone cells corresponding to the vertices of D(o)
are equivalent too. (|

5.4.3 Primitive lattices

Primitive Voronoi cells have received the most attention in the context
of both lattices and quadratic forms. This is mainly due to the fact that the
primitivity is generic. The relation to quadratic forms will be discussed in the
next chapter. Here we describe several simple properties of primitive lattices.

Applying the definition of primitivity of Delone sets (see 5.2.1) to the
lattice we get the following obvious statement:

Proposition 16 A lattice L is primitive if and only if all its Delone cells are
simplices.

When D(o) is primitive, exactly n + k — 1 Voronoi cells of the Voronoi
tessellation share a given k-face, K =0,...,n — 1.
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F1G. 5.11 — Ilustration to Proposition 17. Left: Primitive two-dimensional lattice
with its Voronol cell whose vertices are situated in the centers of holes. Right:
The same lattice with the Voronof cell (shaded region with boundary), the dual to
the Voronoi cell (dash line), and the Delone corona.

Definition: Delone corona The set of Delone cells that share the vertex
o (the origin) is called the Delone corona of the lattice L.

Proposition 17 If L is primitive, then the Delone corona of L is a scaled
copy of the polytope dual to the Voronoi cell D(o).

This proposition is illustrated in figure 5.11.

We denote Vy, the set of vertices of the Voronoi tiling of L. It is easy to
check that Vy, is a Delone set. The minimum distance between vertices of D(o)
can be taken as ry, whereas Ry can be chosen to be the length of the longest
vertex vector of D(0). Recall that when D(o) is primitive, exactly (n —k+ 1)
Voronof cells of the Voronoi tessellation share a given k-face, k =0,...,n—1.

For each k, 0 < k < n, the set of k-faces of a lattice Voronoi tessellation
belongs to a finite number of orbits of the translation group of the lattice;
in general, each Voronoi cell contains several elements of each orbit. Let fj
be a k-face of D(0) and let {¢,}, 1 < m < n — k, be the set of vectors
corresponding to the centers of the other n — k& Voronoi cells which share
this k-face with D(0). Each translation —¢, transforms D(c,,) into D(0) and
therefore fj, into f;, — é&,,, another k-face of the Voronoi cell D(0). Conversely,
if f] is a k-face of D(0), where | +t = f; for some # € L, then fj, is a k-face
of D(t). Thus we have

Proposition 18 Fach k-face of a primitive Voronoi cell D(0) is equivalent,
under translations of L, to exactly n — k other k-faces of D(0).

This means that the number of k-faces of a primitive Voronoi cell should
be a multiple of n — k+ 1. In fact for 0 < k < n — 1, it should be proportional
to 2(n — k + 1) (see proposition 29).

The set Vi, can be decomposed into L-orbits. Selecting one Delone cell
from each orbit, we have the closure of a fundamental region of L, and so the
volume of the union of these Delone cells must be equal to the volume of the
lattice introduced in (3.2) as vol(L) = | det(¢;)|.
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Moreover the set C'(0) = Uyey (0)A(v) is the union of n + 1 fundamental
domains; hence the value of the invariant vol(L) for all primitive lattices is
equal to (n+1):

Proposition 19 When L is primitive,
vol(L) = volC(o)/vol(D) = n + 1. (5.7)

Any vertex of the Voronoi cell of a primitive lattice L belongs to exactly
n facets of that cell; since the corresponding facet vectors are linearly inde-
pendent, these vectors form a basis of E™ though they may generate only
a sub-lattice I'. But there are many primitive lattices for which this set of
vectors is a basis. For example, this is the case for the primitive lattices in
E? E3, and E*.

Definition: principal primitive A primitive lattice, and its Voronoi
cell, is said to be principal primitive if for each vertex of the cell, the facet
vectors of the n facets meeting at this vertex form a basis of the lattice.

The Delone cells of principal primitive lattices are simplices whose edges
issuing from 0 are the edges of a unit cell for L. Thus all these simplices have
the same volume, vol(simplex(zg, ..., z,)) = det(L)/n!.

Proposition 20 A principal primitive Voronoi cell has (n + 1)! vertices.
Proof. When all Delone cells have the same volume volA(v), denoting the
number of vertices of the Voronot cell V' by Ny(V'), we have

No(V)  det(L)
n+1  volA(v)

=nl. (5.8)

Corollary 4 A principal primitive Voronot cell has (n + 1)! n/2 edges.

Proof. Exactly n edges of the cell meet at each vertex, and each edge has
two vertices. O

Taking into account that the Euler characteristic for a n-dimensional poly-
tope is 1 — (—1)™ and it is expressed as an alternative sum of the numbers of
k-faces of an n-polytope, Ny (n), namely > o<, (—=1)FNg(n) =1—(-1)",
we can find immediately the number of faces for 3-dimensional principal prim-
itive polytopes. The table 5.1 gives values of Ni(n) for n = 2,3,4 for prin-
cipal primitive polytopes. Note, that for n = 2,3,4 all primitive polytopes
are principal. Additional topological restrictions on the numbers of k-faces for
primitive higher dimensional polytopes will be discussed in the next chapter
(see section 6.4).

5.5 Classification of corona vectors

In the geometry (and the algebra) of lattices, one is interested in the
set of vectors that are (relatively) short. Historically, the vectors of minimum
length have received the most attention. Here we consider three sets of “short”
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TAB. 5.1 — Values of the number of k-faces, Ni(n) for n-dimensional primitive
polytopes for n = 2,3, 4.

n No(n) Ni(n) Ny(n) Ns3(n)
2 6 6

3 24 36 14

4 120 240 150 30

vectors, all defined in terms of the Voronoi cell of the lattice. We begin with
the largest of these sets, the corona vectors of the lattice.

5.5.1 Corona vectors for lattices

The corona of a tile T in a tiling is defined in section 5.1. When T is the
Voronof cell D(0) of a lattice then every tile in the corona is associated to a
lattice vector.

Definition: corona vector The corona vectors of a lattice L are the
vectors € from o to the centers ¢ of the cells comprising the corona of the
Voronof cell D(o).

Proposition 21 A lattice vector ¢ € L is a corona vector if and only if
1¢€ 0D(o).

Proof. Let ¢ be a corona vector. Let I(o,¢) = D(o) N D(c). Then I(o,c) #
0, and it is convex because D(o) and D(c) are convex. The midpoint 1¢ is
a center of symmetry of the lattice that interchanges D(o) and D(c) and
hence stabilizes I(o,c), and again by convexity, £¢ € I(o0,c). The converse is
immediate by the definition of the corona vector. O

Corollary 5 ¢ € L is a corona vector if and only if %é’ is the center of
symmetry of the nonempty intersection D (o) N D(c).

Corollary 6 If a k-face of D(0) does not contain a center of symmetry, then
any tile that shares that k-face also shares one of higher dimension.
We denote the set of corona vectors of L by C.

Proposition 22 The number of corona vectors is even.
Proof. Since D(o) is centrosymmetric, ¢ € D(0) «» —3¢ € dD(0o). O

Theorem 7 ¢ is a corona vector of L if and only if it is a vector of minimal

norm in its L/2L coset.
Proof. By definition,

Proposition 21,

%E’ belongs to the Voronoi cell of o and so, by

—

1 .
feCo N (25> <N(e/2-10), VielL. (5.9)
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Thus
FeCo N@<N@-20), Viel, (5.10)

i.e. Cis a vector of minimal norm in its L/2L coset. O

Note that ¢ and ¢’ are two vectors of the same length and ¢— ¢’ € 2L if
and only if £(¢—¢') € L. In this case, ¢’ is the image of ¢ through the center
of symmetry $(¢— ¢'). With this observation it is easy to prove (Theorem 8
below) that if £¢ are the only vectors of minimal length in their L/2L coset,
then they are facet vectors.

The corona vectors of a lattice are of special interest because they encode
many of its properties.

Proposition 23 A corona vector is the shortest lattice vector in its mL coset
for all integers m > 3.

Proof. If € C and & # 0, then N(¢+2%) — N(¢) > 0, so (¢, %)+ N (&) > 0.
Then

N(Z+mZ) — N(&) = 2m(E, ) + m2N ()
— m(2(E.8) + mN (@) = m(2((&,7) + N(@) + (m - 2)N(@)) (5.11)

which is positive for m > 2. Thus N (@) < N(¢+ mZ). O
Note that when m > 2, ¢ and —¢ do not belong to the same mL coset.

Proposition 24 The set C is the set of vertices (except o) of the Delone
corona of o.

Proof. The Delone corona of 0 is U, cy (o)A (v). For each such v, the vertices
of A(v) are the centers of the Voronoi cells that meet at v, and thus by
definition the vertices of A(v) are corona vectors. Conversely, every corona
vector is a vertex of some A(v), v € V(o). O

5.5.2 The subsets S and F of the set C of corona vectors

We distinguish now two important subsets of the set C of corona vectors
of a lattice L.

e The set S of vectors of minimal norm s in L, i.e. the set of shortest
vectors.

e The set F of facet vectors of the Voronoi cell.

We have already noted the simple criterion for determining whether a
lattice vector is an element of F.

Theorem 8 (Voronoi). The following conditions on ¢ € C are equivalent:

i) £¢ are the facet vectors;

ii) £ are the shortest vectors in their L/2L coset;
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iii) (€,0) < N(V) YU e L, ¥#0, T # ¢;
w) the closed ball B, /5(|4¢l) contains no points of L other than o and c.

Proof.
ii) = i). Assume = are the shortest vectors in their L/2L coset. Let f be
a facet containing %E’ Then the image of %E’ through the center

of symmetry %fis ic’ = f— 1¢, and hence N(¢’) = N(¢) and

¢’ = 2f — & Thus our hypothesis implies ¢’ = ¢ or ¢’ = —¢.
Ifé’ = ¢ %E’ was fixed by this symmetry and hence ¢ = f.
The case ¢’ = —c is impossible, since in that case %E’ and —%E’

would lie in the same facet of D(0). Thus ¢ is a facet vector, and
the same argument works for —c.

i) = ii). Conversely, assume that ¢ is a facet vector. Then 3¢ is the center
of a facet and so is closer to ¢ and to o than to any other points of
L. That is,

R S 1 1 r
Ve Ll #0, N(2E> <N(25—€>. (5.12)
Again the same argument works for —¢, so £¢ are the shortest
vectors in their 2L coset.

ii) = iii). This is equivalent to condition N(¢) < N(¢—27),Vv € L, 7 # 0,#
C.

i) = iv). If ¢/2 is the center of a facet, then it is equidistant from o and ¢
and all other points of L are farther away. But any lattice point
w in B./5(|3¢]) would be at least as close, a contradiction. The
converse is obvious. O

Corollary 7S C F CC.

Proof. By the definition of a facet vector, F C C. It is also obvious that
S C C, since S vectors have minimal norm in L and hence also in the L/2L
cosets to which they belong. To show that & C F, we prove that no two S
vectors §1, 8o, §1 # +85, can belong to the same L/2L coset. Let 6 be the
angle between 57 and Sp; we may assume 0 < 0 < 7. If §] = §5 4 2y for some
y € L, we have (§; — §2) =y € L, and

N<81282> :3(170056)<s, (5.13)

where s is the norm of the vectors in S. This is a contradiction. Thus
SCF. O

There is exactly one planar lattice for which § = F = C: the hexagonal
lattice, whose Voronoi cell is a regular hexagon. Surprisingly, there are no
examples in any higher dimension.
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We next study some key properties of F. The next two propositions are
due to Minkowski [78].

Proposition 25 (Minkowski). 2n < |F| < 2(2™ —1).

Proof. The lower bound is implied by the centrosymmetry of D(o).
The 2™ cosets of 2L in L have as coset representatives the vectors {(ey,...,€e,)}
where ¢; € {0,1}. Since if f € F the only other facet vector in its L/2L coset
is — f, the maximum number of face vectors is twice the number of cosets,
excluding of cause the 0-coset. g

Proposition 26 (Minkowski). 2(2™ —1) <|C| < 3™ —1.

Proof. The lower bound follows from the fact that every L/2L coset
contains at least two corona vectors. The upper bound is a corollary of
Proposition 23 since there are 3™ cosets of 3L in L, one of which is repre-
sented by 0. O

The upper bound is attained in every dimension by the cubic lattice, whose
Voronoi cell is the unit n-cube. To calculate the number of corona vectors for
cubic lattices the notion of k-vector is useful.

Definition: k-vector. A vector ¢ € C is a k-vector if %E’ lies in the
interior of a k-face of D(o0), that is if it lies in the intersection of exactly n —k
independent facets.

For cubic lattices, the vector ¢ is a k-vector if and only if ¢, = +1 for
exactly n — k values of ¢ and is equal to 0 for all the others. Thus, since we
do not include the 0-coset, the number of corona vectors for a n-dimensional

cubic lattice is .
C|22k(nﬁk>13"1. (5.14)
k=0

If L is primitive then F = C and L has exactly 2(2" — 1) < 3™ — 1 corona
vectors (n > 2).

Taking into account that |F| is maximal if and only if F contains a repre-
sentative of every L/2L coset (except 0), we get

Proposition 27 |F| is maximal if and only if F = C.

Lattices with maximal |F| are not necessarily primitive: if D(o) has “few”
vertices then some of them will be an intersection of more than n facets (this
occurs first when n = 4, see example in subsection 6.4.1). However, if |F]| is
maximal and the number of facets at each vertex of D(0) is minimal, then L
is primitive. More precisely,

Proposition 28 L is primitive if and only if |F| is mazimal and exactly n
facets of D(o) meet at each vertex.

Proof. Suppose that L is primitive. Then every Delone cell is a sim-
plex. Since at least n facets of D(0) must meet at every vertex, all of the
vertices of the Delone cell, except o, correspond to facet vectors, so |F| is
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maximal. Conversely, if |F| is maximal and exactly n facets meet at each ver-
tex, then every corona vector is a facet vector and hence the Delone cells are
simplices. O

Denoting the number of k-faces of the Voronoi cell of an n-dimensional
primitive lattice by Ng(n), we have:

Proposition 29 For a primitive lattice, Ni(n) is a multiple of 2(n + 1 — k)
for0<k<n-—1.

Proof. Proposition 18 shows that this number is a multiple of n + 1 — k.
Consider a k-face f;, and its image f;, = —f;, through the origin. If f; and f],
belong to the same translation orbit, there would be a translation —¢ carrying
f), into f. Then %E’E f;,. Soc e C,but ¢ ¢ F since k < n—1. This is impossible,
since C = F. So fj, and f], belong to two distinct translation orbits. Thus when
a Voronof cell is primitive, the k-faces belong to an even number of translation
orbits, each containing (n + 1 — k) k-faces of the cell. O

Proposition 30 In any lattice, the vectors of norm less than 2s are facet
vectors, where s is the minimal norm of the lattice.

Proof. Let N(v7) < 2s; we will show that there is no ¥ in the same L/2L
coset with norm N(72) < 2s. Assume N (¥h) < 2s and ) — U2 = ¢, § € L.
Then

N (@ — 72) = N(2§) = AN(7) > 45, (5.15)

SO
4s S N('l_}a — 172) = N(’l_jl) + N(UQ) - 1('[71,’[72) S 4s — 1(’[71172) (516)

Choosing U2 so that (¥1,72) > 0 - that is replacing v by —5 if necessary -
we have a contradiction. Thus ¥ is a facet vector. O

Corollary 8 A wvector of norm 2s is a corona vector.
Proof. It follows from the proof of the preceding proposition that no vectors
of norm 2s can be in the same L/2L coset as a shorter vector. 0

Corollary 9 The vectors of norm 2s in the same L/2L coset are pairwise
orthogonal.

Proof. Let N(¥) = 2s; we will show that if there is a ¥ in the same 2L
coset with norm N (v3) = 2s and U2 # ¥4, then (¥, v2) = 0. Let 01 — 0y = 2y,
y € L. Then again (5.15) and (5.16) takes place. Since if (¢, 72) # 0 we can
replace Uy by —¥s if necessary and to assure that (0;,72) > 0, we must have
(th,02) = 0. 0

The following criterium, due to Venkov, allows us to distinguish the facet
vectors among the vectors of norm 2s.

Proposition 31 A vector of norm 2s is a facet vector if and only if it is not
a sum of two orthogonal vectors of S.
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Proof. Let 81,55 € S where (81, 52) = 0. Then the four vectors 4(85 + 55)
all have norm 2s and belong to the same L/2L coset, so they cannot be facet
vectors. Conversely, if N(+¢;) = 2s but +¢; ¢ F then there are vectors +¢;
orthogonal to +¢; and in the same 2L coset. Then the four lattice vectors
:I:%(E’l =+ ¢3) are elements of S and form two orthogonal opposite pairs, and
=L@+ + 1@ -8). O

The following obvious remark is also very useful:

Proposition 32 F generates L.

Proof. Since the Voronoi tesselation is facet-to-facet, we can pass from
any cell, say D(0) to any other, say D(z), by a path that does not intersect
the boundary of any face. This path defines a sequence of facet vectors from
oto x. 0

The set S of shortest vectors may not generate L, even if it spans the
whole E™. Also note that a generating set need not include a basis. For
example, the integers 2 and 3 generate Z but neither 2 or 3 does. When
n > 9, there exist lattices in E™ generated by & which have no basis in
that set. The first example, in 11 dimensions, was found by Conway and
Sloane [36].

5.5.3 A lattice without a basis of minimal vectors

Conway and Sloane have proved in [36] that the 11-dimensional lattice
with Gram matrix

60 ) ) 5 5) 5 —12 -—-12 -—-12 -12 -7
) 60 ) ) 5 5 —12 -—-12 -12 -12 -7
) 5 60 ) 5 5 —12 —-12 -12 -12 -7
) 5 ) 60 5 5 —12 -12 -12 -12 -7
5 ) ) 5 60 5 —-12 —-12 -12 -—-12 -7

5 5 5 5 5 60 —12 —12 —12 —12 -7
12 —12 -12 —-12 -12 -12 60 -1 -1 —1 —13
12 —12 -12 —-12 —-12 -12 -1 60 -1 —1 —13
~12 —12 -12 -12 —-12 -12 -1 -1 60 —1 —13
~12 —12 -12 —-12 —-12 -12 -1 -1 -1 60 —13
-7 -7 =T -7 -7 -7 13 -13 —13 -13 96

(5.17)

has minimal norm 60, is generated by its 24 minimal vectors, but no set of 11
minimal vectors forms a basis.

We want just to use this example to illustrate relations between facet
vectors and shortest vectors of the lattice. We note that for the lat-
tice (5.17) all lattice vectors with norm less than 120 are facet vectors.
In particular, the basis in which the Gram matrix is written is formed by
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facet vectors. Numerical calculations made by Engel (private communica-
tion) show that there are 2974 facet vectors. The maximal norm for facet
vectors is 168. The minimal norm of lattice vectors which are not facet vec-
tors is 122. There are 20 lattice vectors with norm 122 which are not facet
vectors.

We do not touch here the question of existence of a basis of facet
vectors conjectured by Voronoi and discussed later on several occasions
[66, 52, 53|.



Chapter 6

Lattices and positive quadratic
forms

6.1 Introduction

Previous chapters were devoted to the study of lattices from the point of view
of their symmetry and their Voronoi and Delone cells. This analysis was done
essentially without explicit introduction of the basis in the ambient Euclidean
space, E™. Now we return to the study of lattices through associated positive
quadratic forms. This approach requires us to introduce initially a lattice basis
and to represent the translation lattice A™ in this basis

A" = {t[t = t1by + - + tobn, t; € Z}. (6.1)

Here {I_);} is a basis of E". From the associated scalar products one can form
the Gram matrix Q:

gij = (bi,b;); Q=BB' =Q". (6.2)
Using the dual basis, defined in section 3.4 we obtain
QL") =Q(L)~". (6.3)

We emphasize that the bases in the same orbit of the orthogonal group have
the same Gram matrix; indeed VS € O,, BST(BST)" = BSTSBT = BBT,
so Q) describes the intrinsic lattice.

This symmetric matrix () defines also a positive quadratic form q(i) on
E™ and, in particular on L, the lattice generated by the basis {I_);},

N(0) = q(l) ==Y Nigizh, (6.4)

where ¢ = S Aibi. Conversely, given the Gram matrix @), one can recon-
struct the intrinsic lattice.
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Real quadratic forms in n variables and, equivalently, n X n real symmetric
matrices ), form a group under addition and they can be considered as ele-
ments of the vector space Q,, ~ R, where N = n(n+1)/2. This vector space
Q,, carries a natural orthogonal scalar product (Q,Q) = trQQ" = trQ’Q.
Since the sum of two positive quadratic forms is again a positive quadratic
form, the set of n-variable positive quadratic forms is the interior C4(Q,,) of a
convex closed cone C, (Q,,). Notice that C;(Q,,) can be identified as the orbit
space of the manifold B,, of bases under the action of the orthogonal group:

Bo|Op = GLo(R) : Op = C4 (Qn). (6.5)

By a change of lattice basis, 5; = Zj mijgj, M € GL,(Z), the Gram matrix
Q is changed into the matrix:

Q— M.Q=MQM"'. (6.6)
6.6)

So an intrinsic lattice corresponds to an orbit of GL,(Z) acting by (6.
on C4(Q,). The problem of choosing a fundamental domain for the GL,,(Z)
action on positive quadratic forms is equivalent to construction of the so called
reduced forms. Also the overall scaling is unimportant for the study of intrinsic
lattices. Therefore, it is possible to restrict analysis to appropriate sections of
the cone, whose dimension is n(n + 1)/2 — 1.

For two-dimensional lattices the corresponding cone of positive quadratic
forms is three-dimensional, it can be easily visualized (see figure 6.1). More-
over, what we really need to look for in the case of quadratic forms in two
variables is the two-dimensional section of the cone of positive quadratic forms
represented, for example, in figure 6.2 where stratification of the cone is shown.
Although the case of quadratic forms in two variables and associated two-
dimensional lattices do not possess many complications arising for higher
dimensional quadratic forms and lattices, it is quite instructive to study this
particular case especially due to the possibility of visualization of correspond-
ing structures.

6.2 Two dimensional quadratic forms
and lattices

6.2.1 The GLy(Z) orbits on C,(Q3)

The strata of the action of GLy(Z) on C4(Qz) are the Bravais classes (see
section 4.3 for initial definitions and chapter 8 for further details).

The three dimensional generic stratum represents the Bravais class p2 =
Zs. After restriction to a section of the cone (see Figure 6.2) we see only a
two-dimensional generic stratum.

Strata with stabilizers p2mm and ¢2mm are represented by one-
dimensional lines on the section. On the whole cone of positive quadratic
forms these strata are two-dimensional.
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F1G. 6.1 — Representation of the cone of positive quadratic forms depending on
two variables. Only interior points correspond to positive quadratic forms. The cone
is divided into sub-cones with a given combinatorial type of Voronoi cell by planes
passing through a vertex of the cone. One of such planes is shown by a dark shading.
The cone is cut by the plane orthogonal to the axis. The traces of walls on this
plane are shown by thick black lines. The number of walls is infinite and only a
small number of walls is shown. Points on walls correspond to rectangular Voronoi
cells. Generic points represent 2-dimensional lattices with the Voronoi cell being a
parallelogon with six edges. Each generic region is further stratified by the action
of the GL(2,Z) group. The fundamental domain of GL(2,Z) action consists of a
sixth part of a generic domain together with its boundary. It is shown in figure as a
lightly shaded region with its boundary.

From the partial ordering of Bravais classes (see section 4.4, Figures 4.6,
4.7) we know that pdmm is generated by p2mm and ¢2mm. Consequently,
in Figure 6.2 the point at the intersection of p2mm and c2mm lines should
correspond to a pdmm Bravais class. For the 3d-cone, the pdmm stratum
is one-dimensional. It corresponds to intersections of the p2mm and c2mm
planes. Similarly, the p6mm-invariant lattices appear at intersections of three
c2mm invariant strata. On Figure 6.2 the p6mm stratum is shown as a system
of isolated points whereas for the 3d-cone it is represented as a system of one-
dimensional rays going through the cone vertex.

In order to construct the fundamental domain of the GLy(Z) action it
is sufficient to choose one triangular domain (for example that shown in
Figure 6.1 by light hatching) with its three boundaries but without a point
belonging to the boundary of the cone.

Along with symmetry induced stratification of the cone of positive
quadratic forms it is useful to look for a combinatorial classification of the
Voronoi cells of corresponding lattices. We know that for two-dimensional
lattices there are only two combinatorial types of Voronoi cells: hexagons for
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¢ p4mm

®  p6mm
p2

---  c2mm

—  p2mm

F1a. 6.2 — Representation of the section of the cone of positive quadratic forms
depending on two variables. Stratification by the action of GL(2,Z7) into Bravais
classes is shown. The fundamental domain includes a two-dimensional stratum
(p2 lattices); two one-dimensional strata (c2mm and p2mm); and two zero-
dimensional strata (pdmm and p6mm),

the generic primitive case and rectangles for non-primitive case. Rectangu-
lar Voronofi cells are compatible only with p2mm and pdmm symmetry. This
means that from the point of view of combinatorial classification big trian-
gular domains in Figure 6.2 formed by p2mm boundary lines have in their
interior points associated with primitive lattices (hexagon cells), whereas their
boundaries (except vertices lying on the boundary of the cone) correspond to
non-primitive lattices with rectangular Voronoi cells. Each such triangular
domain consists of six fundamental regions of GL2(Z) action, intersecting at
their boundaries.

6.2.2 Graphical representation of GL2(Z) transformation
on the cone of positive quadratic forms

Remember that the action of a GLy(Z) element represented by matrix B =

( 211 212 >, satisfying condition b11b2s — bizbor = +1, on matrix @ =
21 bao

. G2 is written as
21 Q22

Q—Q =BQBT, (6.7)
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[1,-1,1]
4
// / [4,-2,1]

[9,-3,1]

[0,0,1] 4ASAYSESERSAYATSENTAT LS y [1,0,0]

---¢c2mm

— p2mm

F1G. 6.3 — The action of B; transformation on the section of the cone of quadratic
forms. Triangular domains shown by different shadings transform consecutively one
into another in a clockwise direction around the point [1,0,0] under B; action.
Transformation of all other domains follows by applying the continuity arguments
and invariance of combinatorial type under transformation. By * action corresponds
to counterclockwise transformation of consecutive triangular domains around the
same point [1,0,0].

where BT is the transposed matrix. The determinant of @ is invariant
under GLy(Z) transformation. But on the representative section of the cone
each point is denoted by the [¢11, q12, g22] symbol which refers to the whole
ray of quadratic forms with all possible determinants. The [g11, 12, ¢22]
parameterization of points and lines used in Figures 6.3-6.5 is concretized
in subsection 6.2.3 and Table 6.1.

GL2(Z) transformation is a continuous transformation of the disk rep-
resenting the section of the cone of positive quadratic forms. Necessarily, it
transforms each connected domain of one combinatorial (or symmetry) type
into a domain of the same type and its boundaries into the respective bound-
aries. So to see the automorphism of the disk under the action of a concrete
element of the GL2(Z) group, it is sufficient to study the transformation prop-
erties of special points being the vertices of domains of a given combinatorial

type.
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[,_1’1]

[0,0,1] 8 9a0a SR [1.0.0]

: -- ¢2mm
[1,1,1] — p2mm

F1aG. 6.4 — The action of Bs transformation on the section of the cone of quadratic
forms. Triangular domains shown by different shadings transform consecutively one
into another in a clockwise direction around the point [0,0,1] under Bz action.
Transformation of all other domains follows by applying the continuity arguments
and invariance of combinatorial type under transformation.

Let us study the automorphism of the disk under the action of By =

1 -1 o 1 (11
( 0 1 > and its inverse B, ~ = ( 01 )

The point [1,0,0] is invariant under B; action. The orbit of the point
[0,0, 1] under the action of B; includes an infinite number of points which are
obviously situated on the boundary of the disk

(5 (0O (L) = (5 ) ey

Expression (6.8) is valid for any integer K value, positive or negative. From
this transformation formula we see immediately that, for example, the trian-
gle ([1,0,0],[0,0,1],[1,1,1]) transforms under the action of B; into triangle
([1,0,0],[1,-1,1],]0,0,1]), then under the repeated action to triangle ([1,0, 0],
[4,-2,1], [1,—1,1]), next to triangle ([1,0,0],[9,—-3,1],[4,—2,1]), etc.
Figure 6.3 shows schematically these transformations.

In a similar way we can study the automorphism of the disk under the

. (10 . -1 _( 1 0
action ofBg—<1 1>and its inverse B, _<_1 1 )
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7 -- c2mm
[1,1,1] — p2mm

1—)4:R1; 1—)2132R0; 1—)5:R132R0;
1 %3232 R(Ry; 1 —)62R132R1R0.

F1G. 6.5 — Examples of GL2(Z) elements realizing transformation between six equiv-
alent sub-domains of the same connected combinatorial domain. Six sub-domains
are labeled by big bold numbers 1,2,3,4,5, and 6.

Now the point [0,0,1] is invariant under the By action. The orbit of the
point [1,0,0] under the action of By consists again in an infinite number of
points situated on the boundary of the disk,

GO GDGY (&) e

Expression (6.9) allows us to construct a graphical visualization of the Bs
transformation shown in Figure 6.4 and to see, in particular, that the tri-
angle ([0,0,1], [1,0,0], [1,—1,1]) transforms under By action into triangle
([o,0,1],[1,1,1],[1,0,0]), then under the repeated action to triangle ([0, 0, 1],
[1,2,4], [1,1,1]), next to triangle ([0,0, 1], [1,3,9], [1,2,4]), etc.

Along with transformation of points we can directly analyze transforma-
tion of lines. For example, we can find the image of the line ¢;2 = 0 (cor-
responding to the p2mm invariant boundary between generic combinatorial
domains) under the action of B,

10 g1 0 I K\ _ q11 Kqi1 (6.10)
K 1 0 g 0 1 Kqi K?qui+aq» )’ ’
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TAB. 6.1 — [¢q11,q12, g22] parameterization of several lines on the section of cone of
positive quadratic forms together with points lying on them and the combinatorial
type of corresponding Voronof cell.

Line Points on line Combinatorial type
G2 =0 [0,0,1]; [1,0,0] Lcell
qi2—q11 =0 [0,0,1]; [1,1,1] 4-cell
qi2 —q22 =0 [1,0,0]; [1,1,1] 4-cell
qi2+q1 =0 [0,0,1]; [1,—1,1] 4-cell
qi2 +qo2 =0 [1,0,0]; [1,—1,1] 4-cell
Q12 — 2q11 = 0 0,0,1]; [1,2,4] A-cell
q12 — 2q22 =0 [1,0,0]; [4,2,1] 4-cell
qi2 +2g11 =0 [0,0,1]; [1,-2,4] 4-cell
qi2 +2g22 =0 [1,0,0]; [4,—2,1] 4-cell
qi1 — 3q12 + 222 =0 [1,1,1]; [4,2,1] 4-cell
2q11 — 3q12 +q22 =0 1,1,1]; [1,2,4] 4-cell
q11 +3q12 + 2q22 = 0 (1, —1,1]; [4,-2,1] 4-cell
2q11 +3q12 + q22 =0 1,-1,1]; [1,-2,4] 4-cell
2q12 —q11 =0 [0,0,1]; [4,2,1] 6-cell
2q12 —q22 =0 [1,0,0]; [1,2,4] 6-cell
212+ g1 =0 [0,0,1]; [4,—2,1] 6-cell
2q12 + q22 =0 [1,0,0]; [1,—2,4] 6-cell

This means that the line g5 = 0 transforms under the action of Bf into the
line q12 = K ¢q1. This allows us to easily label all boundaries between different
combinatorial domains going through the [0, 0, 1] fixed point of By action.

Obviously, one can apply the same transformation to lines which are
boundaries between different fundamental domains of GLo(Z) action but
which correspond to the primitive combinatorial type (¢2mm invariant lines).
For example, for the g11 — 2¢12 = 0 line we get

( 1 0) (2(]12 qlg) (1 K) o ( 2qlg (2K + l)qlg >
K 1 q12 q22 0 1) \Q2K+1qs 2K(K+1)qi2+aq2 )’
(6.11)
To see other important GLy(Z) transformations we need to add two re-

flections. The reflection Ry = ( é

_01 ) corresponds to a reflection in the
1 0
interchanges ¢i1 and ¢o0. It may be geometrically seen as reflection in the
¢q12 = 0 line.
The action of four elements By, Bi, Ry, R1 on the section of cone of
quadratic forms is shown schematically in Figure 6.5. Using their geomet-
rical visualization it is easy to find some simple sequences of transformations

. . . 1
q12 = 0 line. It reverses the sign of ¢i5. Another reflection, R; = ( 0 )
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[1,-1,1]

45=24, a,,

F1G. 6.6 — Section of the cone of quadratic forms with a path (a—k) along which
evolution of lattices together with their Voronoi cell is shown in the next Figure 6.7.
Notation for different lines is given in a separate Table 6.1.

which allow passage from one possible choice of fundamental domain to
another one within the same domain of the combinatorial type. Examples
of such transformations between six subdomains are given also in Figure 6.5.

6.2.3 Correspondence between quadratic forms
and Voronoi cells

In order to see better the correspondence between points of the cone of positive
quadratic forms and the corresponding Voronoi cell we take in figure 6.6 a
series of points and represent in Figure 6.7 the evolution of the corresponding
lattice and its Voronofi cell.

As we are interested not really in points of the cone but in rays, only two

parameters are needed to define a ray. All matrices Q = ( 311 le ) with
12 g22

different nonzero determinants but with the same ratio ¢ : 12 : goo corre-
spond to the same ray of the cone. Thus we can represent a ray by its pro-
jective coordinates [q11, q12, ¢22]. Figure 6.6 shows stratification of the cone of
positive quadratic forms in projective coordinates [q11, ¢12, ¢22]. Equations for
several lines corresponding to ¢c2mm and p2mm strata are given in Table 6.1.
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F1G. 6.7 — Lattices and their Voronoi cells associated with points on the section of
the cone of positive quadratic forms shown in Figure 6.6.

As a path in the section of the cone of positive quadratic forms we take the
line given by equation goo = 2¢11. Along this line the 11 representative points
a,b, ...,k are chosen to cover different domains and to cross c2mm and p2mm
strata. Lattices with their Voronoi cell for all these representative points are
collected in Figure 6.7.

6.2.4 Reduction of two variable quadratic forms

To build a basis for a lattice L, we can start with any visible vector. We will
choose a shortest vector §; € S C L; § defines a 1-sublattice {us1; u € Z}.
Then the 2-dimensional point lattice L becomes a union' L = UyezXy of
one-dimensional identical point lattices (“rangées”’) with Xy := {us1} and
Y11 its nearest “rangées”. The second basis vector s should belong to 4.
These two rangées contain at least one vector whose orthogonal projection
on the axis defined by 57 has the coordinate z which satisfies? —% <z <O0.
When z satisfies the inequalities, we choose the corresponding vector as S5.
The quadratic form defined by this basis is represented by the matrix with
elements ¢;; = (5;, §;); these matrix elements satisfy exactly the conditions;

0<—2q12 < qu1 < g2, 0 <qu- (6.12)
The set of quadratic forms defined by (6.12) is a fundamental domain of

C+(Q2): i.e. this domain contains one, and only one, quadratic form of each
orbit of the GL2(Z) action on C1(Qs).

! The arguments used here are those of [29]. Bravais wrote in French and used the words:
“rangée, réseau, assemblage” for 1-, 2-, and 3-dimensional lattices, respectively. That makes
his paper more colorful!

2 The choice of the sign of x is arbitrary. We choose here the negative sign because this
has a natural generalization to arbitrary n.
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Determining a fundamental domain on C4(Q,,) is known as the problem
of arithmetic reduction of quadratic forms. For n = 2 it was first solved by
Lagrange [65].

Another approach to classification of lattices and associated quadratic
forms was introduced by Voronoi ([94], p.157) and developed later by Delone
[42]. Using Lagrange reduction, we can always choose a basis of a lattice such
that the coefficients of the associated quadratic form ¢i12% + 2qi122y + g20y>
satisfy (6.12) 0 < —2¢12 < q11 < @22, 0 < ¢11. With the variables A = ¢11+¢12,
= q22 + q12, ¥ = —q12, the quadratic form becomes a sum of squares:

M? +py? +v(z—y)?, A>0, p>0, v>0. det(g;j) =M+ pv+vA>0.
(6.13)
As the value of the determinant shows, the quadratic form is positive if

no more than one of the three parameters vanishes. We have the norms:

1 1
N(O):)\+V; N(g>:u+u; N(1>:)\+u; (6.14)

there is a complete syntactic symmetry among the parameters A, y,v. The
domain in C;(Q2) associated with generic lattices possessing a primitive
(hexagon) combinatorial type of Voronoi cell is invariant by the group of
permutations S3 of the three parameters A, u,v. Indeed, it corresponds to
the triangle [0,0,1], [1,0,0], [1,1,1] of Figure 6.6 and S5 permutes the six
fundamental domains contained in the domain of (6.13).

It is straightforward to describe the five Bravais strata by studying them
in the parameter space Cy(Q2) with A, u, v parameterization. They can be
labeled by an elegant symbol invented by Delone: the three parameters are
represented by the three sides of a triangle.

First case: A\uv # 0:

i) Generic Bravais class p2: represented by the Delone symbol A

ii) When two parameters are equal, an order 2 symmetry appears:
the invariance by R; in figure 6.6 (for instance A = pu); it exchanges
the two equal sides of the triangle; it corresponds to the Bravais class

c2mm: X

iii) When the three parameters are equal: we have the full symmetry S of
the triangle; with the inversion through the origin (=rotation by 7), one

describes the hexagonal Bravais class p6mm: ﬁ

Second case: one of the three parameters vanishes?.

3 If we choose v = 0 the quadratic form is diagonal (invariant by R in Figure 6.6). The
cases A = 0 and p = 0 are obtained from the preceding one by transforming the quadratic

form by the SLs(Z) matrices ( jl (1) ) and( (1] _11 ) respectively.
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i) The two other parameters are different: Bravais class p2mm Q

ii) The two other parameters are equal: Bravais class pdmm Z&

An extension of Delone classification to higher dimensional lattices and
quadratic forms results in more fine classification of lattices than simply com-
binatorial or symmetry (Bravais) classification. (See Delone classification of
three-dimensional lattices in Chapter 8, section 8.5 and the representation of
combinatorial types of lattices by graphs in section 6.7.)

6.3 Three dimensional quadratic forms
and 3D-lattices

The set of 3-dimensional quadratic forms {¢g} (corresponding to symmetric real
3 x 3 matrices @) forms a 6-dimensional real vector space RS, with the scalar
product (Q.Q’) = trQQ’. The 6-dimensional submanifold of positive forms,
C,(Q3), is the interior of a convex, homogeneous, self-dual* cone. Since each
positive quadratic form represents a 3-dimensional Euclidean lattice, modulo
position, it is interesting to partition C4(Q3) both, into the 14 domains of
Bravais classes, and the 5 domains of combinatorial types of Voronoi cells.

This would be very redundant, however, because the representation of an
Euclidean lattice by a quadratic form depends on the choice of basis vectors,
as we have seen during the analysis of a more simpler case of 2-dimensional
quadratic forms in the preceding section.

To study the set of 3-dimensional lattices one has to consider only a fun-
damental domain of C;(Qg) for the GL3(Z) action. To choose such a domain
was a classical problem: the first solution was given by Seeber in 1831 [84].
The interior of such a domain can be chosen, using the main conditions for
obtuse forms, to be:

0<qi1 <qa2<q33, i #j: qij <0; 2|qi5] < qii; 2|q12+q13+q23] < q11+q22.

(6.15)
On the boundary of that domain there occur only non-generic Bravais classes
with still some redundancy, which are solved by the auxiliary conditions®.
That domain is unbounded. Since we are interested in lattices up to a dila-
tion, we can consider only a five dimensional (bounded) domain of the group
GLs3(Z) x RY. The most natural way to do it is to choose the intersection of
the domain (6.15) by the hyperplane trQ) = ¢, with ¢ a positive constant.
We shall choose tr@ = 3 and call TC;(Qg) this 5 dimensional bounded
domain. However it is still difficult to draw its picture! For studying a

4 Both Q and Q! are in the cone.

5 lga3| < |qus| if q11 = q22; @3] < |qiz2| if g22 = g33; iz = 0 if 2|g23] = go2;
qi2 =01if 2|q13] = q11; @13 = 01if 2|qi2| = q11;  qu1 < |qi2 +2q13] if 2|q12 + q13 + q23]| =
q11 + g22.



6. Lattices and positive quadratic forms 113

3-dimensional picture, we have to restrict ourselves to a section of TC; (Q3)
by a well chosen 4-dimensional subspace of C1(Qgz). To check the dimension
arguments we note that the C;(Qs) space is 6-dimensional. If we intersect
6-dimensional space by a 5-dimensional (TC(Q3)) and by a 4-dimensional
subspaces, generically the intersection of 5-dimensional and 4-dimensional
subspaces is 3-dimensional.

How to cut the maximal number of different Bravais class domains? There
are four maximal Bravais classes:

Pm3m, Fm3m, Im3m, P6/mmm.

For the partial ordering of the set of Bravais classes there is a unique largest
element (i.e. with largest symmetry), smaller than these four maximal classes;
that is the Bravais class Mono C = C2/m, whose domain has dimension 4.
We choose a group G belonging to the conjugacy class of the C'2/m subgroups
of GL3(Z). We denote by H = Qf the 4-dimensional subspace of the G-
invariant quadratic forms. Its intersection with the hyperplane of the trace 3
quadratic forms will define the Euclidean 3-plane of our model (Figures 6.8,
6.9). Figure 6.8 shows a fundamental domain of the Mono C = C'2/m Bravais
class. Its boundary shows, with some redundancy the fundamental domains
of the 10 Bravais classes which have a larger symmetry. Moreover, the model
shows simultaneously parts of the 5 domains of combinatorial types of Voronoi
cell represented in Figure 6.9.

6.3.1 Michel’s model of the 3D-case

We start by describing the stratification of the suggested above 3-dimensional
model into different strata corresponding to different Bravais classes and into
different domains associated with different combinatorial types of Voronoi cell.
Note that this 3D-model was designed by Louis Michel during his visits and
lecturing in Smith College, Northampton (USA) and Technion, Haifa (Israel).

We give now the description of the model and reserve some hints for its
construction till the end of this section.

The model is the tetrahedron ABCD (see Figure 6.8). Four vertices, five
edges (except for the edge AD) and the facet ABC correspond to points
representing quadratic forms with det @ = 0. All internal points, internal
points of the facet ABC and of the edge AD represent positive quadratic
forms.

Stratification of the tetrahedron ABCD into Bravais classes for three-
dimensional lattices is shown in Figure 6.8. There are 0-, 1-, 2-; and
3-dimensional strata for eleven Bravais classes (among 14 existing for the
3D-case). They are summarized in the following table
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D

A

F1G. 6.8 — Partial model of the stratification of the cone of positive quadratic forms

into Bravais classes for three-dimensional lattices. Strata of Bravais classes. Notice
that det @ = 0 on the facet ABC and on five edges of the tetrahedron, except for

the edge AD.

Mono C:
Ort C:
Ort F:
Ort I:
Tet P:
Tet I:
Trig R:
Hex P:
Cub P:
Cub F:
Cub I:

C2/m
Cmmm
Fmmm
Immm
P4/mmm
I4/mmm
R3m
P6/mmm
Pm3m
Fm3m
Im3m

interior of tetrahedron except intervals PI, PF;
facet BCD except BH, BH', BK;

facet BDA except LF', BF';

facet AC'D except KI',I'C;

BP, PK;

PF, PI,;
BH,BH'
P;

F, F;
I,7.
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D D

F1c. 6.9 — Partial model of the partition of the cone of positive quadratic forms
into sub-cones of different combinatorial Voronoi cells. Notice that det@Q = 0 on
the facet ABC and on five edges of the tetrahedron, except for the edge AD. Left:
Stratification of the facets ADB and ACD of the tetrahedron. Right: Strata non-
visible on the left figure.

In order to visualize stratification of the tetrahedron ABCD into domains
of different combinatorial types we use in Figure 6.9 two images of the same
tetrahedron and keep in this figure only points and lines important for strat-
ification into combinatorial types. All points shown in Figure 6.9 are equally
present in Figure 6.8, but some lines and planes present in Figure 6.8 are
absent in Figure 6.9 because they have no specific combinatorial meaning.
Remember that the lines and points absent in Figure 6.9 but present in
Figure 6.8 are important to see the topology of the space of orbits
(redundancy).

The stratification of the tetrahedron by different combinatorial types of
Voronof cell is given in the following table

14.24: interior of DBF'K and ABF'K,
interior of DBF’, BF'A, and F'K A;
interval AF’

12.18: interior of BACK,
interior of BF'K, DKF’, and CKA;
intervals BEF’ and F'D

12.14: interior of ABK;
intervals KF’ and K A4;
point F’

8.12: facet BOD except BK

6.8: interval BK
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In order to see better the relation of the 3D-model to the six-dimensional
cone of positive quadratic forms of three variables we recall below the relevant
data for different combinatorial types of Voronof cell and also on the dimension
of these domains in the five-dimensional domain of positive quadratic forms
with a given trace:

short notation 14.24 12.18 12.14 8.12 6.8
number of facet vectors 14 12 12 8 6
number of non-facet corona vectors 0 4 6 12 20
dimension of the domain in 7C4(Q3) 5 4 3 3 2
dimension of the domain in model 3 3 2 2 1

6.3.2 Construction of the model

Now we return briefly to some points important for the construction of the
described above model.
The 4 element group G = Zs(r) x Za(—1I), generated by the two matrices:

01 0 -1 0 0
R=(100], -1= 0 -1 0 (6.16)
00 1 0o 0 -1

is a realization in GL3(Z) of the point symmetry of the monoclinic C2/m
lattices. Its invariant quadratic forms form the 4-dimensional space:

u Ty
H:EQ?:{Q: z u oy |, u,v,x,yER}. (6.17)
y y v
In H, the hyperplane of the trace 3 quadratic forms is:

1-—2 T Y
H = {Q(x,y,z) = r 1—z Y }, (6.18)
Y Y 1422

ie. 2u+v = 3, v —u = 3z. Given two quadratic forms ¢,q¢ € H’, their
Fuclidean distance is the square root of:

tr(Q —Q)* = 2((x — 22+ 2y —y)? +3(z - z’)2). (6.19)

The positive quadratic forms of H’ form a bounded domain whose boundary
is given by the condition for the quadratic forms of (6.18) to be positive:

1
f§<z<1, —(1-2)<z<l—2z2 3 <(l+z—2)(1+22)/2. (6.20)

In H’ this is a convex domain K bounded by three planes and one sheet of a
(two sheet) hyperbolic quadric.
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By construction of H, all G-invariant lattices are represented in it: those
are all lattices of the Bravais classes > Mono C = C2/m. We denote by N
the stabilizer of H in the linear action of GL3(Z) on the space Q3. It is easy
to prove that N is the normalizer Ngp,z)(G), ie. the largest subgroup of
GL3(Z) containing G as the invariant subgroup. The lattices of the Bravais
classes > Mono C are represented by the orbits of N inside HNC4(Q3). The
represented Bravais classes correspond to the strata of this action; the stratum
representing the smallest class, Mono C, is open dense and we want to choose
a fundamental domain in it. For this we have first to determine N.

We notice that G is in the center of N. Since G < N, every n € N has
to conjugate the 4 matrices of G into each other; since the matrices of G
have different traces, n commutes with them. So IV is the centralizer of G in
GL3(Z)

N = CGLg(Z)(G)' (6.21)

To compute this centralizer, it is sufficient to find the integral matrices n
which satisfy nr = rn, r € G, and require their determinant to be +1:

a [ 6
n=| B a § |, detn=(a-p8)(v(a+pB)—26). (6.22)
5/ 5/ ,y

Each factor of the determinant should be £1:
=1, n*=1, a-F=¢ ~(a+p) —25=n. (6.23)

One can prove that N is generated by the matrices

10 0 101 100
IR, S=|l01 0 |,p=l0o11]|,D=[010
00 -1 00 1 111

(6.24)

The matrices —1I, R, S, generate a group of the Bravais class Ort C = Cmmm.
Each of the matrices D, D’ generates an infinite cyclic group (~ Z). Since the
stabilizer of any lattice is finite, the orbits of N in H N C4(Q3) are infinite.
In general the action of g € N on H does not preserve the trace of quadratic
forms; so we deduce the action of N on H’ from the action on H by adding
the stereographic projection normalizing the trace.

By construction, the matrices —I, R act trivially on H; the matrix S
changes y into —y (both in H and H'); so from now on we make the con-
vention:

convention : y < 0. (6.25)

In H’, the intersection of the positivity domain (6.20) with the 2-plane y = 0
is chosen to be part of the boundary of our fundamental domain; its points
represent lattices of the Bravais class C'mmm or greater ones.
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Finite subgroups of IV are crystallographic point groups; therefore each one
containing G as a strict subgroup will have a linear manifold of fixed points
containing a domain of a larger Bravais class. To find the finite subgroups of
N, we must first determine its elements of finite order. As for GL3(Z) their
order can be only 1, 2, 3, 4, or 6. Elements of order 3 must have as eigenvalues
the three cubic roots of 1, so their trace, 7 := trn = 2a+, must be 0. That is
impossible since we know that « is odd [see (6.18)]. Hence N has no elements
of order 3 or 6 (the square of an element of order 6 would be of order 3). The
equation n? = 1 yields the following conditions in addition to those of (6.23),
and combined with them:

V24250 =1, 20(a—e)+68 =0, 6(r—e)=0=08(r—¢). (6.26)

Since the eigenvalues of these matrices are +1, their trace can be either —3
or +1. In the former case we find easily that n = —I. When the trace 7 = +1
we must have 7+ detn =0 so

T=2a+7vy=—en. (6.27)

That, with the first two conditions of (6.26), yields n = —1. Notice that for
elements of N which are four fold, e = n = 1, so there are no elements of
order 4 in N. That proves that in NV, all non-trivial elements of finite order
are of order 2. Hence, all finite subgroups of N have the structure Z&, and we
know from the study of the finite subgroups of GL3(Z) that k < 3.

It is easy to verify that the largest finite subgroups of N represent three
of the four conjugacy classes of Z3 subgroups in G L3(Z); explicitly, they can

be generated by the matrices®:

Cmmm: (R,S,—I), Fmmm: (RW",=I), Immm: (R,W,—-I),
(6.28)
with
0 1 0
w=[1 0o o |. (6.29)
-1 -1 -1

The domains of these 3 Bravais classes are two-dimensional. We determine
those invariants by the three matrix groups chosen in (6.28); they belong to
the boundary of the fundamental domain that we have chosen to represent
the Bravais class C2/m.

We recall now that given a subgroup G of GL3(Z) it is easy to verify that
the linear map on the orthogonal space R® (see [11], Chapter 7.3):

C(0:)2Q — 673 g7 Qg (6.30)

geG

6 Among the different method for distinguishing the two point groups F'mmm and
Immm, the fastest one is the computation of their fixed points (i.e. their cohomology
group HO(P, L)) by their action on the lattice L: Fmmm has four and I'mmm two fixed
points per unit cell.
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is an orthogonal projector over the subspace of G-invariant quadratic forms.
From (6.30) we obtain the equations of the 2-planes supporting boundaries
of the fundamental domain in H’ invariant by matrix groups in (6.28). The
boundary of the positivity domain (6.20) also has a facet supported by a
2-plane. We define the 2-planes by

fiiy=0; fo:l—z424+2y=0; f3:1+4+2242y=0; fr:1—2—2=0.

So the fundamental domain we have chosen in ‘H’ is a tetrahedron ABCD
whose facets are

Cmmm = BCD C f1; Fmmm = ABD C fy; Immm = ACD C fs;
positivity boundary = ABC C f,. (6.31)

The coordinates x,y, z of its vertices are:

3 31 31 3 1
A=(5,-S =), B= 1 =(Z,0-=), D=(-2,0,—=].
(4, 4,4), 0,0,1), ¢ (270, 2>7 ( 2.0, 2)

(6.32)
Notice that on the facet ABC and on five edges of the tetrahedron, det Q = 0.
This is not true for the edge AD = ABD N ACD, so it represents the Bravais
class Tet I = I4/mmm or higher.

Now we pass to the analysis of the Bravais class domains of dimension 1
and 0 in H'.

Besides the four orthorhombic Bravais classes” the Bravais class Trig R —
R3m is also a minimal supergroup® of C2/m. Its domain has dimension 1;
indeed in GL3(Z) there are two groups of the conjugacy class R3m which
contains G ~ C2/m defined in (6.16); these groups are generated by the
matrices:

0 1 0
R3m = (R,—I,T), R3m' = (R,~I,S7'TS), withT= 0 0 1 |,
100
(6.33)
and the corresponding invariant subspaces in H’ are defined by z = 0 and
x =y or x = —y, respectively. Hence in our figure (we want y < 0) the

trigonal Bravais class R3m is represented by two open segments inside the
tetrahedron: in the subspace z = 0,

1 1
—§<1:<O when z = y; O<:c<§ when z = —y. (6.34)

Their boundary is made of 3 points representing the 3 minimal supergroups
of R3m, i.e. the three cubic Bravais classes: we call these points:

1 1 1 1
P = I = —_—, —— F = _, —— . .
(0,0,0), ( 5 370), (2, 2,0> (6.35)

7 Ort P = Pmmm is not represented on the figure; this is also the case of the two other
Bravais classes: Mono P = P2/m and Tric = 1. ~
8 i.e. there is no Bravais class X which satisfies C2/m < X < R3m.
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Notice that the point I is invariant by the group R3m, the point F' by R3m’
and the point P by both groups.

There are two Bravais classes directly greater than the Bravais class Ort
C = Cmmm; those are Tet P = P4/mmm and Hex P = P6/mmm. The
representative domain of each is 1-dimensional and has to belong to the facet
BCD of the tetrahedron.

The stabilizer in GL3(Z) of the 2-plane y = 0 is the normalizer
Ngr,z) (Cmmm) = P4/mmm which belongs to the Bravais class Tet P.
Since C'mmm. acts trivially, its normalizer (which is a subgroup of O3(Z))
acts only through the quotient

(P4/mmm)/Cmmm ~ Zs.

This action must be the orthogonal symmetry through an axis and this in-
variant axis represents the Bravais class Tet P. To realize the action of this

-1 0 0
quotient we can choose for instance the diagonal matrix 0 1 0],
0 0 1

(in P4/mmm but not in C'mmm); it changes = into —z and leaves z invari-
ant. So Tet P = P4/mmm is represented by:

1 N
P4/mmm — z =y =0, —§<z<0<z<1 = |BK]| \o. (6.36)

Note that the point + = y = z = 0 = o is represented in Figure 6.8 as
point P.
In a similar way for Hex P = P6/mmm we have

1 -
P6/mmm—y=0, z==x(1-2)/2, f§<z<1E]BH[U]BH’. (6.37)

The positions of the specified points H, H', K are given below

3 1 . (3 1 1
H = <_4707_2>7 H - (4707_2)3 K_ <O707_2> . (638>

We emphasize the redundancy in the facet BC'D: when = # 0, the points
(+2,0, z) represent the same lattice. In the boundary of the open segments
defined in (6.36), only one point represents a Bravais class; that is z = y =
z = 0 representing the Cub P class. This point (given in (6.35)) is common to
the boundaries of the domains representing Tet P and Trig R, the two Bravais
classes directly smaller than Cub P.

We noticed in 6.3.1 that no vertices and only one of the six edges of the
tetrahedron represents a Bravais class: it is JAD[ = JABD N ACDJ, corre-
sponding to F'mmm N Immm, which represents Tet P = I4/mmm.

This edge must also carry two points F’ and I’ representing the two Bravais
classes Cub F and Cub I directly greater than Tet 1. To find these points we
can use again the same method as for the facet BC'D representing Ort C =
Cmmm.
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The facet BDA represents Ort F = F'mmm; its stabilizer is
Nepyzy(Fmmm) = Fm3m

belonging to the Cub F Bravais class. It acts on the plane as a linear repre-
sentation of the quotient F'm3m/Fmmm ~ S3. We can take as representative
of this quotient in Fm3m a subgroup conjugate to R3m defined in (6.33); it
is generated by the matrices:

R3m" = (-1, R'=M"'RM, T =M"'TM), (6.39)
0 1 -1

with M =| —1 0 1 |. Then, using (6.30) for this group we obtain the
1 0 0

point representing Cub F:

1 _
F' = (0,~5,0) € AD. (6.40)

Using (6.33), we verify

Qp = MTSTQpSM. (6.41)

The same group transforms the segment AD into two other ones A’D’, A’ D"
defined by:

AD A’:(O,—g,—%), D' =(0,0,1) = B; (6.42)
ATD" . A =(-1,0,0), D" =(1,-1,0). (6.43)

The segment parts A’F and F'D” are in H' but outside the tetrahedron. The
segment A”F’ contains the point I defined in (6.34). The orbit of this point
for the group R3m’ contains the two other points:

, 03 31, 6 1

_(10, 5,10)EAD7 1" = (0, T’ 11). (6.44)
The points I’ and F’ are on the edge AD, (which represents Tet I). The point
I"" does not belong to the tetrahedron.

Similarly, the stabilizer of the facet ACD, which represents the
Bravais class Ort I = I'mmm, has normalizer Ny, z) (Iimm) = Im3m which
belongs to the Bravais class Cub I. This class is represented by the Im3m
invariant point I’ (defined in (6.44)). Moreover that normalizer transforms
AD into two other segments whose intersections with the facet ACD are K1’
and CTI'.

Finally, similar to the case of the facet BC'D representing the class Ort
C, we notice the same type of redundancy for the facets BAD and CAD
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representing respectively the Bravais classes Ort F and Ort I. Indeed the
intermediate groups

Fmmm < I4/mmm < Ngp,z)(Fmmm) = Fm3m, (6.45)

Immm < I4/mmm < N,z (Immm) = Im3m, (6.46)

belong to the Bravais class Tet I = I4/mmm; they respectively leave invariant
the segments BF' C BAD and KI' C CAD which both represent Tet I.
We notice that the interior of the triangles DLF' € BDA, I'CA C CDA are
not redundant.

All the obtained information is used for the construction of Figure 6.8.

To take into account all redundancies for points on the boundary of the
tetrahedron ABC'D and to see the topology of the fundamental domain, the
following identification of domains of the boundary of the tetrahedron should
be done:

e Triangle BK D should be identified with BKC.
e Triangle F'LB should be identified with F'LD.
e Triangle I’ KC should be identified with I’ K'D.

This implies that the following identification of 1-dimensional and
0-dimensional subsets on the boundary of ABC'D should be done:

e BH should be identified with BH’.

e ['F’ should be identified with I'F.

e CF should be identified with DF’ and with BF".
e F' should be identified with F”.

6.4 Parallelohedra and cells for N-dimensional
lattices.

In this section we give a brief description of some important new features
related to the combinatorial classification of lattices and to the associated cone
of positive quadratic forms which appear for lattices in higher dimensional
d > 4 space as compared to the cases of planar d = 2 and space d = 3 lattices
studied earlier in this chapter.

First of all it is necessary to make the definition of the combinatorial type
of polytopes and their labeling for arbitrary dimension more precise.

The k-faces of a polytope P are partially ordered with respect to inclusion.
Together with the empty set {0} the k-faces form the face lattice L(P). (See
the definition of a lattice as a partial ordered set in appendix A.) For any
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two faces F' and F’ of L(P), the least upper bound is given by the k-face
F, D F U F’ having the least k. The k-face F\, is unique because otherwise
there would exist a face F' := F\, N F!, > F U F’" and thus, k would not be
minimal. The greatest lower bound is given by the [-face Fx = F N F”.
Definition: combinatorial type Two polytopes P and P’ are combi-

natorially equivalent, P’ cxb P, and belong to the same combinatorial type,
if there exist a combinatorial isomorphism 7 : L(P) — L(P’).

The combinatorial type of P is denoted by the short symbol N, _1).Np.
For different combinatorial types having the same short symbol, additional
letter /number symbols A, a, B, b, ... are added to distinguish them. In par-
ticular, we denote by m, the number of 2-faces of P which are hexagons.
In many cases the short symbol with the addition of -nj, uniquely characterizes
special sets of parallelotopes [11]. More generally, for any k, 1 < k < n, let

dl(k) be the number of k-faces of P which have fi(k) subordinated (k —1)-faces,
i =1,...,r. The k-subordination symbol is defined by

(k) k) (k)
fl f2 degﬂk),

FOMHO

with fl(k) < fék) < e < fr(k). We give a few easy examples. The
2-subordination symbol of the 3-dimensional cubooctahedron is 4¢6g, which
means that there are six quadrilateral facets (2-faces) and eight hexago-
nal facets (2-faces). The 4-dimensional cube has the 3-subordination sym-
bol 65 (there are eight facets (3-faces) possessing each six 2-faces) and the
2-subordination symbol 454 (there are 24 quadrilateral 2-faces).

In order to verify combinatorial equivalence, the k-subordination sym-
bols are determined for k = (n — 1),...,2. The concatenation of these
k-subordination symbols is called a subordination scheme. The subordina-
tion scheme does not characterize a polytope uniquely in dimension d > 3,
but it is sufficient for parallelotopes in R™ for at least n < 7. A unique charac-
terization of a polytope obtained by the unified polytope scheme is described
in [48].

As we have introduced in section 5.4, each vertex of a primitive parallelo-
tope in E™ is determined by the intersection of n facets. Let {ﬁl, cey ﬁn},
be the set of the corresponding facet vectors. These vectors are linearly
independent and determine a sublattice of the lattice L of index w(v). It was
shown by Voronoi|94], §66 that the upper bound for the number of vertices
is reached exactly if, for each vertex v of a primitive parallelotope, w(v) = 1.
Ryshkov and Baranovskii [83] gave upper bounds for the index w(v).

Theorem 9 For dimensions n = 2,3,4,5, and 6 the maximal values of the
index w(v) are 1, 1, 1, 2, and 3, respectively.

The index w(v) has direct correlation to the number of vertices Ny of a
primitive parallelotope P. The primitive parallelotope with w(v) = 1 for each
of its vertices is called the principal primitive. Voronoi have shown [94] that
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the number of k-faces Nj, 0 < k < d of a parallelotope in E? is

d—k
Ne < (d+1—k) S (—1)ikt (d ] k) (1+0)°. (6.47)
=0

For the number of facets (k = d — 1) equation (6.47) becomes an equality for
all primitive parallelohedra

Ny_1 =2(2% — 1) for primitive parallelohedra (6.48)

and coincides with the upper bound in the inequality for the number of facets
vectors given by Minkowski [78] for a d-dimensional parallelohedron:

2d < |F| <2(2% - 1). (6.49)

The equality sign in (6.47) holds for principal primitive parallelohedra for
any k.

In particular, from (6.47) we immediately have the following estimations
for the number of vertices Ny, edges Ny and (d — 2)-faces N(g_s), related to
the number of belts, for d-dimensional parallelohedra

d
No < (d+1), N £ 5(d+1), Nao <3 (1 _ g+ 3d) . (6.50)

The equalities in (6.50) hold only for principal primitive parallelohedra.
We note here that primitive parallelohedra contain sixfold belts only. This
allows the number of belts IV, for primitive parallelohedra to be expressed as
Ny = N(d,Q)/G.

Non-principal primitive parallelohedra exist for d > 5. They have the same
number of facets as principal primitive parallelohedra but the number of
k-faces with k < d — 2 is less (for some k) than the maximal possible value
for principal primitive parallelohedra.

The number of combinatorial types of primitive parallelohedra in E¢
increases rapidly with increasing dimension d. In dimensions 2 and 3 there
exists only one combinatorial type of primitive parallelohedra. In d = 2 this
is a hexagon and in d = 3 this is a truncated octahedron. In d = 4 there are
three combinatorially different parallelohedra which are all principal primi-
tive. In d = 4 there is also one non-primitive parallelohedron which has the
same maximal number of faces as primitive ones. In dimension 5 as found by
Engel [47], there are 222 combinatorially different types of primitive paral-
lelohedra among which there are 21 non-principal. In dimension 6 only the
lower bounds for the number of primitive parallelohedra are known [25]. There
are at least 567613632 combinatorial types among which there are 293517383
non-principal ones.

It is interesting to see the recently found results on the numbers N} of
k-faces of primitive parallelohedra [25]. They are reproduced in Table 6.2
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TAB. 6.2 — The numbers N of k-faces of primitive parallelohedra in E¢, 2 <
d < 6. Different sets of numbers Nj of k-faces for six-dimensional non-primitive
parallelohedra correspond to sixteen different values of t = 1,2,...,16. The table is
based on the numerical data given in [25].

d NO N1 N2 N3 N4 N5 Belts
2 6 6 61
3 24 36 14 66
4 120 240 150 30 625
5 720 1800 1560 540 62 690

708 1770 1536 534 62 639
6 5040 15120 16800 8400 1806 126 6301

5040 — 28t 15120 — 84¢ 16800 — 90t 8400 — 40t 1806 — 6t 126 6301—¢

in a slightly different manner which explicitly shows that for non-principal
primitive parallelohedra the d 4+ 1 dimensional vector of numbers Ny, k =

0,1,...,d can be written as a linear function of only one auxiliary parameter
chosen in Table 6.2 as ¢t and taking for d = 5 only one value t = 1 and for
d = 6 taking 16 consecutive values t =1,...,16.

The origin of this linear dependence on only one auxiliary parameter
remains unexplained for non-principal primitive parallelohedra. Several linear
relations between numbers of k-faces are known for a larger class of convex
polytopes, namely for simple polytopes.

Definition: simple polytope A d-dimensional polytope P is called
simple if every vertex v of P belongs to exactly d facets of P.

The class of simple polytopes is larger than the class of primitive polytopes
defined in terms of primitive tilings. For example the d-dimensional cube is
simple but not the primitive polytope. For a simple d-dimensional polytope
the system of linear relations between numbers of k-faces (known as Dehn-
Sommerville relations) consists of | (d+1)/2] relations, where | x| is the integer
part of x. The simplest way to introduce this relationship is to use the so called
h-vectors of the polytope [2].

Definition: h-vector Let P be a d-dimensional simple polytope and
Ni(P) be the number of k-dimensional faces of P (we agree that f4(P) =1).
Let

d .
hi(P) :Z(—l)i‘kC)Ni(P) for k=0,...,d (6.51)
i=k k
The (d + 1)-tuple (ho(P),...,hq(P)) is called the h-vector of P.
It can be proved that the numbers of k-faces, Ny, can be uniquely deter-
mined from hy(P):

Ni(P)=)" (f) hi(P) for i=0,...,d. (6.52)

k

d
=1
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Now we formulate without proof the following important proposition.

Proposition 33 (Dehn-Sommerville relations). Let P be a simple
d-dimensional polytope. Then

he(P) = hg_p(P) for k=0,... d. (6.53)

and
I=ho<h <...< hpg- (6.54)

For centrally symmetric simple d-polytopes Stanley [18, 90| improved in-
equality (6.54), namely:

By — hiy > (f) _ (Z d 1), for i< [d/2]. (6.55)

For primitive parallelohedra we can apply Dehn-Sommerville relations to-
gether with the explicit expression (6.48) for the number of facets of primitive
parallelohedra and the upper bound for the number of k-faces of primitive par-
allelohedra given by Voronoi (6.47). Also we take into account that the number
of k-faces of primitive parallelohedra should be a multiple of 2(d — k + 1) for
k <mn —1 (see proposition 29).

For d = 2 the only Dehn-Sommerville relation coincides with Euler char-
acteristic of the polytope. Together with N; = 6 (6.48) this determines the
unique vector of the numbers of faces (N7 = 6, Ny = 6) for the primitive
2-dimensional polytopes.

For d = 3 the second Dehn-Sommerville relation appears which can be
written in a form applicable for any d > 3,

dNo(P) =2N1(P) for d>3. (6.56)
Applying two Dehn-Sommerville relations to three-dimensional simple poly-
topes we get for the numbers of faces expression

(No=2N; —4, Ny =3N,—6, Ny), (6.57)

which includes one free parameter, Ny. For primitive 3d-polytope the number
of facets is Ny = 14 (6.48) and we get the unique possible set of numbers of
faces for 3d-primitive parallelohedron: (Ny = 24, Ny = 36, Ny = 14).

The same two general linear Dehn-Sommerville relations exist for 4d-
simple polytopes. This means that we can express the numbers of k-faces
for four dimensional simple polytopes in terms of two free parameters, say N3
and No:

(No = Ny — N3, Ny =2N5; —2N3, Ny, Nj). (6.58)

It follows that for primitive 4-polytopes after imposing N3 = 30 and N, =
150 — 6ar, we get for the number of faces and for the components of h-vector

the following expressions which depend on one free parameter «:
No =120 — 6a, Ny = 240 — 12, Ny = 150 — 6, N3 = 30, N, = 1;  (6.59)
h() =1= h4, h1 =26 = h,g, hg = 66 — 6. (660)
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Applying relation (6.54) we get immediately that « can take only a small
number of values, namely « = 0,1,2,3,4,5,6. But among these values only
a = 0 and a = 5 give the number of vertices divisible by 10 and among
these two possible values only o = 0 gives the number of edges divisible by
8. Consequently, we get that the only possible set of the numbers of faces
for primitive four-dimensional parallelohedra is (Ny = 120, Ny = 240, Ny =
150, N3 =30, Ny =1).

For five dimensional simple polytopes there are three Dehn-Sommerville
linear relations.

No—N1+N2—N3+N4—2:O; (661)
Ny — 2Ny + 3N3 — 5N, + 10 = 0; (6.62)
Ny — 4N3 + 10N — 20 = 0. (6.63)

For primitive parallelohedra N; = 62 and we can express Ny_o as N3 =
540 — 6« taking into account that primitive parallelohedra have only six-fold
belts (i.e. N;_o should be divisible by 6). This allows us to express all numbers
of faces in terms of one free parameter o and to explain the linear relation
between numbers of faces for 5d-primitive parallelohedra with 90 and 89 belts
given in Table 6.2. Namely we get

(No =720 — 12, N7 = 1800 — 30, No = 1560 — 24,
N3 =540 — 6, Ny =62) with a=0,1,.... (6.64)
This expression fits numerical results listed in Table 6.2, but the restriction
of a to only two possible values a = 0,1 remains unexplained. The inequality
(6.55) allows only to state that 0 < a < 40.

For six-dimensional simple polytopes there are again three linear Dehn-
Sommerville relations. Together with Ny = 126 this gives for six-dimensional
primitive polytopes expressions for the number of faces depending on two free
parameters.

N5 =126; N, = 1806 — 6c; N3 = 8400 — 8/3;
Ny = 16800 + 30 — 243; Ny = 15120 + 36 — 2453;
Ny = 5040 + 12a0 — 8. (6.65)
We see that for any integer «, 3 the N, is divisible by 6, the N3 is divisible
by 8, the N; is divisible by 12. At the same time N5 becomes a multiple of
10 only for 5 = 5v, with v = 0,1,2,.... Replacing § by 5v we get
N5 =126; Ny = 1806 — 6a; N3 = 8400 — 407;
Ny = 16800 + 30cx — 120y; Ny = 15120 4 36 — 1207y;
Ny = 5040 + 120 — 407. (6.66)

But we still need to check that Ny is divisible by 14. This is equivalent to
the requirement for (3 — 10v) to be a multiple of 7. This is possible only
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fora=0,y=0,7,14,..;aa=1,7y=1,815,..; a = 2,7 = 2,9,16,.. ., etc.
More generally we should have v — a = 7k.

Taking into account that for any set of two free parameters, «, v, the num-
bers of faces cannot exceed their values for principal primitive parallelohedra
we get general restrictions on possible values of free parameters 0 < 3a < 107.
Together with the divisibility constraint v = a+ 7k, with k being any integer,
it follows that for v = 0 the only possible value of the second parameter is
« = 0. Similarly, for v = 1 we should have o = 1 and for v = 2, a = 2.
Only starting from v = 3, several values of the second parameter are possi-
ble, in particular formal solutions are (y = 3,a = 3) and (y = 3,a = 10).
Numerical results given by Baburin and Engel [25] correspond to face vectors
with « = v = 0,1,...,16. The fact that for six-dimensional primitive par-
allelohedra the whole observed set of face vectors can be described as only
one-parameter family should be related to additional properties of primitive
parallelohedra which are not taken into account in the present analysis.

It is clear that with increasing dimension the number of free parame-
ters for the face vectors obtained within the adopted above scheme increases.
For 7-dimensional parallelohedra we still have two free parameters but for
8-dimensional there are three such parameters, etc. The question whether the
exact solution for face vectors of primitive parallelohedra in arbitrary dimen-
sion can be described by a one parameter family or a multi-parameter family
is an interesting open problem.

6.4.1 Four dimensional lattices

This section illustrates correspondence between description of the four-
dimensional lattices in terms of combinatorial types of parallelohedra and
in terms of the subdivision of the cone of positive quadratic forms.

In four-dimensional space E* there exist three types of primitive par-
allelohedra which are principal (i.e. have the maximal numbers of k-faces
for all k, namely N3 = 30, Ny = 150, N; = 240, Ny = 120). Corresponding
quadratic forms fill on the 10-dimensional cone of positive quadratic forms in
four variables the 10-dimensional generic domains. Along with three primitive
parallelohedra there exist one combinatorial type which is not primitive but
has the maximal number of facets. The face vector for this non-primitive but
maximal type is (N3 = 30, Ny = 144, N; = 216, Ny = 102). The quadratic
forms associated with this non-primitive parallelohedron form a 9-dimensional
domain.

Starting from these four maximal parallelohedra all other combinatorial
types can be obtained by a consecutive application of the zone contraction.
There are two zone-contraction/extension families consisting in 35 and 17
combinatorial types respectively. These two families are shown in Figures 6.10
and 6.11. The whole list of different combinatorial types of 4-dimensional
parallelohedra was given initially by Delone [41] who found 51 types and
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10 30.120-36 30.120-42
9 28.104-24 28.104-30
8 26.88-12 26.88-18 26.88-24 28.94-12 28.94-18

7 24.72-0 24.72-12° 24.72-12% 24.72-24 26.78-6 26.78-12 28.88-0

6 24.62-0 24.62-6 24.62-12 26.68-0  26.68-6 26.72-0

5 24.52-0 24.52-6 24.56-0° 24.56-0% 26.62-0
4 24.42-0 24.42-6 24.46-0  26.56-0

3 24.36-0  24.40-0

2 24.30-0

1 24.24-0

FIG. 6.10 — Zone contraction/extension family of Voronoi cells in E* consisting of
35 combinatorial types including two primitive cells, 30.120-42 and 30.120-36 and
24.24-0 cell (Fy). Each cell is denoted by a N3.Ng-ng symbol where ng is the number
of hexagonal 2-faces. When this symbol is insufficient for a unique definition of the
cell we give as a footnote the 3-subordination symbol: a - 8121012; b - 814105122;
¢ - 81610s; d - 818104122. The dimension of the corresponding regions within the
ten-dimensional cone of positive quadratic forms is indicated on the left. Note that
some minor modifications have been introduced into the original figure taken from
[11]. The modifications are justified by an explicit graphical correlation discussed in
the next section.

was corrected by Shtogrin [87], adding one missed type. The organization
of combinatorial types into two families was studied by Engel [11, 49]. (For
a more detailed recent analysis see [32, 91, 44]. We will discuss briefly this
organization using graphical representation in the next section 6.7.)

Each of the three primitive parallelohedra are associated with a
10-dimensional domain on the cone of the positive quadratic cone bounded
each by 10 hyperplanes (walls). Schematic representation of these generic do-
mains is given in Figure 6.12. (We return to the more profound discussion of
this figure in section 6.8 after introducing graphical representation.) We use
in these figures an abbreviated notation for primitive parallelohedra used by
Engel [11], namely 30.120-60 is denoted by “2”; 30.120-42 is denoted by “3”;
and 30.120-36 is denoted by “4”. All walls between 30.120-60 and 30.120-
42 (i.e. between “2” and “3”) are of 28.96-40 type. It is important that the
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10 30.120-60
9 28.96-40  30.102-36
8 24.72-26  26.78-24

7 16.48-16 20.54-16  22.54-12 24.60-12
6 12.36-12 14.36-8 20.42-6 22.46-0
5 10.24-4 14.28-0 20.30-0

4 8.16-0

FIG. 6.11 — Zonohedral contraction /extension family of Voronoi cells in E* consist-
ing of 17 cells. Notation is explained in caption to figure 6.10. The dimension of the
corresponding regions within the ten-dimensional cone of positive quadratic forms
is indicated on the left.

passage from “2” to the 28.96-40 wall corresponds to the contraction of the
30.120-60 parallelohedron whereas there is no contraction/extension trans-
formation between “3”, i.e. 30.120-42 and the same wall 28.96-40. All walls
between disconnected domains of “3” type (i.e. 30.120-42) are of 28.104-30
type. They correspond to contraction of the cell “3”.

Each isolated domain of 30.120-36 type (i.e. of type “4”) has nine walls
of 28.104-24 type separating “4” and “3” and associated with contraction
from both sides and one wall between two disconnected domains of the same
type “4”. This wall is of 30.102-36 type. It corresponds to a non-primitive
paralelohedron with maximal number of facets and there is no contraction
leading from the region “4” to that wall.

Finally the domain “3” (i.e. 30.120-42 ) has six walls with similar discon-
nected domains of the same type “3”, three walls with domains of type “4” (i.e.
30.120-36) and one wall with domain “2” (i.e. 30.120-60).

6.5 Partition of the cone of positive-definite
quadratic forms

We describe now in slightly more detail the algebraic structure of the cone
of positive-definite quadratic forms in n variables. Special attention will be
paid now to the evolution of combinatorial type along a path in the space of
positive quadratic forms going from one generic domain to another different
(or equivalent by GL,(Z) transformation) domain by crossing the wall.
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. 4 30.120-36

3

. 30.120-42

.__.1/
413

28.104—3 ----- 28.104—2
30.102-36 M 28.96-40 @

30.120-60

—  28104-30
28.96-40 @

3 .30.120-36 | 30.120-36.< 3

3/3 "5\330.120—42
/373N

28.104-30
------ 28.104-24 @
30.102-36 W

F1G. 6.12 — Schematic representation of local arrangements of generic subcones

of the cone of quadratic forms for d = 4. Ten-dimensional domains with nine-
dimensional boundaries are represented by two-dimensional regions with one-
dimensional boundaries. 30.120-36 type is abbreviated as “4”, 30.120-42 type as
“3”, and 30.120-60 type as “2” in accordance with notation used by Engel [11]. For
comments on graphical visualization see section 6.8.

A quadratic form is defined by () := #*QZ. We denote by
ot = {Q e R('S)|p(@) > 0,v7 € B\ {o}} (6.67)

the cone of positive-definite quadratic forms. Its dimension is (";1) = %

The closure of the cone is denoted by C := clos(C)™", and its boundary by
cl:=c\C" .

Given an orthonormal basis €1, ..., €, of R™ a basis of R"*" is obtained
by the tensor products €;; := €;®¢€}, 4,j = 1,...,n, with €€, = d;1,0;;. Since
@ is symmetric, Q = Q", it follows that the cone C™ can be restricted to a
n+1) . . nt1

2 ) of dimension ( 5 )

subspace R( , defined by €;; =€, i <j=1,...,n.
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In R™*™ the Gram matrix @ is represented by a vector ¢ with components
¢ij, 1 <i,j < n. Each zone vector 2* has a representation in R"*" by z* @ z*.

One can study the symmetry of a lattice L by investigating the symmetry
of its Gram matrix in the cone CT. For any A € GL,(Z), Q' = AQA" is arith-
metically equivalent to Q. Thus, §’ = A' ® A'G is arithmetically equivalent
to q. If S € GL,(Z) fixes Q, Q = SQS*, then S* @ S* fixes .

For any vector v* = wuidj,...,v,d) in dual space, the tensor product
I'= 7 ® 0" is denoted to be a ray vector. Since det(7* ® &) = 0, it follows
that the ray vector ['lies on the boundary CY. Let & be the representation of
the identity matrix in R™*™. Then A¢ is the axis of the cone C, because for
any ray vector f? the cone angle v satisfies
c-1 v+ v3+ ... 02 :L. (6.68)

COS¢: '_,::
lalll Vaur 20 + . ol Vi

Thus C is a cone of rotation with rotation axis A¢. For n = 2 the cone angle
¥ is w/4 (see Figure 6.1). For large dimensions n, the cone angle 1 is close to
/2. The cone C is intersected by subspaces of dimensions (k‘gl), k < n.

Let us now study partition of the cone C into domains of non-equivalent
combinatorial types.

Definition: domain of combinatorial type In the cone C, the domain
of combinatorial type of a parallelohedron P is the connected open subcone
of Gram matrices

comb

dT(P)={QeC"|P(Q) ~ P}. (6.69)

By ® = clos(®') we denote its closure, and its boundary is given by ®° =
D\ Pt

Theorem 10 The domain ® of the combinatorial type of a parallelohedron P
is a polyhedral subcone of C.

Proof. We have to show that the border between two neighboring domains
of parallelohedra of different combinatorial type are flat walls. It is sufficient
to do that for generic domains, the walls are then hyperplanes in C. We give
the condition for the existence of a wall W C ®. Let ® be a generic domain.
The length of at least one edge of P diminishes for some @ € ®T approaching
the boundary ®°, and when @ hits ®°, both vertices subordinated to that
edge coincide. By this coincidence at least n + 1 facets meet in the common
vertex v. If a facet F; contains the vertex v then the corresponding facet vector
f; fulfills the equation

D T
5th¢=§fithi, i=1,...,n+1. (6.70)
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As a sufficient condition that n + 1 facets meet in the vertex v, we have that
the determinant

EQUflj Zanflj ﬁtQJ?l
= 0. (6.71)
Yaiifai o Xawifoi £
qujfn+1,j ce Zanfn+1,j fnt+1an+1
Since ﬁ, cee f;L form a basis of a sublattice of L of index w, it follows that
frsr=a1fi+ ...+ nfn, o€ LWL (6.72)
Hence, the determinant can be transformed to
Saiify - Yanifiy QA
=0, (6.73)

Z‘hjfnj Zanfnj fT;LtQﬁl
0 0 A
where

A= Zal o = 1)f; sz+22 Z aio; f,'Qf;. (6.74)
=1 j=i+1
We set
Sqiifiy o Y amifiy

An=| ] (6.75)

E(h.jfnj cee EQr;jfnj

The determinant thus becomes
AN, = A det(Q) det(fi,..., [fn) =0. (6.76)

This product gives, in terms of the Gram matrix @, the condition that the
n + 1 facets meet in the vertex v. Either factor can be zero.

o Pirst consider the case A = 0. The term A is linear in the g;; and hence,
it determines a flat wall W C .

e The case det(Q) =0, or det(ﬂ, cee ﬁl) = 0 means that @ € C° and the
lattice L™ degenerates to L*, k < n.
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The parallelohedron P has only a finite number of edges, and therefore @ is
bounded by a finite number of hyperplanes. Thus ® is a rational polyhedral
subcone of C. (]

Since w is finite, the term A can be represented by integral numbers h
and thus the coincidence condition becomes

R

hi1g11 + hi2qi2 + ... + hanGun = 0. (6.77)
The wall normal
7t = h11€11 + h12€12 + ... + hpn€in (6.78)

is orthogonal to the wall .

In general, the wall W separates two domains of different combinatorial
type. The wall itself is an open domain 3" for some limiting type.

The edges of ® are the extreme forms of ®, and are referred to as edge
forms. An edge form is either

e a ray vector lying on the boundary C° which has a representation as a
tensor product z* ® 2* with zero determinant, where z* is a vector of a
closed zone of P.

e a generic inner edge form of C™ having positive determinant.

e a non-generic inner edge form of C* having zero determinant, i.e. it is a
. =+ . .
generic inner edge form of a cone C  of a lower dimension (kgl), k <n.

Inner edge forms occur only in dimensions n > 4.

An effective numerical algorithm to determine the walls and the edge forms
is discussed in [25].

6.6 Zonotopes and zonohedral families
of parallelohedra

After looking at the system of different combinatorial types of parallelohe-
dra and their organization in families for four-dimensional lattices we return
to some systematic classification of combinatorial types of parallelohedra for
arbitrary dimension. We start with the definition of the Minkowski sum of
polytopes.

Definition: Minkowski sum The vector sum or Minkowski sum of two
convex polytopes P and P’ is the polytope

P+ P ={z+a|lzePa P} (6.79)

Equivalently, we can describe P + P’ as the convex sum of all combinations
of their vertices. Let V(P) and V(P’) be the set of vertices of P and P’, then

P+ P’ =conv{v +v'|v e V(P),v' € V(P)}. (6.80)
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This can be generalized to any finite number of summands in an obvious way.
Now we define one special but very important class of polytopes.
Definition: Zonotope A zonotope is a finite vector sum of straight line

segments.

We recall that a zone Z of a parallelohedron P is the set of all 1-faces

(edges) FE that are parallel to a zone vector z*,

7 :={FE C P|E||Z"}. (6.81)

In each edge at least d — 1 facets meet. The zone vector z* is the outer

product of the corresponding facet vectors. In the dual basis, z* has integer
components

2 =zma; + ...+ zpd,, z €Z. (6.82)

With respect to any zone vector z* we can classify the lattice vectors in layers

Li(Z%):={te L"|tz* =i, |i|=0,1,...}. (6.83)

A zone Z is referred to as being closed if every 2-face of P contains either
two edges of Z, or else none. Otherwise Z is denoted as being open.

The zone contraction is the process of contracting every edge of a closed
zone by the amount of its shortest edges. As a result, the zone becomes open,
or vanishes completely, but the properties of a parallelohedron are maintained
and the result of the zone contraction is a parallelohedron of a new combi-
natorial type. If a d-dimensional parallelohedron P collapses under a zone
contraction, then the resulting P’ parallelohedron has dimension d — 1.

A parallelohedron P, is referred to as being totally contracted, if all its
zones are open. It is relatively contracted, if each further contraction leads
to a collapse into a parallelohedron of a lower dimension. A parallelohedron
P, is maximal, if it cannot be obtained by a zone contraction of any other
parallelohedron in the same dimension.

Note that a polytope P is a zonotope if and only if all its k-faces are
centro-symmetric. In its turn, a zonotope is a parallelohedron if and only if
all its belts have 4 or 6 facets. This is a consequence of Theorem 5.

The parallelohedra which are at the same time zonotopes have a particular
simple combinatorial structure. They are named zonohedral parallelohedra.

For zonohedral parallelohedra P the following two conditions are equiva-
lent:

i) each zone of P has edges of the same length;

ii) each zone of P is closed.

In each dimension there exists a unique family of parallelohedra which
contains all zonohedral parallelohedra, and which is named a zonohedral fam-
ily. In dimensions d < 3 all parallelohedra are zonohedral and belong to the
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unique family. The zonohedral family for d = 4 consists of 17 members shown
in Figure 6.11.

In dimensions d > 4 the zonohedral family includes several maximal zono-
topes. For d = 4 (see figure 6.11), for example, the zonotopes 30.120 — 60
and 30.102 — 36 are maximal. Each zonohedral family has one main zone-
contraction lattice corresponding to the maximal zonohedral parallelohedron
P,,(A%) of the root lattice A which is a primitive principal and generic, i.e.
fills d(d + 1)/2-dimensional domain of the cone of positive quadratic forms.
This main zone-contraction sub-family of the zonohedral family includes all
parallelohedra which can be obtained from the P, (A% ) zonotope by zone con-
traction. For dimension 4 (see again Figure 6.11) the main zone contraction
sub-family consists of all zonotopes except one, namely 30.102 —36. One con-
traction is necessary to transform 30.102 — 36 to a parallelohedron belonging
to the main zone-contraction sub-family. Each maximal zonotope can be char-
acterized by the number of zone-contraction steps needed to attain the main
zone-contraction family. In dimension d = 4, the 30.102 — 36 parallelohedron
is distanced from the main zone-contraction family by one step (contraction
till 26.78 — 24). The zonohedral family for d = 5, for example, includes 81
zonotopes (see section 6.7), among which there are four maximal, with the
maximal distance from main zone-contraction sub-family consisting of three
contraction steps.

The minimal member of the zonohedral family has combinatorial type of a
parallelepiped (hypercube) and occupies a d-dimensional domain on the cone
of positive quadratic forms.

Apart from the zonohedral family in each dimension d > 4 there exist a
number of parallelohedra which can be represented as a finite Minkowski sum
of a totally zone contracted parallelohedron and a zonotope [51]. In dimension
d = 4 the family consisting of 35 parallelohedra (see figure 6.10) can be
constructed by applying a zone extension operation to the totally contracted
24-cell parallelohedron 24.24 — ( associated with Fj lattice.

Not every totally contracted parallelohedron can be extended by applying
a Minkowski sum with a segment (without extending the dimension of the
parallelohedron). The maximal and simultaneously totally contracted par-
allelohedron, for example, exists in d = 6. It is related to the Ef lattice
[50, 57].

6.7 Graphical visualization of members
of the zonohedral family

The fact that all members of the zonohedral family can be represented as
a vector sum of a certain number of segments (vectors) allows us to con-
struct relatively simple visualization of different combinatorial types of zono-
hedral lattices using graphs in such a way that each segment generating the
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Ky <
| | |

/\ /E -

o @/ ~
Cy C3+1 |:| T 0O
\ /T ~ | \ \
1+1+1 G; N/ ~\_/
T
1+1 / (\; =2
i e

F1G. 6.13 — Graphical (center) and cographical (right) representations of zonohe-
dral parallelotopes in dimensions d = 1,2, 3 together with zone extension relations
between them. The left diagram gives the notation of graphs used for graphical
representation, as introduced in [32].

Minkowski sum is represented by a segment whereas linear dependencies
between vectors corresponds to cycles of the graph. We cannot enter here
into detailed mathematical theory of such a correspondence which is based on
the matroid theory (for introduction see [23]). We hope that the more or less
self-explaining correspondence shown in Figure 6.13 for dimensions d = 1,2, 3
and in further figures for dimension d = 4 and d = 5 will stimulate the interest
of the reader to study the corresponding mathematical theory.

The so called graphical representation for d-dimensional zonotopes consists
in constructing connected graphs with d+ 1 nodes without loops and multiple
edges. For d = 1 we obviously have one graph, for d = 2 there are two
graphs (see Figure 6.13, center). In dimension d = 3 we need to introduce the
equivalence relation between graphs, namely, for edges with one free end we
should allow the other end of the same edge to move freely from one node to
another. This means that all “tree-like” graphs or subgraphs should be treated
as equivalent (see the equivalence between two three-edge graphs for d = 3
in Figure 6.13, center). This gives five inequivalent graphs for d = 3. For
the notation of graphs (see left subfigure in 6.13) we follow the style used in
the book [23].” The most important for further applications is the notation

9 In [35], Conway and Sloane use these five graphs among different alternative versions of
graphical visualizations and indicate as inconvenience the absence of symmetry transforma-
tions for this presentation. We note, however, that looking at these graphs up to topological
equivalence, including 2-isomorphism [97] removes this inconvenience.
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K, and its natural generalization to Kgy1, d > 3, which means the complete
graph on four (or more generally on d+ 1) nodes. For dimension three, all five
combinatorial types correspond exactly to all five connected graphs on four
nodes (taking into account the introduced equivalence of graphs).

It is easy to see that the correlation between graphs (shown by connecting
lines) corresponds to removing or adding one edge, when this correlation is
within different graphs of the same number of nodes, i.e. between zonotopes
of the same dimension. Removing one edge corresponds to zone contraction
and all subgraphs of K, with four nodes can be obtained from K, by suc-
cessively removing edges. Removing an edge with a free end leads to a graph
with a lower number of nodes, i.e. we go to lower dimension with such a
transformation.

Along with the graphical representation for 1-,2,-3-dimensional zonotopes
we can equally use so called cographical representation which consists of
replacing the graphical representation by a dual graph. To construct a dual
graph, the original graph should be planar, i.e. when drawing a graph on
paper (plane) no intersection or touching points between edges are allowed
(except at the nodes). All graphs in Figure 6.13 are planar. (It is sufficient to
deform graph K, to avoid the intersection of two edges.) To construct for a
planar graph the dual graph, we need to associate with one connected domain
of the plane a node and with each edge of the original graph an edge of the
dual graph crossing this edge and relating nodes associated with left and right
domains separated by an edge. (It may occur that the domain is the same and
we get a loop.) The following simple examples give an intuitive understanding
of the construction of the dual graph.

=0

(6] a
—_— o
C

We see that a loop at one node and multiple edges between pairs of nodes
appear naturally for a dual graph. Also we see that K is self-dual. Elimina-
tion of one edge for graphical representation corresponds to shrinking of one
edge by identifying two nodes for the corresponding dual graph. Increasing
dimension for the graphical representation by adding one edge with a free end
(adding an extra node) corresponds to adding a loop in the cographical rep-
resentation. A cographical representation for three dimensional combinatorial
types of lattices is given in Figure 6.13, right.

A very interesting and new situation (as compared with the three-
dimensional case) appears for 4-dimensional zonotopes.

RN
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F1G. 6.14 — Zonohedral family in d = 4. A graphical representation is used for all
zonohedral lattices except for the K33 one. The arrangement of zonotopes repro-
duces the zonohedral family of lattices given in Figure 6.11.

Let us extend our visualization approach to the 4-dimensional case.
Figure 6.14 gives a graphical representation for all zonohedral lattices for
d = 4 (with exception of one case corresponding to maximal non-primitive
30.102-36). In fact it is sufficient to construct all connected subgraphs of the
complete graph K5 with 5 vertices possessing 10 edges and to take into
account certain equivalence relations. (The notations of graphs are summa-
rized in Figure 6.15.) Certain equivalence relations in the graphical represen-
tation are shown in Figure 6.14. Namely, for C5+1+1 and for C' 5 ; +1 graphs
the edge with one free end can be attached to any node. To keep the figure
more condensed we do not show for Cs + 1+ 1 graph the isomorphism with
the graph formed by a chain of length 2 attached to a 3-cycle. Starting from
the complete graph K5 we easily construct the zonohedral family consisting
of 16 elements (except K33 shown in Figure 6.14 in the special rectangle).
To understand the logic of its appearance we need to study along with the
graphical representation and the cographical one. First let us note that the
K graph is not planar and we cannot construct a dual for this graph. At the
same time for all proper subgraphs of K5 the dual graphs can be constructed.
Figure 6.16 shows the result of cographical representations for all proper sub-
graphs of K. But this family naturally includes one extra graph, K3 3 which
can be obtained by an extension (point splitting) operation applied to the
K5 — 1 —1 cographical representation. Point splitting is an inverse operation
to edge contraction for the cographical representation. It allows us to find an
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Ks
K5 -1 K33
/ z
T LT
Ky +1 K53 Con1 Ks-2-1

L =

C3+C3 Coo+1 Cy1 Cox

LT

Cs+1+1 Cy+1 Cs
W
1+1+1+1

F1G. 6.15 — Conway notation [32] for zonohedral family in d = 4. (Note the misprints
in [32]: K4 used by Conway should be replaced by Ca21 4 1, whereas K4 corresponds
to the primitive combinatorial type of the three-dimensional lattice.)
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F1a. 6.16 — Cographical representation for 4-dimensional zonotopes.
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additional zonotope belonging to a zonohedral family for four-dimensional
lattices. Returning now to the semi-ordered set of zonotopes shown in
Figure 6.14 we can explain the correlation between K5 — 1 — 1 and K33 as
follows. From the graphical representation of K5—1—1 we pass to the cograph-
ical representation and next realize point splitting of the only four-valence
vertex. As a result we have two answers (depending on the type of rearrange-
ment of edges during the point splitting), one is dual to K5—1, another is K3 3,
for which we only have a cographical representation. These transformation are
graphically summarized in the following symbolic equation.

BB

We use the four-dimensional case to introduce still one more representation
of graphical zonotopal lattices. Namely, instead of plotting the graph which
is a subgraph of K5, we can simply plot the complement, i.e. the difference
between K5 and the subgraph. The only useful convention now is to keep all
nodes explicitly shown. Such a representation is given in Figure 6.17. This rep-
resentation becomes interesting when studying subgraphs with a number of
edges close to the maximal possible value, i.e for subgraphs close to a complete
graph K5 and in higher dimensional cases close to K441, or in other words for

e o
*—o
L]

1 I

— 1
= ] = L>
L1 [N~ Do) D
- [ >

@.

2

2] >
[ D> ~N>

F1c. 6.17 — Representation of zonotopes through complement to graphical repre-

sentation within the complete K5 graph.
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graphs with a small number of edges absent from the complete graph. This
representation allows us to easily find equivalence between different graphical
representations taking into account the topological equivalence of a comple-
ment to a graph. In contrast, for graphs with a small number of edges it is
easier to see equivalence by looking directly at the graphical representation.

The five dimensional zonohedral family

To show the interest in the application of graphical visualization of zono-
hedral lattices we give now the application to five-dimensional lattices. The
zonohedral family of five-dimensional lattices has been described by Engel
[53], who has found 81 members of the family among which eight do not
belong to the principal sub-family corresponding to the complete graph Kg
and its subgraphs. Engel characterizes members of the zonohedral family
by symbols Nygcets-Nvertices — Nhezagonal 2—faces and gives the correlation
between them corresponding to zone contraction. Figure 6.18 reproduces
Engel’s diagram with additional distinction between zonotopes belonging to

62.720-480

60.600-360

56.480-264 58.504-264

P ———
TS

32240-120 44.288-132  44.288-144  46.288-122 48.306-120 48312122 48.312-132 50.330-132 52.330-108 52336-120 52336-132

20.144-72 26.144-52 28.156-48 30.162-60 30.162-62 34.162-50 36.168-52 38.180-48 36.180-60 38.180-38 40.162-32 40.186-50 42.192-36 42.198-36 44.204-48 48.230-0

12.48-8 16.56-0 22.60-0 30.62-0

10.32-0

F1ac. 6.18 — A representation of a zonohedral family in five-dimensional space
made by Engel [53]. Lattices for which graphical representation is not available are
underlined.
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the main Kjg-subfamily and correlations between members of this subfam-
ily and zonotopes for which graphical representation is not available. Note
that for the five-dimensional zonohedral lattices there exists one example of
a lattice, namely 60.332-0, which has neigher graphical nor cographical rep-
resentation.

Figure 6.19 keeps the same organization of zonohedral lattices as that
shown in Figure 6.18 but now each graphical lattice is given by its graph.
Eight zonotopes which do not belong to the main family of subgraphs of K¢ are
described by cographical representation or do not possess neigher graphical
nor cographical representations. Their symbols are replaced in Figure 6.19
by an shaded rectangle. These lattices and their correlations with graphical
lattices are discussed separately below.

To simplify the visualization for graphical representations we use graphs
only when the number of edges is less than or equal to 10, whereas for graphs
with the number of edges being more than or equal to 10 we use the represen-
tation of a complement to the graph with respect to the K¢ complete graph.
For graphs with 10 edges both direct graphical and complement to graphical
representations are given to clarify the correspondence.

Let us now give some comments about zonohedral lattices which do not
appear as subgraphs of the complete graph K. First consider 60.332-0, which
is a special Rjg graph introduced by Seymour [86], or Es used by Danilov and
Grishukhin [38]. This graph cannot be described as belonging to the graphical
or cographical representations. It can be considered as an extension of the K3 3
cographical four-dimensional lattice by adding one loop. Seymour [86] uses for

Ry the presentation of the type
/\/ @

Note that the graphical presentation of 48.230-0 as a subgraph of Kg (which
in fact equivalent as a graph to the K33 representation) assumes that this
graph corresponds to a five-dimensional lattice rather than the graph Kj 3
considered earlier and representing a four-dimensional zonohedral lattice.
Because of that it is more natural to use K3 5 notation for the four-dimensional
lattice 30.120 — 30.

Let us now turn to cographical representation of seven zonohedral lattices
which are not subgraphs of Kg. These seven cographical lattices are shown in
Figure 6.20.

Figure 6.21 demonstrates using the example of the 58.432-192 polytope
how to realize different contractions. It is possible to make two contractions
for 58.432-192. One consists in the contracting edge between nodes 1 and
2. (Numbering is given in figure 6.21.) It leads to cographical representation
of the 52.336-132 polytope. Another contraction (15) leads to cographical
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48.306—-120 52.336-132

ey i

32.204-72 48.258-72 48.264-86

Fic. 6.20 — A cographical representation for seven zonohedral lattices associ-
ated with two maximal ones, 56.408-186 and 58.432-192. They are not shown in
Figure 6.19.

8 o 2
7 3
6 4
58.432-192
%(112)
dual 7 2
ﬁ» - 6 3
4
50.330-132 52336-132
(14 (12) _—145) 34 23)
SR @0 B BB
ya 774— —
402349 42.240-9 48.258-72 48.264-86 46258-84

F1c. 6.21 — Different contractions of the 58.432-192 zonohedral polytope shown
in the cographical representation and transformed into the graphical representation
for subgraphs of Kg.

representation which can be transformed to a dual graphical representation
showing that the result is the polytope 50.330-132. The complementary graph
is given for 50.330-132 along with the image of the graph itself in order to
simplify the identification of the graph.

In its turn the cographical representation of the 52.336-132 polytope
shows that five different contractions are possible. Two among these con-
tractions, namely (34) and (45) lead to two lattice zonotopes possessing only
cographical presentation. Three other contractions (14), (12), and (23) lead
to cographical presentation of zonotopes possessing graphical presentation
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and being subgraphs of Kg. Their transformation to graphical presentation
through construction of a dual graph is explicitly shown in Figure 6.21.

Graphical representation of subgraphs of Ky gives us an opportunity to
see explicitly an application of important notion of 2-isomorphism of graphs
introduced by Whitney [97]. Namely, for the 30.162-60 zonotope two appar-
ently different graphs can be assigned, but nevertheless these two graphs are
2-isomorphic as the following graphical equation demonstrates.

O-0P- -0~

6.7.1 From Whitney numbers for graphs to face numbers
for zonotopes

Simple visualization of zonohedral lattices by graphs would be much more
interesting if it is possible to find zonotopes characteristics directly form
graphs. And this is indeed possible. Face numbers of zonotopes can be
expressed through rather elementary formulae in terms of topological invari-
ants of graphs, the so called Whitney numbers [96, 82, 56]. A short guide to
the calculation of Whitney numbers for simple graphs is given in appendix
B. Here we simply give several explicit expressions for face numbers of 3- and
4-dimensional zonotopes in terms of doubly indexed Whitney numbers of the
first and second kind.

For three dimensional zonotopes, i.e. for all combinatorial types of three-
dimensional lattices we have

No = wiy + wd; +wgy + wis; (6.84)

Ny = wi; + wi) + wiy; (6.85)

Ny = wi, + wis; (6.86)

NQ(G) = dwgy — 2wiy; (6.87)

N = awi, — 6w, (6.88)
where wj; are absolute value of doubly indexed Whitney numbers of the first
kind.

In fact, the total number of k-faces can be expressed more generally for
arbitrary dimension d as [56]

d
Np=> w. (6.89)
j=k
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For four-dimensional zonotopes we add several expressions for particular
types of k-faces.

NS = 2w13 + dwag + 2W13;

NIV = —2w15 — 6was — 2Whs;

N;§6) = 2wo1wo2 + 12wg2 — 56wz + 4wz — 32wz — 24wa3z — 8Wi3;
Nég) = —4dwoiwoz — 24wpz + 96wes — Swiz + 50wz + 36was + 14Wis;
N:§12) = dworwoz + 24wz — T8woz + 8wz — 36wz — 24waz — 10Wis;
N = —2wowog — 12w0y + 36wos — 4wy + 16wis + 10wos + 4Wys.

Although these expressions are slightly complicated because they include one
quadratic term, the existence of such expressions clearly supports the tight
relation between zonohedral lattice and representative graph.

6.8 Graphical visualization of non-zonohedral
lattices.

We have noted earlier in section 6.4.1, that in dimension four there exist two
families of parallelohedra, the zonohedral family and the family obtained from
the 24-cell polytope by making zone extension. This 24-cell family was rep-
resented in figure 6.10 taken (with minor modifications) from Engel’s book
[11]. In spite of the fact that these two families are often considered as com-
pletely independent and not related, there is a tight relation between them.
The origin of this relation is the fact that all members of the 24-cell family
can be constructed as a Minkowski sum of the 24-cell, Poy = 24.24-0 and
a zonotope which we denote Z(U) and which in its turn can be constructed
as a Minkowski sum of one, two, three, or four vectors. Thus, we can try to
associate with each non-zonohedral polytope a zonotope (one-, two-, three-,
or four-dimensional) which after making a Minkowski sum with the 24-cell
leads to a required polytope. We need however to mention here a very im-
portant remark made by Deza and Grishukhin [44]. For a zonotope Z(U)
itself it is not important whether the summing vectors are orthogonal or not.
A parallelepiped and a cube have the same combinatorial type. But the or-
thogonality of summing vectors in Z(U) influences heavily the combinatorial
type of the sum Py + Z(U). This means that the number of different types of
Py, +Z(U) can be larger than the number of different Z(U) and we need to in-
troduce an additional index characterizing orthogonality or non-orthogonality
of vectors in the sum associated with a zonotope Z(U). Nevertheless the con-
traction/extension relation between different non-zonohedral polytopes should
respect the corresponding contraction/extension relation between zonotopal
contributions. This allows us to represent all non-zonohedral polytopes
(or lattices) in a way similar to zonohedral ones. Figure 6.22 is a graphical
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30.120-36 30.120-42
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28.104-24 28.104-30

’
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26.88-12 26.88-18 26.88-24 28.94-12 28.94-18

24.72-0 24.72-12b 24.72-12a 24.72-24 26.78-6 26.78-12 28.88-0
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F1G. 6.22 — Graphical visualization of four-dimensional parallelohedra represented
as a Minkowski sum P4+ Z(U) of a zonotope Z(U) and the 24-cell, Poy = 24.24—0.
Shaded elliptic disks symbolize the Pa4 cell. Graphs for zonotopes coincide with those
used to visualize zonohedral lattices. Symbols «, 3,7 make further distinction
between zonotope contributions Z(U). Depending on the number of mutually
orthogonal vectors in the Minkowski sum for a zonotope Z(U), this additional index
characterizes the cases with no orthogonal edges, with a pair of orthogonal edges
and with three mutually orthogonal edges. A single thin line corresponds to elimina-
tion/addition of one edge without changing the number of points. A double thin line
symbolizes transformation to the dual representation. A thick dash line corresponds
to elimination of one edge together with one point.
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visualization of the organization of the 24-cell family shown in 6.10.
In Figure 6.22 the 24-cell contribution to the sum is symbolized by an elliptic
shaded disk. The zonotope contribution is represented inside the shaded disk
in a way similar to the representation of zonotopes discussed in the preceding
subsection. The additional index is added when it is necessary to distinguish
between the Minkowski sum with the same zonotope contribution but with
special orthogonality between vectors forming the zonotope. This additional
index is shown on the disk and takes values «, 3, 7. It is useful equally to make
the distinction between correlations (contraction/extension) associated with
elimination of one edge without changing the number of points, i.e. within the
zonotopes of the same dimension, and with elimination of the edge together
with one point. The correlations associated with modification of the dimen-
sion of a zonotope are represented by a thick dash line. Graphical correlation
allows us to localize small misprints in the figure representing a partially or-
dered set of non-zonohedral lattices in book [11], Figure 9-7. Namely, in the
notation used in [11] it is necessary to change the line 26-7—24-14 by the line
26-7—26-3; the line 26-6—26-3 should be changed into 26-6—24-14; the line
28-2—26-7 should be changed into 28-2—26-6.

Using the discussed above graphical visualization of non-zonohedral lat-
tices we can better understand the system of the organization of walls between
generic domains for a cone of positive quadratic forms (see figure 6.12). The
wall between the 30-2 and 30-3 domains is of 28.96-40 type represented by
(K5 — 1) graph. Taking into account that the 30-2 domain corresponds to the
K5 zonotope graph and the 30-3 domain corresponds to the Pyy+ (K5 —1) non
zonotopal graph it is clear that going from domain 30-2 to the wall 28.96-40 is
a simple zone contraction graphically visualized as removing one edge. At the
same time going from domain 30-3 to the same wall is not a zone contraction
transformation. This transformation can be described as “elimination of the
P»4 contribution”.

In a similar way going from the 30-4 domain to the wall 30 — 102-36 has
the same type. This transformation is again associated with “elimination of
the Po4 contribution” and is not of a standard contraction type. All other walls
between generic domains are of simple contraction type, which are graphically
represented by removing one edge from the graph.

The comparison of graphical representations of zonohedral lattices
(Figure 6.23) and non-zonohedral ones (Figure 6.22) clearly indicates that
there are similar transformations with “elimination of the Ps4-contribution”
during passage from lower dimensional subcones to their walls. For exam-
ple the non-zonohedral lattice 28.104-24 represented as Poy + (K5 — 2 x 1)
and filling a 9-dimensional subcone can have as one of its 8-dimensional
boundaries the zonohedral lattice 24.78-24 which is graphically represented
as (K5 — 2 x 1). Going from Py, + (K5 —2 x 1) to K5 — 2 x 1 is not of a
zone-contraction transformation but the “Psy elimination”.
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F1G. 6.23 — Graphical visualization of zonohedral four-dimensional parallelohedra.

To conclude the discussion of graphical representations of non zonohedral
polytopes we note that this approach can be generalized to higher dimen-
sional spaces. In order for the reader to follow this rather active direction
of research we mention the recent paper [88] (and the most important of its
predecessors [93, 38, 57, 58]). In [88] the description of six-dimensional poly-
topes represented in a form of Py (Fg) + Z(U) is studied. The Py (Fjg) is the
parallelotope associated with the root lattice Eg. (See chapter 7 of this book
for an initial discussion of root lattices.)
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6.9 On Voronoi conjecture

When discussing parallelohedra associated with facet-to-facet tiling of the
space and corresponding lattice we have not stressed the difference between
parallelohedra and Voronoi cells of lattices. It is clear that any Voronoi cell
is a parallelohedron but the inverse is generally wrong.

In his famous paper [95] Voronoi formulated an important question: “Is
an arbitrary parallelohedron affinely equivalent to the Dirichlet domain for
some lattice?”. Now the term “Dirichlet domain” is more often replaced by the
“Voronoi cell” but the positive answer to this question is still absent and the
affine equivalence between Voronofi cells of lattices and arbitrary parallelohe-
dra is known as Voronoi’s Conjecture.

Voronoi himself gave a positive answer to his question in the case when
the parallelohedron P is primitive, i.e. when every vertex of corresponding
tiling belongs to exactly (d 4+ 1) copies of the d-dimensional parallelohedron
P, or, in other words, each belts of P contains 6 facets. Since then, some
progress has been made by extending Voronoi’s Conjecture to a larger class
of parallelohedra. The most serious steps are the following:

Delone [41] demonstrated that the conjecture is valid for all parallelohedra
in dimensions d < 4.

Zhitomirskii [99] relaxed the condition of primitivity of parallelohedra for
which Voronoi’s Conjecture was proved to be valid. According to [99], a paral-
lelohedron P is called k-primitive if each of its k-faces are primitive, i.e. every
k-face of the corresponding tiling belongs to exactly (d + 1 — k) copies of P.
In particular, if each belt of P consists of 6 facets the parallelohedron is (d—2)-
primitive. Zhitomirskii [99] extended the result of Voronoi on (d—2)-primitive
parallelohedra.

Another class of parallelohedra for which the Voronoi’s Conjecture was
also proved [54] includes zonotopal parallelohedra.

Engel checked the Voronoi’s Conjecture for five-dimensional parallelohedra
by computer calculations [50, 51]. He enumerated all 179372 parallelohedra
of dimension 5 and gave a Voronoi polytope affinely equivalent to each of the
found parallelohedra.

Assuming the existence of an affine transformation that maps a parallelo-
hedron onto a Voronoi polytope, Michel et al. [77] have shown that in the
primitive case and in few other cases these mappings are uniquely determined
up to an orthogonal transformation and scale factor.



Chapter 7

Root systems and root lattices

7.1 Root systems of lattices and root lattices

A hyperplane H, of a n-dimensional vector space F, is a (n — 1)-
dimensional subspace. It is completely characterized by a normal vector 7.

Definition: reflection through a hyperplane. The reflection o,
through the hyperplane H,. is a linear involution of F,, which leaves the points
of H, fixed and transforms 7 into —7.

Reflection through a hyperplane is an automorphism of FE, completely
characterized by 02 = I,,, Tr 0, = n — 2. Explicitly?,

Vi€ B on(@)=1-227 (7.1)

Assume now that o, is a symmetry of the n-dimensional lattice L, i.e.
Vel o.f)¢€lL. (7.2)

Then

— L
l—0o,(l)el & 2 7e L, 7.3
which shows that the 1-dimensional vector subspace {A7} contains a
1-sublattice? of L. From now on we choose ©* to be a generator of this
1-sublattice, so it is a visible vector3. This implies that the coefficient of the
vector 7 in (7.3) is an integer. We call these vectors the roots of the lattice;
their set is called the lattice root system,
(6.7)
€ Z}. 7.4
R (7.4)

L As we should expect from the definition of a reflection, the expression of o, is inde-
pendent of the normalization of 7} in particular o = o_,..

2 Concept defined in section 3.3.

3 There are no shorter collinear vectors in the lattice.

R(L) = {Fe L, 7¥visible: YVl € L, 2
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We write R instead of R(L) when L is understood. Notice that ¥ € R <
—7 € R and that the dilation L +— AL of the lattice changes simply R into
AR. Moreover different pairs 47 of roots correspond to distinct reflections.

We denote by Gr the group generated by the |R|/2 reflections o, ¥ € R;
it is a subgroup of the Bravais group Pf of L. We know that |P7| is finite, so
|R| is also finite.

We can write R = U;R; where the R, are the different orbits of P7. The
reflections .., 7€ R; form a conjugacy class of this group; we denote by Gg,
the subgroup they generate. Since in a finite group G, any subgroup generated
by one (or several) conjugacy classes is an invariant subgroup of G, we have:

When Gg is R-irreducible, any of its orbit spans the space E,, (if it were
not true, Gg would leave invariant the subspace spanned by the orbit, and
that contradicts its irreducibility). So each R; spans FE,,; that is also true of
the short vectors S = S(L).

Proposition 34 When G (L) is R-irreducible, the norm of any root satisfies
N(7) < 4s(L).

Proof: The proposition is true for roots in S. Let 7" be a root not belonging
to S. Since S spans the space we can choose § € S such that (7, 8) > 0. The
transformed vector §, = 0,(5) = §— p7, with 0 < p = 2(5,7)/N(7), is also
in S since it has the same norm as §. Since 7 is visible and N(7) > N(J),

Schwarz’s inequality
5.7 < VNEONG) (7.6)

implies |(8,7)| < N(7). Thus p =1, i.e. = §— §,. Thus N(7) <4N(5). O
Definition: root lattice. A root lattice is a lattice generated by its roots.
As a trivial example, any one dimensional lattice L = {n#,n € Z} is a
root lattice; indeed o, (n7) = —n#. We recall that any one dimensional lattice

can be scaled to I.

Proposition 35 The vectors of norm 1 and 2 of an integral lattice are roots
of the lattice.
Proof: In an integral lattice 7,7 € L = (£, 7) € Z. Assume N (%) = 1 or 2;
so ¥ is visible. Then 2(¢, %) /N (¥) is an integer, so 7 is a root. O
As we will see, this proposition gives important information on the sym-
metry of the lattice. From the definition of the root lattice we obtain:

Proposition 36 An integral lattice L generated by its vectors of norm 1 and

1
2 is a root lattice which is the orthogonal sum L = Ly & Lo where Ly = I, is
generated by the norm 1 vectors and Lo is generated by its shortest vectors of
norm 2.
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Proof. From Proposition 35, L is a root lattice. If 5;, §; are two linearly
independent norm 1 vectors of L, Schwarz’s inequality (7.6) implies (5;, 5;) =
0. Let k& be the number of mutually orthogonal pairs +5;; these short (norm 1)
vectors generate a lattice I;,. Let 7 be a root of norm 2; the value of € = (7, 5;)
is either £1 or 0. In the former case N (#—e§;) = 1 so ¥ = £§;+35;, and 7 visible
requires that it is the sum of two orthogonal short roots, i.e. 7 € Iy = L.
Obviously, the norm 2 roots 7 orthogonal to all lattice vectors of norm 1,
generate L. O

Note that an integral lattice which has no vectors of norm 1 and 2, may
contain a root lattice; a trivial example is given by a non reduced integral
lattice, i.e. the lattice \/mL, m € Z with m > 3 where L is an integral lattice
with minimal norm s(L) = 1.

Let ¥ and 7’ be two linearly independent roots of L and ¢ the angle
between them. From (7.4) we obtain:

A(F )2

COS2 = — o<
1O = NN )

€. (7.7)

Thus 5 5 5
T 7w 2n w® 31 7w 57w

4cos?(9) =0,1,2,3 = dp=—;—, —; =, —; — 7.8

() =0,1,23 = o= 2 TR LIS 1y

Since 0,0, and its inverse o, 0, are rotations by the angle 2¢ in the

2-dimensional space spanned by 7,7/, we have
(o0r0.)™ =1, where m =2, 3, 4, 6. (7.9)

The groups whose relations between generators are given by these equations
are called Weyl groups. They are studied in the next subsection. To write
explicitly the integer 4(7,7/)?/(N(F)N(7')) as a function of m we use the
Boolean function m +— (m = 6) whose values are 1 when m = 6 and 0 when
m # 6. Then

=m—2—(m=6). (7.10)

Application to dimension 2

We have seen in section 4.3 that there are two maximal Bravais classes:
pdmm (square lattices Ly) and p6mm (hexagonal lattices Ly). Their groups
are irreducible (over C). So we can consider the two integral lattices. Since
their shortest vectors satisfy s(Ls) = 1, s(Lp) = 2, and generate the lattice,
Proposition 35 shows that L and Ly are root lattices. For each one, the root
system has two orbits of roots; one of them is the set of short vectors of the
lattice. We use the value i of the root norm as an index for the root orbit R;.
In the next equations we list the roots by giving their coordinates in the basis
defined by the Gram matrix Q(L).

For the Bravais class pdmm (square lattice),

o) =1 Ra()=sw)={=(g)+ ()} mazar=1
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Ra(Ls) = {i(i)i(_ll)} IR2(Ls)| = 4. (7.11)

For the Bravais class p6mm (hexagonal lattice),

= (2 ) s=rawn = (g) =(]) ()} 1Reteil =
Re(Ln) = {i(i)i(é)i(fl) } . [Re(Ln)| = 6. (7.12)

Finally, the lattices of the other two non-generic Bravais classes, p2mm and
c2mm, have the same point symmetry, 2mm ~ Z3, which is reducible. The
lattices of the Bravais class p2mm are root lattices; those of ¢2mm are not.
For the latter Bravais class, depending on the lattice, there might be 4 or 2
shortest vectors; in the latter case, these two shortest vectors are roots. The
generic lattices (Bravais class p2) have no roots.

7.1.1 Finite groups generated by reflections

We will give in this subsection the list of irreducible finite groups generated
by reflections, for short finite reflection groups. Those which satisfy equation
(7.9) were introduced by H. Weyl in 1925 in his study of the finite-dimensional
representations of the semi-simple Lie groups and they were listed by
E. Cartan [30] (p. 218-224). Here we shall give the results of Coxeter, who
established the complete list of finite reflection groups? [37]. A finite reflection
group G acting linearly on the orthogonal vector space FE,, is defined by n’
generators and the relations:

1<i<n, (orom)" =1, my=1, i#j, 2<myeZ (7.13)

and this abstract group is realizable as a finite subgroup of O, with the
generators o represented by reflections through hyperplanes whose normal
vector is denoted by 7;. If the 7 span only a subspace of dimension ng < n,
the group acts trivially on its orthogonal complement. This case is equivalent
to a reflection group on a space of dimension ng; from now on, we consider
only the action on E,, of the “n-dimensional” reflection groups; the number
n/ of generators of such a group satisfies n’ > n.

We will now prove that n’ = n. The reflection hyperplanes of G partition
E,, into |G| convex cones; each one is the closure of a fundamental domain
for the action of G on FE,. Choose one of these cones and orient its root
vectors to the outside. The product of the reflections through two contiguous
hyperplanes H,, , H,, is a rotation in the 2-plane spanned by 7, 7; of order
m given in (7.9). Then the scalar product of any pair of these normal vectors
is < 0; moreover the scalar product of each of them with a fixed vector ¢

4 See also his classical book [6].



7. Root systems and root lattices 157

in the interior of the cone is also < 0. It is easy to prove that these normal
vectors are linearly independent. Indeed, assume the contrary: if Z is any
vector inside the cone, it can be written with two different decompositions
T=),q; = Zj B;7; with o < 0, B; < 0, the domains of i and j are two
disjoint subsets of 1,2,...,n/. Since 0 < (Z,%) = Zij a;3;(T3,7;) is a sum
of terms < 0, it vanishes for Z = 0. So the r; are linearly independent and
n =n.

The Gram matrix of these n normal vectors can be computed from the
“Coxeter diagram” of the reflection group G. In it, each vertex corresponds to
a generator r;. Edges are drawn between the vertices r;, r; when the order
myj of 0,0, is > 2 (see (7.13) and each edge carries as a label the value of
m;; (the tradition is to omit label 3 since (see below) at most one edge has a
label > 3 in each connected part of the graph).

Proposition 37 The irreducibility of a reflection group is equivalent to con-
nectedness of its Coxeter graph.

Proof: The reducible representation of a finite group G on the space E,, is a
direct sum of p irreducible representations on the mutually orthogonal sub-
spaces E,, with 1 < a < p, > no = n. If G is generated by reflections,
a reflection o maps a subspace onto itself only if 7; belongs to it. So the
set of root vectors is partitioned into mutually orthogonal subsets labeled
by «; each one generates a reflection group G, acting on E,,_. From the set
of rules for building Coxeter graphs, the graph of G is disconnected into p
pieces. Conversely, for a graph disconnected into p pieces labeled by «, 3, - - -,
(F?,Fjﬂ ) = 0 when o # (3, so the subspaces FE,_ are mutually orthogonal.
Moreover, from (7.10), the subgroups G, < G generated by each connected
part commute between each other, and each G, acts trivially on all E,, with
08 # «; this shows that G = x,G, transforms each E,  into itself. O

The positivity of the Gram matrix implies that the Coxeter graph of an
irreducible reflection group is a tree with at most one branching node, and
gives some restriction on the nature of this node. So we have two cases to
consider

i) one branching node: it has only three branches with the number of
vertices p,q,7 > 2 (one counts the vertex at the node) satisfying the
relation:

11 1
S+ >1, (7.14)
poq T

and all edge labels are 3;
ii) no branching nodes: then all labels are 3 except possibly one of them.
A more refined study gives the list of finite irreducible reflection groups.

As we have seen, every reflection group is a direct sum of irreducible reflection
groups (including eventually the trivial reflection group {1}).
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TAB. 7.1 — List of finite irreducible reflection groups. For each reflection group
we give its traditional symbol with the dimension as a subscript, its order, and its
Coxeter diagram. As is customary, we omit the label 3. It is clear from the diagrams
that A, is defined for all n > 1, B,, for n > 2, D,, for n > 4.

A, (n+1)! e e o o o o o
B, 2"n! e o o o o oo
D, 2n—1Inpl L — 70—1—0
Fy 1152 o o'e o

Gy 12 PRLIPY

Fg 72 - 6! o—o—I—o—o
Er 72 - 8! o—o—o—I—o—o
FEg 192 - 10! o—o—o—o—I—o—o

The following ones are not Weyl groups or symmetry groups of lattices:
H, 10 oo H; 120 o oo

H, 14400 o o oo 12(1)) 2p ole p>7

Table 7.1 gives the list of finite irreducible reflection groups with the sym-
bols used by most mathematicians; they were used first in the theory of Lie
groups.

To give the abstract structure of most of these groups, we must introduce
the following notation: S, denotes the permutation group of n objects and
A, denotes its index 2 subgroup of even permutations®; G' 7" denotes the
n-wreath product of G, i.e. the semi-direct product G™ > S,, where G" is the
direct product of n copies of G and §,, acts on it by permutations of these n
factors. We have the isomorphisms:

Ap ~ Spi1y By~ On(Z) ~ Zo1"~ A", Di ~ (Z5)Z5°8) > S,; (7.15)

Indeed A; ~ Zs; its Coxeter diagram is a point. Notice that the diagram of
Ds5 could also be denoted Fs; similarly one could have defined D3 as A3 from
the diagram shape (which justify the group isomorphism: Z3 >a S3 ~ Sy).
We follow here the usual convention, but we shall use these remarks later.
We have already seen that B,, is isomorphic to O,,(Z), the group of orthog-
onal matrices with integer elements; it is generated by the diagonal matrices
with diagonal elements +1 (they form the group Z%) and the group II, of
n X n permutation matrices (all their elements are zero except one by line and

5 The A of A, is to remind the most usual name of this group: the “alternating group”.
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by column which is 1). To restrict B,, to its index 2 subgroup D,,, among the
diagonal matrices defined above, one keeps only those of determinant 1.
We denote by C,,, the dihedral group; its order is |Cl,,| = 2n. Its definition by
generators and relations is: C,, : 2% = y" = (2y)? = 1. More isomorphisms
of reflection groups are:

Ag ~ Csy, By ~ Cyy, Hy ~ Csy, G ~ Cpy, Ig(p) ~ Cpy, Hy ~ A5 X Zs.
(7.16)

7.1.2 Point symmetry groups of lattices invariant
by a reflection group

As we have seen in (7.9), among the n-dimensional reflection groups, only
the Weyl groups, i.e. those with m;; = 2,3,4,6 are symmetry groups of
n-dimensional lattices. While the others are not automorphisms of lattices
in E,, as abstract groups they can stabilize higher dimensional latticesS;
indeed Hy < Ay, Hs < Bg, Hy < Es, I") < B,

From the knowledge of the Coxeter diagram of an irreducible Weyl group,
we can write a quadratic form of the root lattice invariant by this group.
Indeed, starting from (7.13) which defines a reflection group we have seen
how to build a set of vectors 7; normal to the reflection hyperplanes of a
fundamental cone and oriented outside the cone. These linearly indepen-
dent vectors define a basis of a lattice invariant by the Weyl group; we
denote by @ := {¢;;} the corresponding Gram matrix. Equation (7.10)
yields the following relations (depending on the integers m;; which
define the group) between non diagonal and corresponding diagonal elements

of Q:

i 7£ jv qu = 77\/"”1] mz] — 6) (717)
q”qN

This equation is independent of the length of the vectors 7;; we verify case
by case that we can require the elements of the Gram matrix @ to be rel-
atively prime integers and this fixes the lengths of the root vectors 7;. For
instance in the groups of types A, D, E (with all non vanishing non-diagonal
m's being 3), the reflections form a unique orbit; that must be also the case
of the roots 7, so the non vanishing non-diagonal elements of the Gram ma-
trix are —1 and the diagonal ones are 2 = N(7%;). We give explicitly the

6 Indeed H> is the symmetry group of the pentagon, Hz ~ As x Zo that of the dodeca-
hedron and the icosahedron (dual of each other), Hy that of two dual regular polyhedra in

Iép)

4 dimensions with respectively 120 and 600 faces, and the are the symmetry groups of

the regular p-gons in the plane.
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Gram matrices for n = 8:

2 -1 0 0 0 0 0 0
1 2 -1 0 0 0 0 0
0 -1 2 -1 0 0 0 0
0 0 -1 2 -1 0 0 0
QAs)=| o o o -1 2 -1 0 o (7.18)
0 0 0 0 -1 2 -1 0
0 0 0 0 0 -1 2 -1
0O 0 0 0 0 0 -1 2
2 —1 0 0 0 0 0
12 -1 0 0 0 0
0 -1 2 -1 0 0 0 0
0 0 -1 2 -1 0 0 0
QD=1 0 o 0 -1 2 -1 0 o0 (7.19)
0 0 0 0 -1 2 -1 -1
0 0 0 0 0 -1 2 0
0 0 0 0 0 -1 0 2

The explicit form of Q(E,,) depends on the way we label the nodes of the E,,
diagram. Naturally the branching node has label n — 3. Here we label n — 2
the unique node of the short leg (above the line in the diagrams of Table 7.1)
and n — 1,n those of the characteristic F,, leg.

9 1.0 0 0 0 0 0
1 2 -1 0 0 0 0 0
0 -1 2 -1 0 0 0 0
0 0 -1 2 -1 0 0 0

QES)=| o o 0o -1 2 -1 -1 0 (7.20)
0 0 0 0 -1 2 0 0
0 0 0 0 -1 0 2 -1
O 0 0 0 0 0 -1 2

The quadratic forms Q(A,) and Q(D,) for n > 8 are obtained by
the same modification which is obvious for @Q(A4,). One obtains the
corresponding matrices for values of n < 8 by suppressing the first 8 — n
lines and columns. The matrix determinants are:

det(Q(A,)) =n+1, det(Q(D,)) =4, det(Q(E,))=9-n. (7.21)

These matrices invite us to define the quadratic forms for D and E below the
conventional lower bound for n given in the caption of Table 7.1. For instance
Q(A3) and Q(D3) are equivalent (by permuting the indices 1,2).7 Similarly

7 An, Dy, are the Weyl groups of the Lie algebras SUp+1 and SOay,. The algebras SUy
and SOg are isomorphic. The Lie algebra of SO4 is isomorphic to SUs x SUs.
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Q(Es5) ~ Q(Ds5) (inverse the ordering of the matrix elements), Q(E4) ~ Q(Ay)
(exchange the indices 1, 2).8

The Coxeter diagrams of the Weyl groups B,,, Fy, G5 contain exponents
m;; with two different values: 3, 4 or 3, 6 for Go. That corresponds to two
conjugacy classes of reflections. From (7.17) one sees that the two orbits of
roots can generate an integral lattice only if the two orbits of roots have
different norms. That the matrix elements of the quadratic form of these root
lattice be relatively prime impose the pair of values of the root norms to be
2,1 for By, 2, 4 for Fy, 2, 6 for G3. So the quadratic forms defined by the
Coxeter diagrams are

2 -1 0 0 0 0 0 0
-1 2 -1 0 0 0 0 0
0O -1 2 -1 0 0 0 0
0o 0 -1 2 -1 0 0 0
Q(Bs) = o 0 0 -1 2 -1 0 o0 |’ (7.22)
0o 0 0 0 -1 2 -1 0
o 0 0 0 0 -1 2 -1
o 0 0 0 0 0 -1 1
2 -1 0 0
-1 2 -2 0 2 -3

0 0 -2 4
The determinants of these matrices are:
det(Q(By)) =1, det(Q(Fy)) =4, det(Q(G2)) = 3. (7.24)

So B, is a self dual lattice. Let m be an n x n triangular lattice with 1’s on
the diagonal and above it and 0’s below it. Then mQ(B,,)m ' = I,,. Similarly
we have the equivalence of quadratic forms:

mrQ(F)mp = Q(Ds);  maQ(Ga)mé = Q(Az) (7.25)
where mpr and mg are:
1 0 0 0
0 1 0 0 10
-1 -2 -1 -1

To summarize: the lattices with point symmetry groups B,,, Fy, G2 are gener-
ated by their orbit of shortest roots and they are identical to the root lattices

8 For the A,D,E systems, the matrices we have defined coincide with the Cartan
matrices which play a great role in the theory of Lie algebras. It is worth recalling that the
quadratic forms for Eg, E7, Eg have been first introduced in the study of perfect lattices by
Korkin and Zolotarev [63|. That was more than fifteen years before the classification of the
corresponding simple Lie algebras by Killing and Cartan.
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I, Dy, As respectively. These lattices have a second orbit of roots of norm
2,4, 6 respectively.

7.1.3 Orbit scalar products of a lattice; weights of a root
lattice

For a lattice L we introduce the notation L, for the set of vectors with norm
a. For an integral lattice L = UgenLy. We introduce the natural notation
VYm € Z, mL, = {mlz le Lo}; hence mL, C L,2,.

When the lattice has a large symmetry group G (e.g. a maximal Bravais
group) each L,, for low values of a, is one, or the union of a few G-orbits.
It is useful to define the following concept for non vanishing vectors:

T4£040 6,0cL, |70 max (4,7). (7.27)
FEG.T,§EG .0

In words: |7,/ |¢ is the maximum of the scalar product between these two
vectors when they run through their respective G-orbits. We call this posi-
tive number the scalar product of the two orbits; we have defined it for any
symmetry group of L. Equivalent definitions are:

7,0 e L, |0,{|¢ = max (7,7) = max (Z,0). (7.28)

yeG.L ZeG.U

When the two vectors are in the same orbit, their orbit scalar product is equal
to their norm. When G is the maximal symmetry group of the lattice, Le. its
Bravais group P7, we will simply write |7, £[; since Pf contains —I, we have
|7,0| > 0 or, when P? is R-irreducible, |7, ¢] > 0.

The set of values of |7, | gives interesting information about the lattice.

-,

It has to satisfy some bounds: e.g. N(¥ — ¢) > s(L) implies:

5,01 < S((N(@) + N(0) = s(L)); V§eS(L), |5,0]<sN(l). (7.29)

N |
N |

A similar inequality will also be useful:
1
§; € S(L), = 7é :|:§27 |(§17§2)‘ < §S(L) (730)

For lattices with high symmetry we will build their tableau of orbit scalar
products with G as the symmetry group. In order to avoid redundancy,
we write in the tableau only the orbits of visible vectors. This tableau is a
symmetrical matrix whose rows and columns are labeled by L, or L/, L” -
when several orbits have the same norms with the norm chosen in non-
decreasing order. Here is the beginning of the tableau of the lattice called
Ly in (7.11) and that we shall call from now on I; its Bravais group is O2(Z)
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(it is isomorphic to Bs):

Ri Ro Ls Liyy Liz Lir Las Lo Lag Las

4 Ry 1 1 2 3 3 4 4 5 5 5
4 Ry 1 2 3 4 ) 5 7 6 7 8
8 Ls 2 3 5 7 8 9 1 11 12 13
8 Lip 3 4 7 10 11 13 15 16 19 18
8 Liz 3 5 & 11 13 14 18 17 19 21 (7.31)
8 Liy 4 5 9 13 14 17 19 21 22 23
8 Loy 4 7T 11 15 18 19 25 23 26 29
8 Lag 5 6 11 16 17 21 23 26 27 28
8 Ly 5 v 12 19 19 22 26 27 29 31
8 Las 5 § 13 18 21 23 29 28 31 34

We have written Rq, Ry instead of Ly, Lo to emphasize that these are
orbits of roots. The first column gives the number of lattice vectors in the
orbit. Indeed the orbits of nonzero lattice vectors have either 8 or 4 vectors.
The former case occurs when the coordinates of the orbit vectors are, with
respect to the basis Ia, (€141, €2p2) or (nafi2, 1) with €2 = 1 = n? when the
two positive integers ; are different. In the latter case the orbit is generated by
a vector (u,0) or (u, ) (only the value i =1 corresponds to visible vectors).
Since N (Z ) = u? + p3, the only possible values of the norm are the sums
of two squares. There can be two orbits with the same norm only for two
different such decompositions. The smallest value for which that occurs is
N =25 = 5240 = 324 42; then only the second orbit of the visible vectors is
entered. The smallest norm value with two orbits of visible vectors is 170 =
72 4 112 = 12 + 13%. It is important to note that along a row or a column
of such a tableau the value of elements may decrease locally; in (7.31) such
examples are given by Lis, Los, Ls34.

We know (see section 3.4) that an integral lattice is a sublattice of its dual
lattice. The dual of a root lattice L is also called the weight lattice’ of L.

Definition: weights of an integral root lattice. The weights of an
integral root lattice L are the vectors @ € L* whose orbit scalar product with
a root ¥ € L satisfies |(w,7)| = 1.

For the lattices A,; D,, n > 4; E,, n =06, 7, 8, that we shall call for
short, the simple root lattices, the Cartan quadratic forms defined above use
a basis among the short vectors, i.e. the orbits of norm 2 roots. So the vectors
of the dual basis are weights. The diagonal elements of the corresponding
quadratic form show that for nearly all simple root lattices there are weights
of different norms.

9 This agrees with the theory of Lie algebra, but this is not the case for the definition
of the weights; those defined here are akin to the “fundamental weights”.
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7.2 Lattices of the root systems

7.2.1 The lattice I,,

In order to give some examples of lattices and their duals, we have already
introduced in section 3.4 some lattices we shall study in this section in relation
with root systems.

In E,, we choose an orthonormal basis {€;}. The Gram matrix of these
vectors is I,, (the unit matrix) that we use as the symbol for the lattice they
generate. This lattice is integral and self-dual. We have seen that its Bravais
group is O, (Z) and that it is a maximal Bravais group in all dimensions.
The 2n element set {£¢;} is S(I,,), the set of shortest vectors of the lattice I,,.
It is an orbit of O, (Z). According to Proposition 35, S(I,,) = R is an orbit
of roots; so |R1| = 2n. The corresponding reflections g, are represented by
diagonal matrices with all coefficients being 1 except for one entry which is
—1. Since the roots of Ry generate I,, it is a root lattice.

For n > 1 the lattice I,, has vectors of norm 2. Proposition 35 tells us also
that these vectors are roots. They are, up to sign, €; + €, with 1 <j <k <n.
So there are 4(%) = 2n(n — 1) of them; it is easy to verify that they form
an orbit of O,,(Z) that we shall denote by Ry. The corresponding reflections
0g;+&, have only n non-vanishing matrix elements. Since a reflection matrix
has trace n — 2, it must have at least n — 2 elements of the diagonal equal to
1; so there are in O, (Z) only the two conjugacy classes of reflections that we
have found and R(I,) = R1 U Rz, |R(I,)| = 2n?.

For n > 1 one verifies easily that the n vectors I;Z

— —

1<i<n, b= €; — €i+17 b, = 5n§ (732)

form a basis of the lattice I,,; the corresponding quadratic form is that of B,
(given in (7.22)). That shows the equivalence of quadratic forms: Q(B,,) ~ I,,.

7.2.2 The lattices D,, n > 4 and F4
In section 3.4, eq. (3.10) we defined D!, as a sublattice of index 2 of I,:

Dl = {Z Xi€i, Y N € 22} . I,/Dl =17y vol(Dh)=2. (7.33)

and noticed that D) is an even integral lattice. Its shortest vectors are of
norm 2 and by Proposition 35 they are roots. Obviously they generate Dy, ;
thus it is a root lattice (our notation is justified!); but to follow the commonly
used notation, from now on we simply denote it by D,,. From the definition
of the lattice given in equation (3.10), the point symmetry group B, acting
on I,, transforms the index 2 sublattice D,, into itself. So B,, is a group of
isomorphisms of D,,, and we have already shown that R. is an orbit.
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We expect another orbit of roots whose reflections and those correspond-
ing to Ro will generate B,,. Beware that the tableau of D,, is not a subset of
that of I,,. Indeed the double of the roots in Ry C I, are not visible vectors
in Iy but are visible in D;,; and they are roots of it. The set of these roots,
{(£2,0n71)}, form a B, orbit of roots that has 2n elements. We denote it by
R4; with Ry it defines the 2n? reflections of B,,.

We can extract the following basis from Ro:

- -

1<1<n, bi:a_éi+1a by, = €p—1 + €. (734)

The corresponding Gram matrix is exactly the quadratic form Q(D,,) defined
by (7.19).

One can prove that, by a change of basis if necessary, one can always
transform the quadratic form of an integral lattice into one represented by a
tridiagonal matrix'®. For D,, such a change of basis is obtained by replacing
the root b, in (7.34) by the root b/, = 2¢,. The Gram matrix for n = 8 is

2 -1 0 0 0 0 0 0
1 2 -1 0 0 0 0 0
0 -1 2 -1 0 0 0 0
, 0 0 -1 2 -1 0 0 0
QP)=1 4 o 0 -1 2 -1 0 0 (7.35)
0 0 0 0 -1 2 -1 0
0 0 0 0 0 -1 2 -2
O 0 0 0 0 0 -2 4

For n > 4, the tableau of orbit scalar products of D,, is therefore the union
of the even norm vector orbits of I,, and the orbit R4 of roots {(£2,0"~1)}.
It is trivial to check that the orbit L, = {([+1]*,0""*)} and the one (when
n = 5) or two (when n > 6) orbits of Lg are not root orbits; so according to
Proposition 34, the lattice has no roots outside Ro and R4. As we have seen
the reflections corresponding to these two orbits generate the holohedry B,
but in a Bravais class different than O,,(Z), since the tableau of B,, and D,
differ by more than a dilation.

For n = 4, one verifies easily that both By-orbits of norm 4 (i.e. in Ly)
{(£2,03)} and {([#1]*)} are root orbits. That is exceptional and shows that
the holohedry is larger than B4. To verify that a given set of 4 lattice vectors
of D, forms a basis for this lattice, we need only to verify that the determinant
of its Gram matrix is 4. That is the case of the four vectors:

D4 basis : b1 = 51—52, bg = €2—€37 b3 = 253, b4 = —51—€2—€3—€4. (736)

Their Gram matrix is Q(Fy), given in (7.23). Since Fy is a maximal finite
subgroup of GL4(Z) it is the Bravais group of D4. Sometimes Fj is used as a
label of the lattice Dj,.

10 That is a matrix whose non-vanishing elements qi; satisfy the condition [i — j| < 1.
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We give now the beginning of the tableau of orbit scalar products for
Fy = Dy. The first column gives the cardinal of the Fj-orbit, the second one
gives the stabilizer, the third one gives the nature of the lattice vectors (i.e.
their components in the orthonormal basis of the space). We recall that By is
a subgroup of index 3 of Fy and |Fy| = 1152.

Ra Rsa Leg Lig

24 Bj {([£1)2,0%)} R 2 2 3 4
24 Bj {([EYH U (£2,0%)} Re 2 4 4 6.
96 Aj x As {(£2,[£1]%,0)} Le 3 4 6 7
144 By {2 [E1A) U {(£3,£1,0)} Ly 4 6 7 10
(7.37)

7.2.3 The lattices D;, n >4

We already defined in section 3.4 the dual lattice of D, ; there we wrote it
D}, where w is the initial letter of the word weight. Indeed D}, is the lattice
generated by the weights of the root lattice D,,.

As in section 3.4, from the orthonormal vectors €; we define the vectors:

—»+:
n

iy Noé, @, =)~ N@*) = g (7.38)
i=1

DN | =

Then we can use either vector for the decomposition of D} into two cosets of
the lattice I,,:

D =1I1,U (W, +1I,), vol(D})= 3 (7.39)
Dual lattices have the same point symmetry group and their Bravais groups
are contragredient. (See the definition of the contragredient representation in
2.6.)The only problem is to know whether these Bravais groups are identical
(i.e. conjugate in GL,,(Z)). We have two cases to consider: n = 4, holohedry
Fy, and n > 4, holohedry B,,.

i) n = 4. Then N (&) = 1, so their By orbit {1 ([1]*)} and that of the
vectors {£¢;} = {(£1,0%)} form the 24 element set S(Dj) of shortest
vectors. They form a Fy orbit of roots (identical to %R4 where Ry is
one of the root orbits of Dy (see (7.37)) and they generate the lattice.
The other orbit Ry of 24 roots is exactly that of the shortest vectors of
Dy. It is straightforward to prove that the tableau of D} is obtained
from that of D} by multiplication by % It is also easy to verify that
the four vectors w,, —€1, €1 — €3, —€> — €3 form a basis of D} and the
corresponding Gram matrix is 3¢q(Fj). That proves that the lattice

%FAL is isodual and that Fj; has only one Bravais class.
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ii) n > 4. Then N(@f) = 2, so the set of shortest vectors S(D;;) con-
sists of the 2n vectors 4-¢;. S(D,,) does not generate the lattice!!. Since
|S(Dy)| = (n — 1)|S(D;)| the two tableaus cannot be proportional, so
for n > 4 the holohedry B,, has three different Bravais classes, corre-
sponding to the Bravais groups of the three lattices D,, < I,, < Dy;.

We recall here that the weights of the root lattice D,, are the 2n vectors
+€; of norm 1 and the 2" vectors {([+3]")} of norm 2. They form two orbits
of B,.

7.2.4 The lattices D, for even n > 6

Using the fact that the sum of the coordinates of the vectors of D,, is even,
we already verified that:

D, h is odd
n>2, 20t ¢ WHeR s 0 (7.40)
€ D, when n is even.

So the four cosets of D,, in D},
D,, D,+w!, D,+é&, D,+w, (7.41)

form a group Z, when n is odd, Zs X Zy when n is even (this was already
proved in (3.12)). So when n is odd and > 3, we have studied the three lattices
invariant under B,,. When n is even, each of the three non-trivial cosets of
D,, generates with that lattice a sublattice of volume 1, having index 2 in D;;.
One of them is I,,. The others are

neven: D =D, U W+ D,); det(DFf)=1. (7.42)

Since the vectors w™* are exchanged by the reflection oz, € B,, which trans-

forms D,, into itself, oz exchanges the two lattices D;-. That proves that
they have the same symmetry, i.e. the same Bravais class.

Without going into details we just formulate here the results of the
description of D; lattices in a theorem

Theorem 11 Let 0 < k € N. For n = 4k, the lattices D, are integer self-
dual; their Bravais group is a mazximal subgroup of GL4k(Z) and one of the
4 arithmetic classes of D,, except for k =1, Df ~ I and k = 2, D = Eg.
For n = 4k + 2, the lattices D,\ are isodual with the Bravais group D,, and
V2Dt are integral lattices.

7.2.5 The lattices A4,

For small dimensions, n < 4, it is easy to study directly the lattices invari-
ant under A,,. But the easiest method which can be generalized to arbitrary

1 Historically, Df was the first known lattice not generated by a set of successively
linearly independent shortest vectors (Dirichlet’s remark).
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n is to study these lattices as sublattices of I,,+1. In the space E,, 11 we choose
an orthonormal basis o, € N, (€4,€3) = dap, where N,, denotes the set

{0,1,...,n} of the first n + 1 non negative integers, and we define
€:n+123% N(@) =~ (7.43)
aeN,

We denote by H,, the subspace orthogonal to €. The sums of the coordinates
of the points in H,, are equal to zero. It will be useful to consider the vectors
in H,:

Uy = €4 — € (7.44)

and also the set of norm 2 vectors in H,,,

Ry = {Fa,@ =€y — € = Uy — t_[g}, |R2| =n(n+ 1). (7.45)

Then we verify that each reflection o, , exchanges the basis vectors €y, €3
and leaves the others fixed. That proves that the reflections associated with
the vectors of Ry generate the group S, 11 of permutations of the basis vectors
of F, 1. This group leaves fixed the vector €; it acts linearly and irreducibly
on the subspace H,,. In this section, the n-dimensional lattices that we study
are in H,,.

We first prove that the lattice A,, is the intersection of the lattice I,,41
with H,,; explicitly:

A, =1,.1NH,. (7.46)

It is easy to verify from this definition that this lattice is an even integral
lattice; its shortest vectors are of norm 2. They form the set Ry and generate
the lattice. We can take as a basis the set of n vectors:

{fi="Tic1;,=€_-1—€ =U_1—U} CRa i€ N, (7.47)

where N;F = {1,2,...,n} denotes the set of the first n positive integers.
The Gram matrix of the 7’s, g;; = 26;; — (|i — j| = 1) (for a definition of a
Boolean function, see (7.10)) is usually called the Cartan matrix of (the Lie
algebra) A,,. Moreover we have shown again explicitly that S(A,) = Ra, is
a set of roots, so A, is a root lattice invariant by the symmetric group on
n + 1 letters (see (7.15)). Since the symmetry through the origin, —I,,41, is
a symmetry of any lattice, we use the notation A,, for the 2(n + 1)! element
group generated by A, and —I,,;. The Bravais group A, is defined by its
linear representation on H,; it is a maximal irreducible subgroup of GL,,(Z).
The set of roots Ry forms an orbit of A,. Since the permutation of a, 8 in
(7.45) has the same effect as a change of sign, R is also the orbit A4,, : A,_»
of A,,.
From Rs we can extract another interesting basis:

ieN, bi=¢ —é. (7.48)
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If we denote by J,, the n x n matrix all of whose elements are 1, the Gram
matrix corresponding to the basis (7.48) is:

Q(A,) =1, +J,, with (J,); =1. (7.49)

7.2.6 The lattices A4,

It is easy to compute the dual basis of (7.48) and the corresponding
quadratic form:

- 1 1
=€ — €. Ay=1,— —— Ar)) = . .
B=-d QU =T - — @A) = — <. (750)

To find the set W of weights of the root lattice A, one has to look for the
elements of A} whose scalar product with the roots i,z are £1, 0. An easy
computation leads to (we recall that C is a strict inclusion):

D#£ACN, W={wa=) g}, wWatiwz=0 [W=22"-1),
acA
(7.51)
where A is the complement in N, of the subset A.

The set W splits into n orbits of the Weyl group A,,, each orbit contain-
ing all W4 whose defining subsets A have the same cardinal |A| = k; we
denote these orbits by W and note that |Wy| = (”Zl) We can choose as a
representative of these n orbits:

k
W =Y i, 1<k<n (7.52)

i=1

These n vectors form the dual basis of that of A, defined in (7.47) (indeed,
(W, 7;) = 0i5); so the W;’s define an A} basis.

7.3 Low dimensional root lattices

To conclude the chapter on root lattices we return to the examples of
three and four dimensional lattices which are at the same time root lattices.
Table 7.2 gives the group, its order, combinatorial type, and graphical visu-
alization.
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TAB. 7.2 — Three and four dimensional lattices associated with root systems of
reflection groups.

Group Order Type Graph
n=3
Bs 48 6.8-0 \/
As 48 12.14-0 []
A 48 14.24-8 X
n=4
B, 384 8.16-0 T
Fy 1152 24.24-0
Gy 1 Gy 288 12.36-12 <
Gy ® G 144 30.102-36 M
Ay 240 20.30-0 Q
Aj 240 30.120-60 @




Chapter 8

Comparison of lattice
classifications

In previous chapters we have discussed translation lattices from the point of
view of their symmetry, their Voronoi cells and associated quadratic forms.
In this chapter we analyze the applications of these different approaches to
the most evident and straightforward physical example, the description and
classification of periodic crystal structures, and compare the advantages and
disadvantages of alternative approaches and possibilities of their generaliza-
tions to arbitrary dimension.

We follow in this analysis the works by Michel and Mozrzymas [76] and
Michel [75, 73, 74].

We remember that one-to-one correspondence exists between the set 5,
of translation lattice bases defined in the Euclidean space R" with a fixed
orthonormal basis {e;}, e;e; = d;;, and elements of GL,(R). Every basis
b € B,, defines a lattice L,

L, = {an n; € Z}; (8.1)
=1

with all other possible bases being of the form

j=1

The relation (8.2) shows that L£,,, the set of lattices of dimension n is the
variety:

L, =GL,(R): GL,(Z) = B,|GL,(Z). (8.3)
Let us denote L? the set of lattices obtained from L,, by an orthogonal trans-
formation, i.e. the orbit of the O(n) group action on £,,. The corresponding
set of orbits we denote by L9

LY = L,]0(n). (8.4)
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The simplest initial classification of lattices by symmetry is given by the stabi-
lizers of orbits of the O(n) action. The system of strata, £, ||O(n) of the O(n)
action on the set L,, of lattices defines crystal systems. Note that a relatively
small number of point symmetry groups (subgroups of O(n)) can appear as
stabilizers of O(n) orbits on the set of lattices.

From equations (8.2), (8.3) we deduce that the set of O(n) orbits £2 is the
set of double cosets: GL,,(Z)\GL,(R)/O(n). This means that if b is a basis
of L,, the set of bases of lattices L? is the double coset

GL,(Z)bO(n) = {mbr~* ,¥Ym € GL,(Z),¥r € O(n)}. (8.5)

Alternative interpretation of this double coset is an orbit of the direct product
GL,(Z) x O(n) acting on GL,,(R) through b +— mbr—1. The stabilizer H of b
is the subgroup {(m,r) € GL,(Z) x O(n), mbr—1 = b}.

Let m, and 7, be the canonical projections of GL,,(Z) x O(n) on its fac-
tors: m,(m,r) = m, m,(m,r) = r. The geometrical interpretation of H is
as follows: m,(H) is the group of orthogonal transformations r which trans-
form the lattice L,, into itself because any basis m’b of L,, transforms into
the basis m/br=! = m/mb. The stabilizer H is the point symmetry group of
the lattice (holohedry of the lattice is the historical terminology). The sta-
bilizer is defined up to conjugation in GL,(Z) x O(n); moreover, there are
the isomorphisms: 7,(H) ~ H ~ 7,(H). We have noted that the conjugation
class [,(H)]o(n) defines the stratum named the crystal system. There are
four crystal systems in dimension two, seven crystal systems in dimension 3,
33 (+7 taking into account enantiomorphic groups) crystal systems in
dimension 4. In dimensions 5 and 6 there are respectively 59 and 251 crystal
systems.

The classification of stabilizers [7.(H)]qr, (z) up to conjugation in GL,(Z)
defines the Bravais class of the lattice L,,. We can define Bravais classes of
lattices also as strata Q,||GL,(Z) of GL,(Z) action on the set of quadratic
forms, Q,,, associated to all lattices LY.

Let b be the basis of lattice L, and bb' a symmetric positive definite
matrix (=quadratic form) with elements (bb");; = b;b;. We denote Q,, the set
of positive quadratic forms which is a convex cone. The polar decomposition
of invertible matrices: b = VbbTs = svVb1b, s € O(n) shows that

Q. = GL,(R) : O(n) = GL,(R)|O(n). (8.6)

This means that Q,, can be identified with left cosets of O(n) in GL,(R), or
else as a space of orbits of O(n) acting by left multiplication on GL, (R). The
action of GL,,(Z) x O(n) on b € GL,(R) can be transported to the action on
bb" € Q,. The group O(n) acts trivially and G L, (Z) acts through:

Vm € GL,(Z), bb' +— mbb'm?. (8.7)

The orbit of GL,(Z) is the set of quadratic forms associated to all bases of all
lattices of LY. This allows us to give an alternative definition: Bravais classes
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Fic. 8.1 — A fundamental domain of the action of GL2(Z) on the cone of posi-
tive quadratic forms q or, equivalently, on intrinsic lattices. Positive quadratic forms
are parameterized by € = (q11 — q22)/(Tr @)™, 7 = 2¢12(Tr q)~ !, where Tr ¢ =
q11 + g22 > 0. With this parameterization the quadratic form becomes ¢ =
(1/2)(Tr q)(I2 + o3 + no1) with o1, 03 being usual Pauli matrices. The positiv-
ity implies €2 + 7*> < 1. The fundamental domain is the triangle HQC' minus the
vertex C(1,0) which belongs to the surface of the cone. H(0,1/2) represents the
p6mm lattices, Q(0,0) the pdmm lattices, the side QC the p2mm lattices. The two
sides QH and HC' represent cmm lattices with, respectively, four shortest vectors
(half of the diagonal is shorter than the sides of rectangle) and two shortest vectors
(half of the diagonal is longer than one of the sides).

of lattices are the strata Q,||GL,,(Z) of the action (8.7), with the quadratic
form bb' being associated to the base b of L,,.

The fundamental domain of the stratification of the cone of positive
quadratic forms by GL,,(Z) action is shown in figure 8.1. Each stratum cor-
responds to the Bravais class of two-dimensional lattices. The numbers of
Bravais classes in dimensions d = 1,2,3,4,5,6 are respectively 1, 5, 14, 64*,
189, and 841 [81, 89].

In order to demonstrate the relation between Bravais classes and point
symmetry groups of lattices (i.e. crystal systems) we note first that there exists
a natural mapping ¢ from the set of conjugation classes of finite subgroups of
GL,(Z) < GL,(R) into subgroups of O(n).

This statement follows from the well known fact that all finite sub-
groups of GL,(R) are conjugate to a subgroup of O(n) < GL,(R), and the
existence of natural mapping from the conjugation classes of subgroups of
GL,(Z) < GL,(R) into subgroups of GL,(R). If two finite subgroups of
O(n) are conjugate in GL,(R), they are conjugate in O(n) as well. This gives

1 10 Bravais classes are split into enantiomorphic pairs and if one counts enantiomorphic
forms as different, there are 74 Bravais classes in dimension 4.
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the correspondence
¢ ([m(H)]oL,. (@) = [7o(H)]o,- (8.8)

The restriction of ¢ to Bravais classes gives a mapping ¢ of {BC%,, from the
set of Bravais classes, on { BC'S},, the set of crystal systems in n-dimensional
space. (Louis Michel [76, 75] uses (BCS)=Bravais Crystallographic Systems
instead of simply Crystal Systems in order to stress the difference with the
“crystal family” notion widely used in crystallography.) Note, however, that
not all conjugation classes which are inverse images ¢! of crystal systems
are Bravais classes.

8.1 Geometric and arithmetic classes

We have seen that very small number of finite subgroups of O(n) could
be realized as symmetry groups of a translation lattice, i.e. to be a point
group defining the crystal system (a holohedry). At the same time any sub-
group of a holohedry group can be a point symmetry group of a multiregular
system of points or, in more physical words of a crystal formed of several
types of atoms. Point symmetry group of a n-dimensional crystal defined up
to conjugation in O(n) is named a geometric class. Geometric classes form
a partially ordered set which includes all the holohedries. Partially ordered
set of three-dimensional geometric classes is represented in Figure 8.2. It in-
cludes, in particular seven groups which are the holohedries and characterize
the crystal systems. In 3-dimensional space there are 32 geometric classes or
32 crystallographic point groups. The adjective “crystallographic” is used to
stress that the existence of a translation lattice imposes certain restrictions
on subgroups of O(n) to be a point symmetry group of a lattice. In dimen-
sions 4, 5, and 6 there are respectively 227, 955, and 71032 geometric classes.
If one counts enantiomorphic pairs as different, then in dimension 4 there are
227+44 different geometric classes.

It should be noted that different geometric classes can be isomorph, i.e.
they correspond to the same abstract group. Among the 32 geometric classes
for three-dimensional crystals there are only 18 non-isomorph abstract groups.
The isomorphism relation between geometric classes is illustrated in Table 8.1.
In dimension two among 10 geometric classes there is only one pair of isomorph
groups, namely Cy ~ Cs. In dimensions 4, 5, and 6 the numbers of abstractly
non-isomorph geometric classes are respectively 118, 239, and 1594.

We have described all possible geometric classes by looking for all sub-
groups of point groups characterizing crystal systems (symmetry of trans-
lation lattices). We can also study conjugacy classes of finite subgroups of
GL,(Z), i.e. all subgroups of Bravais groups. The conjugacy classes of finite

2 For dimension 6 the number of geometric classes given in [89] is 7104.
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Fia. 8.2 — A partially ordered set of 3D-geometric classes up to their equiva-
lence in O(3). Seven point groups corresponding to crystal systems are shown by
shading.

subgroups of GL,(Z) are named arithmetic classes. Arithmetic classes form
a partially ordered set which includes, in particular, all Bravais groups.

It is known that the number of conjugacy classes of finite subgroups of
GL,(Z) is finite. For n = 1,2,3,4,5,6 this number is 2, 13, 73, 710(+70),
6079, and 85311 (+30) [89]. In parenthesis the number of enantiomorphic
pairs is indicated.

The partially ordered set of arithmetic classes for each dimension can
have several maximal elements. These maximal arithmetic classes are al-
ways the Bravais groups. All arithmetic classes can be described as a sub-
groups of maximal ones. The same is naturally valid for Bravais groups.
Thus it is important to know the complete list of maximal arithmetic classes
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TAB. 8.1 — The 32 crystallographic geometric classes and their 18 isomorphy classes.
The isomorphy classes are listed in column 1 and are defined as direct products of
cyclic groups Z,, dihedral groups ¢,., permutation group of four objects Su, and its
subgroup of even permutations A4. In column 2 the corresponding geometric classes
are listed in ITC and Schonflies notations.

Isomorphic Geometric

1 1=0

Z2 1:C1-,m:CS72:C'2

Z2 XZ2 2/m202h, mm2:Cgv, 222:D2
Z2 X ZQ X ZQ mmm = DQh

Zs 3=0Cs

ZQXZg GZCG,EZC&ESG,GZC:;}L

Z 4=Cyd=5,

Zo X Ly 4/m = C4h

C3yp 3Im = Cgv, 32 = D3

ZQXZQXZg 6/m206h

Cay dmm = C4U, 422 = D4, Zlm? = ng
Cap X Lo 4/mmm = Dy

C3y X Zo 6mm = C6’U7 622 = D(;, 3m = ng, 6m2 = Dgh
C30p X Lo X Lo 6/mmm = Dgp,

Ay 23=T

.A4 X Z2 m3 = Th

84 Z_13771 == Td, 432 =0

84 X Zz mgm = Oh

(i.e. maximal finite subgroups) of GL,,(Z). The number of maximal arithmetic
classes for n =1,2,3,4,51is 1, 2, 4, 9, and 17.

There exists a natural map between arithmetic and geometric classes in
the d-dimension. Figure 8.3 illustrates this map in dimension two.

For three-dimensional lattices the correspondence between arithmetic and
geometric classes is represented in Table 8.2.

8.2 Crystallographic classes

Geometric and arithmetic classes characterize only partially the sym-
metry of a multiregular system of points. The complete infinite discrete
symmetry group which includes all translations as well is named the
crystallographic space group. The crystallographic space groups are the
subgroups of the Fuclidean group Eug which contain a d-dimensional lattice of
translations.
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FiG. 8.3 — A surjective map {AC}> — {GC}, from the partially ordered set of
Arithmetic Classes, i.e. conjugacy classes of finite subgroups of GL2(Z) (the right

part of the diagram), to partially ordered set of Geometric Classes, i.e. conjugacy
classes of finite subgroups of O(2) (the left part of the diagram), for two-dimensional
lattices. Bravais classes form a subset of the arithmetic classes; they are indicated
by shading on the right part. Crystallographic Bravais systems (crystal classes =
holohedry) form a subset of the geometric classes; they are indicated by shading on
the left part.

The Euclidean group Fug is the semi-direct product of the orthogonal
group by the translations. Applying the construction of a semi-direct product
to an arithmetic class (P# finite subgroup of GL4(Z)) and translation lattice
we can define a space group. The so obtained space group does not depend
on the choice of the group from a given arithmetic class. Any conjugated
group mP*m ™!, with m € GL4(Z), results in the same space group. But such
construction of space groups gives only a part of all possible space groups.

The space groups obtained as semi-direct products are named symmor-
phic in crystallography. Their number (and notation) coincides with the num-
ber (and notation) of arithmetic classes. In dimension 2 and 3 there are
respectively 13 and 73 symmorphic space groups. In general, each arithmetic

class [Plgr, (z), i-e. conjugacy class in GL,(Z) of a point symmetry group
P allows us to construct a set of crystallographic groups by including lattice
translations. This procedure is named group extension. Equivalence classes of
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TAB. 8.2 — Correspondence between 3D geometric and arithmetic classes.
Bravais crystallographic systems (holohedry) are shown among geometric classes by

light shading. Bravais classes are differentiated among arithmetic classes by shading.

Maximal geometric and arithmetic classes are underlined.

Group order Geometric classes Arithmetic classes

48 On
24 O P432, F432, 1432
T, Pm3, Fm3, Im3
Ty P43m, F43m, 143m
Den
16 Dan
12 T P23, F23, 123
Dsa W30, P3m1, P31m
Cev P6mm
Cﬁh P6/m
Day, P62m, P6m2
Dg P622
8 Cho Pamm, I4mm
Cap, P4/m, I/mm
Doy P42m, P4m2, I42m, I14m2
Dy P422, 1422
Doy,
6 Can R3m, P3ml, P3lm
D4 R32, P321, P312
Se R3, P3
Csp, P6
Ce P6
i Ch P4, 14
Sy Pi, I4
Csy Pmm2, Cmm2, Amm?2, Fmm2, I'mm?2
Dy P222, 0222, F222, 1222
Con
3 Cs R3, P3
2 Cs P2, C2
Cy Pm, Cm
C;

P1
Pl
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extensions form second cohomology group H?(P, L,). A formal mathematical
description of group extensions can be found in [69]. (Note that the first set
of lectures on applications of cohomology of groups in physics was given in
a Physics summer school by Louis Michel in 1964.) Explicit construction of
group extensions for two-dimensional and three-dimensional space groups via
intermediate definition of non-symmorphic elements is discussed in [75]. Note
however, that if the space group contains nonsymmorphic element, the group
is non-symmorphic, but the contrary is not right. In dimension three there
are two non-symmorphic groups, namely 7212;2; and 12;3 (given in ITC
notation) which do not have non-symmorphic elements.

We mention here that the total number of crystallographic space groups
in dimensions 2, 3, 4, 5, and 6 is respectively : 17, 219(+11), 4783(+111),
222018(+79), and 28927922(+7052) [89]. In parenthesis the number of enan-
tiomorphic pairs of space groups is given.

We can now summarize the relations between different symmetry classes
introduced in this section for multiregular system of points.

The diagram below uses the notations :

{CC} - crystallographic classes;

{ACY} - arithmetic classes;

{GC'} - geometric classes;

{BC'} - Bravais classes;

{BCS} - Bravais crystallographic systems.

(ccy - {40y % (GO}
NB Ly .
(BC} -2 {BCS)

8.3 Emnantiomorphism

We have noted on several occasions that numbers of different objects given
in mainly physical and mainly mathematical literature turn out to be different.
One of the sources of such difference is the different treatment of enantiomor-
phic objects [42, 89]. The best known example of that kind is the following
“mathematical” and “physical” statements.

i) There exist 219 abstractly non-isomorph three-dimensional crystallo-
graphic (Fedorov or space) groups (typically mathematical statement).

ii) There exist 230 crystallographic (Fedorov or space) groups (typical
statement in crystallography or in physics).

The difference between these two statements is due to fact that two groups
written by the same set of matrices but in frames of different orientation can be
considered as equivalent or as different. Such two groups form an enantiomor-
phic pair. In particular, there are 11 enantiomorphic pairs of crystallographic
three-dimensional groups and this gives the explanation of reference to 219 or
to 230 3D-groups.
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F1a. 8.4 — Enantiomorphic pair or objects in two-dimensional space (left) and in
three-dimensional space (right).

We have also mentioned that in the general n-dimensional case the enan-
tiomorphic pairs of Bravais lattices, of arithmetic and geometric classes, of
Bravais crystal systems exist.

Let us discuss this subject briefly by starting with the definition of enan-
tiomorphic or chiral objects which is not very precise but allows us to unify
the treatment of very different objects and constructions from the point of
view of enantiomorphism.

Two objects that are equivalent by an affine transformation but not
by an orientation preserving transformation are called an enantiomorphic
pair, each member of an enantiomorphic pair is said to be enantiomorphic
or chiral.

Figure 8.4 shows two- and three-dimensional examples of a pair of
objects which can be easily transformed one into another by applying reflec-
tion which is an improper symmetry transformation. At the same time there
are no two-dimensional or three-dimensional orientation preserving transfor-
mations between members of each pair. Note, however, that if two dimen-
sional objects are considered as situated (immersed) in three-dimensional
space a two-dimensional reflection can be realized as a pure three-dimensional
rotation.

Now, before turning to a discussion of enantiomorphic symmetry classes
we need first to be precise about what we mean by equivalence under affine
transformations or under orientation preserving affine transformations. Equiv-
alence between symmetry groups or classes means that two objects belong to
the same conjugacy class of the group G used for the classification. In the case
of arithmetic classes the group G is taken to be GL,,(Z). For geometric classes
we look for equivalence within the GL,,(Q) group. The most fine classifica-
tion into space group types (crystallographic classes) is done within the affine
group A(n,R).

An equivalence class is given as the orbit of a member H of the class under
a chosen group G of transformations. If group G contains a transformation o
that does not preserve the orientation the group G can be split into a dis-
jointed union of the two cosets with respect to the subgroup G+ of orientation
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preserving transformations:
G=Gtuo-g" . (8.9)

The group H and its orientation-reversed transform H’ := ¢~ 'Ho form an
enantiomorphic pair if and only if H' is not contained in the orbit of H under
gt.

Equivalent more formal formulations are:

Proposition 38 A group H is enantiomorphic if and only if the normalizer
(stabilizer) N(H) in G is contained in GV.

A group H is not enantiomorphic (achiral) if and only if the normalizer N(H)
in G contains an orientation-reversed transformation.

Proof Assume that H and its transform H’ do not form an enantiometric
pair, then H' is contained in the orbit of H under G* and thus there exists
go € G such that go_ngO = H' = ¢~ 'Ho. This shows that o - go_1 € N(H)
and since o - go ' € G*, N(H) € G*. On the other hand, if N(H) ¢ G,
there exists g1 € N(H) with g1 ¢ G*. We then have g; - 0 € G" and
(g1-0)'H(g1-0) =0 (g7 *Hg1)o = 0~ *Ho = H’, thus H' is contained in
the orbit of H under GT. O

Let H be an arbitrary point group. If the normalizer N(H) of the group H
in the group of all symmetry transformations G includes an improper rotation
(with determinant —1), then the rotations of group H can be represented
by the same matrices in frames with different orientation and vice versa.
In fact, suppose that in some frame F the rotations of group H are described
by the matrices {E, A, B,...} and that C is the transformation C € N(H)
with det(C') = —1. Such transformation C takes frame F into the frame F’
with opposite orientation. In F’ the rotations of the group H are described by
the matrices {E,C~1AC,C~'BC,...}, and since C' € N(H) the transformed
set of matrices coincides with the initial one. Consequently, the rotations of
group H in frames of different orientation are described by the same matrices.
The converse is also true.

In an odd-dimensional space the normalizer of any point group contains
an improper rotation (for example, one can take as such a transformation
the reflection in a point). Therefore, enantiomorphic pairs of point groups
do not exist in odd-dimensional spaces. One can easily verify that there are
no enantiomorphic point groups in two-dimensional space as well because
the normalizer of any two-dimensional symmetry group C,, always contains a
reflection. The conjugation by reflection simply leads to reversing the direction
of rotation.

8.4 Time reversal invariance

Depending on physical properties we are interested in one or another
classification of lattices and crystals and it is important to find the most
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appropriate classification for a concrete subject under study. Many experi-
ments deals with functions defined on the Brillouin zone and consequently
it is important to know, in particular the symmetry properties of functions
defined on the Brillouin zone. These properties are strongly related to the
action of the space symmetry group on the Brillouin zone.

Let us recall briefly the definition of the Brillouin zone and the space group
action on it.

We have defined L*, the dual lattice of the lattice L as the set of vectors
whose scalar products with all £ € L are integers. In physics one prefers to
consider the reciprocal lattice, which is 27 L*. This lattice is relevant to diffrac-
tion experiments (with X-rays, neutrons, electrons) with crystals possessing
translation lattice L. It corresponds to the Fourier transform; the momen-
tum variable is usually denoted by k and the vector space of k’s is called
the momentum or the reciprocal space. A unitary irreducible representation
(unirrep) of the translation group is given by k(z) = expli(k - x|. Here we are
interested in the subgroup of the translation group R? defined by the lattice
of translations L. By restriction to L, two unirreps k and k’ of R? such that
k' — k € 2rL*, yield the same unirrep of L. So the set L of inequivalent
unirreps is

L3l k() =%t L={kmod2rL"}. (8.10)

Equivalently, with a choice of dual bases (see section 3.4)

0= pub;. k=Y "bi Xkt i€ 7 k;mod 2r. (8.11)
J J

The set L of the unirreps has the structure of a group, with the group law
k= (KO + k@) mod 27L" & &y = (K + k) mod 27, (8.12)

This group is called the dual group of L by mathematicians and the Brillouin
zone (=BZ) by physicists. It is isomorphic to the group

[=BZ~U (8.13)

We denote by k the elements of BZ in order to distinguish clearly between
k and k =: k mod 27 L*. The Bravais group P7 of L acts on BZ through its
contragredient representation P7 =: (P7)~'. More generally, since by defini-
tion of BZ the translation group acts trivially, a space group G acts through
its quotient

G4 G/L =P (8.14)

So the space groups belonging to the same arithmetic class P* have the same
action. As usual, we denote by G}, the stabilizer in G of k € BZ and P} the
stabilizer in P?*. The latter stabilizer depends only on the arithmetic class;
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beware that for a given k the stabilizers Gy = 8~ (P7) for® the different space
groups of the same arithmetic class P? are, in general, non-isomorphic. Notice
that the G’s are also space groups.

Detailed analysis of the group action on the BZ is done in [75], chapters
4, 5. Here we discuss only the effect of the time reversal operation, 7. In classi-
cal Hamiltonian mechanics if, at a given instant one reverses the momenta, the
trajectories are unchanged but they are followed in the reverse direction. That
symmetry has been called time reversal, we denote it by 7. The fundamental
contribution to time reversal representation in quantum mechanics is done by
Wigner [98] who showed that 7 is represented by an anti-unitary operator.
To see the effect of the time reversal on the space group action on BZ it is
necessary to note that the change of sign of momenta transforms a unirrep
of the group L into its complex conjugate. Taking into account that BZ is
the set of inequivalent unitary irreducible representations of L we conclude
that the change of sign of momenta corresponds on BZ to the transformation
k < —k. For simplicity we study here 7 only when the spin coordinates do
not intervene explicitly. Time reversal invariance is a symmetry of many equi-
librium states. As a consequence of that the real functions on BZ describing
their physical properties, e.g. the energy function, must satisfy the relation
E(k) = E(—k). The effect of this symmetry can be obtained by enlarging P?,
the group acting effectively on BZ with —I;, when P, does not already con-
tain the symmetry through the origin. We denote this enlarged group by P?,
this is simply P# for the 7, 24 arithmetic classes (for d = 2,3) which contain
the symmetry through the origin.

For two-dimensional systems adding time reversal decreases the number
of arithmetic classes to study from 13 till seven (see Table 8.3). For three-
dimensional systems the number of different arithmetic classes decreases from
73 till 24 (see Table 8.4).

8.5 Combining combinatorial and symmetry
classification

We have seen in Chapter 6 that translation lattices can be characterized
by the combinatorial type of their Voronoi parallelohedron. In its turn each
combinatorial type of Voronoi cells can be additionally split into different
symmetry classes (Bravais classes). Voronoi cells of the same combinatorial
type can have different symmetry groups and moreover the same symmetry
group can act differently on the face lattice of a given Voronoi cell.

The classification of Voronoi cells into combinatorial types gives for d = 2
only two combinatorially different polygons, a hexagon (which is generic or

3 The map 6 is not invertible, so §~! alone has no meaning; but it is an accepted tradition
to denote 0~ 1(Py) the counter image of Py by 6, i.e. the unique subgroup of G such that
0(Gy) = PZ.
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TAB. 8.3 — Correspondence between 2d-arithmetic classes before and after inclusion
of time reversal invariance. Five arithmetic classes of the Bravais groups are indicated
between ().

Class with inversion Class without inversion

(p2) pl

(p2mm) pm

(c2mm) cm
pl

(pdmm)
p6 p3

(p6mm,) p3ml, p3lm

TAB. 8.4 — Arithmetic classes (in dimension 3) obtained by adding — I3, correspond-
ing to inclusion of time reversal invariance. The numbers at the left of arithmetic
class show the number of space groups belonging to each of the 24 arithmetic classes
in the case of time reversal symmetry. The 14 arithmetic classes of the Bravais groups
are given between ().

2 (P1) P1 5 (R3m) R32, R3m
8 (P2/m) P2, Pm 4 P3 P3
5 (C2/m) C2,Cm 7 P31m P312, P31m
30  (Pmmm) P222, Pmm2 7 P3m1 P321, P3m1
15 (Cmmm) C222,Cmm2, Amm2 || 9 P6/m P6, P6
5  (Fmmm) F222, Fmm2 18 (P6/mmm) P622, P6mm,
P6m2, P62m
9  (Immm) 1222, Imm2 5 Pm3 P23
9 Pi/m P4, P1 10 (Pm3m)  P432,Pi32
40 (P4/mmm) P422, P4mm, 3 Fm3 F23
P42m, P4m?2
5 I4/m 14,11 8  (Fm3m) F432,Fi3m
14 (I4/mmm) 1422, P4mm, 4 Im3 123
I4m2, I142m
2 R3 R3 6 (Im3m) 1432, 143m

primitive) and a rectangle. For d = 3 there are five combinatorially different
polytopes (see Chapter 6).

The splitting of a combinatorial type of 2D-lattice into Bravais classes is
shown in Table 8.5 (see also Figures 8.1 and 6.13). It should be noted that
Table 8.5 counts only those regions of the cone of positive quadratic forms
which belong to a fundamental domain with respect to GL2(Z) action, or in
other words to reduced quadratic forms. The ¢2mm Bravais group appears
twice in Table 8.5 because the fundamental domain of the GL2(Z) action
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TAB. 8.5 — Splitting of combinatorial types of 2D-lattices into Bravais classes. The
dimension of the region of the cone of positive quadratic forms is given in the last
column. For the ¢2mm Bravais group two connected components are shown.

Bravais group Hexagonal cell Rectangular cell Dimension
pbmm @ 1
tH
pdmm 1

c2mm® —@ 2

c2mm?

Dy
B

p2mm

b
p2 @ 3

“Lattices with four shortest vectors (half of the diagonal is shorter than the
sides of the rectangle).
bLattices with two shortest vectors (half of the diagonal is longer than two
sides of the rectangle).

on the cone of positive quadratic forms includes two connected components
formed by hexagonal cells with ¢2mm symmetry (see Figure 8.1). In order to
deform continuously the ¢2mm cell from one connected component into the
c2mm cell belonging to another connected component, we need to construct
a path which crosses at least p6mm stratum, or goes through a p2 generic
stratum. In dimension 2 the correspondence between combinatorial and sym-
metry classifications is rather simple. Each Bravais group is compatible with
only one combinatorial type of the Voronoi cell.

Five combinatorial types of three-dimensional Voronoi cells are described
in Table 8.6 (see also Figure 6.13). Note that to see the correspondence be-
tween the Delone notation used in Table 8.6 and the graphical representation
used in Figure 6.13 it is sufficient to simply remove edges with black points
from the Delone representation.

The systematic procedure of simultaneous analysis of combinatorial type
and the Bravais symmetry type of the lattices in dimension 3 was realized by
Delone on the basis of initial Voronoi studies (see also [32, 35]).

To characterize the three-dimensional lattice given by three translation
vectors a, b, ¢, Delone uses instead of the six standard parameters a2, b2, ¢2,
g=(a-b),h=(a-c), k= (b-c), the ten parameters associated with vec-
tors a,b,c and d = —(a + b + ¢). These parameters, are : the squares of the
lengths of vectors a, b, ¢, d, denoted by a2, b2, ¢2, d?, and their scalar products
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TAB. 8.6 — Three dimensional Voronof cells. Column 1 gives the Delone symbol (see
text). Column 2: the dimension of their domain in the cone of positive quadratic
ternary forms, C4+(Q)s. Column 3: the number of hexagonal and quadrilateral faces.
Columns 4, 5, 6: | F| the total number of faces, |E/| the number of edges, |V| the total
number of vertices. Column 7: the number of vertices of valence 3 and 4. Column 8:
|C| the number of corona vectors. Column 9: the number of shortest vectors in each
of the 7 non trivial L/2L cosets.

Delone dim 6-4 |F| |E|] |V| 3-4 |C] L/2L

A 6 8-6 14 36 24 24-0 14 2222222
é 5 4-8 12 28 18 16-2 16 2222224
A 4 0-12 12 24 14 8-6 18 2222226
g 4 2-6 8 18 12 12-0 20 2222444
& 3 0-6 6 12 3 8-0 26 2224448

g, h, k,l,m,n introduced earlier by Selling and used to describe reduced forms.

These 10 parameters are naturally linearly dependent. The sum of numbers
‘ a b c d

a | a? k h l
in one line of the following table b | & > g m is zero. The advan-
c h g 2 n

d|{ ! m n d
tage of using these ten parameters is the clear visualization of different com-
binatorial and symmetry types of Voronoi cells.

b

A general Delone symbol “Th " could be imagined as a projection
of a tetrahedron ABCD with vertices corresponding to ends of the vectors
a, b, c,d. The edges are labeled by numbers g, h, k, [, m, n. If one thinks of this
symbol as a three-dimensional model of a tetrahedron its vertices and edges
turn out to be equivalent.

Delone has shown that 24 sorts of lattices exist. They are nowadays
referenced as 24 Delone sorts of lattices. Without going into details of math-
ematical justifications (see [42, 73]) we summarize here just the main results
explaining the graphical representation of Delone symbols for lattices of dif-
ferent combinatorial type and of different symmetry.

Different combinatorial types of Voronoi cells are described by Delone
symbols with 0, 1, 2, or 3 zeros on the edges of the Delone symbol. It is not
possible to put 4 zeros because any quadratic form in Q3 with only two \’s
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has a zero determinant. For the same reason it is not possible to put 3 zeros
on 3 edges with a common vertex. To have only five different possibilities for
the distribution of zeros on the edges (as table 8.6 shows where zero on the
edge is symbolized by a black dot) it is sufficient to check that two possi-
ble distributions of three zeros give the same combinatorial type, namely a
rectangular parallelepiped.

In order to characterize Bravais symmetry it is sufficient to indicate the
Delone symbol edges equivalent by symmetry. This is typically done by putting
the same number of dashes on equivalent edges. Table 8.7 gives the complete
description of 24 sorts of Delone lattices through their Delone symbols and
the distribution of Delone sorts into combinatorial and symmetry (Bravais)
types.

From Table 8.7 it follows that nine Bravais classes are compatible each with
only one combinatorial type of Voronoi cell. On the other hand, for the C2/m
Bravais group there are two different Delone sorts of the combinatorial 14-24
type and two Delone sorts of the combinatorial 12-14 type. This illustrates
the existence of two alternative Co, group actions on the same combinatorial
type of the Voronofi cell.

With increasing dimension the number of combinatorial types of Voronot
cells increases rapidly, as well as the number of Bravais classes. Thus the
detailed classification performed by Delone for three dimensional lattices and
even more simpler classifications into individual combinatorial types or into
symmetry types can become unrealizable or even unutilizable because of
extremely large number of members. The reasonable classification should be
based on new more crude invariants and types or on statistical distributions
over different types of lattices from one side and on the description of some
extremal types of lattices (for example with maximal symmetry).
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TAB. 8.7 — A list of the Delone symbols describing the Voronoi cells of the lattices
belonging to a Bravais class. The combinatorial description of the Voronoi cell is
given by the symbol |F| — |V| indicating the number of facets |F| and the number
of vertices |V|. The first column lists the Bravais classes. The last column gives the
dimensions up to dilation, of the different domains of cells in the cone of positive

Introduction to lattice geometry through group action

quadratic forms C4(Q3).

Voronoi 14-24 12-18 12-14 8-12 6-8 dim.
Cubic P ﬁ 0
Cubic F & 0
Cubic I & 0
Hexa P ég 1
Trigo R ﬁ & 1,1
Tetra P & 1
Tetra I ﬁ & 1,1
Ortho P & 2
Ortho C & 2
Ortho F ﬁ 2
Ortho 1 ﬁ & & 2,2, 1
Mono P & 3
Mono C & & & 3,3,2
Mono C & & 3,2
Tricli P A & A 5,4,3




Chapter 9

Applications

Lattices appear naturally in rather different domains of natural science and
formal mathematics. The goal of the present chapter is to discuss briefly
several examples of problems which are tightly related with the lattice con-
structions, lattice classifications, and use lattices as an initial point for more
elaborated mathematical and physical models and processes.

9.1 Sphere packing, covering, and tiling

One of the most simply formulated practical problem leading to the study
of lattices is the classical problem of packing spheres (or balls). We can think
about canon balls or about oranges of the same dimension and try to find
the packing that maximizes the density assuming that the dimension of the
box to pack the balls is infinitely bigger than the ball dimension. To make
this “practical” problem more mathematically sound we can generalize it to
an arbitrary dimension and to look for solutions for more restricted problem
by imposing the periodicity condition on packing (lattice packing) and more
general packing without periodicity.

The solution of this problem is trivial in dimension 1 (see Figure 9.1).
One-dimensional spheres (~ intervals) fill completely one-dimensional space
(line).

The solution for the dimension two is also simple (we need to pack disks
on the plane, see Figure 9.2). Each disk can be surrounded by six neighboring
discs. Continuing this local packing we get the hexagonal lattice which is the
densest packing of the 2-D discs.

The density of hexagonal packing can be easily calculated by noting that
for discs of radius R, each elementary cell is a rhomb with diagonals equal
2R and 2v/3R. The area occupied by the disk in each elementary cell is equal
exactly to the area of one disk, mR? (two sectors of 27/6 and two sectors
of 2m/3). The area of the elementary cell is 2¢/3R?. Thus the density is
7/(2v/3) ~ 0.9069.
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F1G. 9.1 — Densest packing of 1-dimensional spheres on a line.

F1a. 9.2 — The most dense packing of two-dimensional spheres (discs) on a plane
is a hexagonal lattice packing.

In dimension three the problem of sphere packing is less trivial. The origin
of the difficulty can be easily understood if we take one ball and try to put
around it the maximal number of identical balls touching it. It is easy to check
that it is possible to put 12 balls in contact with one ball but there is still some
free space between 12 balls and they can move rather freely being always in
contact with the central ball. It is not easy to prove that it is impossible to put
the thirteenth ball in contact with the central one. The contact number (i.e.
the maximal number of balls which can be put in contact with one ball) is not
known for the majority of dimensions d > 4. It is known that contact numbers
in dimensions 8 and 24 are respectively 240 and 196560. These solutions are
known because in dimensions 8 and 24 the arrangement of balls around one
central ball is unique. These arrangements correspond to the lattice Fg and
to one of the forms of the 24-dimensional Leech lattice.

At the same time it is easy to suggest the packing for 3-D balls (in fact even
infinity different versions) which can be thought to be the densest packing. We
can start with one layer of balls forming a hexagonal 2D-lattice. Then the next
layer can be posed in such a way as to put balls in cavities of the second layer,
and so on .... As soon as the number of cavities is twice the number of balls
there are two ways to position the next layer. The periodic structure with the
shortest period corresponds to the sequence of layers ABAB ... This pack-
ing is named the hexagonal close packing. The periodic packing of the form
ABCABC. .. corresponds to the structure named face-centered cubic lattice
(see Figure 9.3). The density of all packings corresponding to any sequence
(periodic or not) of hexagonal layers is m/v/18. Each ball in these packings
has 12 neighbors. Although there exist a number of different proofs that the
mentioned above packings are the densest ones among lattice packings, only



9. Applications 191

F1a. 9.4 — Covering plane by discs. Center of discs form hexagonal (left) and square
(right) lattice. Hexagonal covering is less dense than the square lattice covering.

recently has a computer assisted proof appeared that this statement remains
valid for arbitrary non-lattice packings in three-dimensional space.

Nowadays, the solution for the densest packing of spheres is known in many
dimensions. The density of the known densest packing varies with dimension
in rather irregular fashion. It is also not clear in advance what kind of lattice
corresponds to the densest packing for a given dimension.

A problem tightly related to packing is the covering by spheres. Now it is
necessary to find the arrangement of overlapping spheres covering the whole
space and having the lowest density. The answer is again trivial for the one-
dimensional problem. For the two-dimensional problem the hexagonal lattice
gives again the best solution (the lowest density) for the covering problem.
Figure 9.4 shows the comparison of the coverings obtained for the square
lattice and for the hexagonal lattice. For the hexagonal lattice the overlapping
of spheres is smaller and the density of covering is lower, namely 27/(3v/3) ~
1.2092 whereas for the square lattice the density of covering is 7/2 ~ 1.5708.

For three-dimensional lattices the lowest density covering is given by a
body-centered lattice, in spite of the fact that the densest sphere packing is
associated with another, face-centered cubic lattice.
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TAB. 9.1 — Classes of the symmetry groups H of mesomorphic phases of matter:
[E(3) : H] compact, Hy = largest connected subgroup of H, Ty = H NT, where T
is the translation subgroup of E(3).

Class Ty Hy
Ordinary nematics R? R3xU(1)
Exceptional nematics R? R3
Cholesterics (chiral) R?2x Z R3
Smectics A R*x Z R* x U(1)
Smectics C' R?>x Z R?
Chiral smectics C' R? R?
Rod lattices (e.g., lyotropics) R x 72 R
Crystals VA {1}

The problem of ball packing can be formulated in a much wider sense than
simply as a problem of the densest sphere packing. From the point of view
of the description of packing of atoms or molecules in crystals it is natural
to ask about regular or lattice packing of balls which are stable in a certain
sense (see [11, 5]).

9.2 Regular phases of matter

We want to discuss here briefly the relation of lattices to the classification
of different phases of matter, which is more general than just the classification
of crystals. In fact, a simultaneous discussion of different mesomorphic phases
of matter was suggested by G. Friedel in 1922 [55]. He suggested to treat
both crystals and liquid crystals on the basis of symmetry arguments. We
follow here the description of the mesomorphic phases of matter done by
Louis Michel in [71] on the basis of the symmetry breaking scheme applied to
E(3), the three-dimensional Euclidean group. The idea of this classification
is to describe the possible stabilizers (little groups in physical terminology)
of transitive states. The equilibrium states of matter are associated with the
symmetry group which is a subgroup H of E(3). The classes of the symmetry
groups H of mesomorphic states of matter are listed in Table 9.1.

Symmetry groups H are defined up to conjugation. When H is discrete, the
phase is a crystal. The characteristic lengths of the crystal is not of importance
for physical applications, but the difference between left-handed and right-
handed crystals can be eventually important for certain physical properties.
This is the reason to classify crystals up to a conjugation in the connected
affine group (see section 8.3). This yields 230 crystal symmetries. The same
classification principle leads to an infinity of other H subgroups. They can be
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put in families according to the topology of their largest connected subgroup
Hj and their intersection H NT = Ty with the translation subgroup of E(3).
These broad classes are listed in Table 9.1.

Short description of the most important other mesomorphic phases is as
follows.

In nematics, the molecules are aspherical; their positions are distributed at
random as in a liquid, but they are aligned. In ordinary nematics H is the semi-
direct product B3 A Dsop. This means that the orientation of the molecules
causes them to yield only axially symmetric quadrupole effects even when
the molecules have no axial symmetry. Near the solidification temperature,
molecules with strong deviation from axial symmetry may rotate less easily
and exceptional nematics can be observed (e.g. birefringent quadrupoles with
three unequal axes).

Cholesterics are constructed of polar molecules; their symmetry group
H contains all the translations in a plane and, with a perpendicular
axis, a continuous helicoidal group. They appear frequently in biological
tissues.

In smectics the molecules are distributed in parallel monomolecular or
bimolecular layers, and they are aligned either perpendicularly (smectics A) or
obliquely (smectics C') to the layers. In chiral smectics C inside each layer the
polar molecules are oriented with a constant oblique angle, but the azimuth
of this orientation turns by a constant angle 6 from one layer to the next and
two different subclasses are possible depending on whether /7 is rational or
not.

The classification of mesomorphic phases of matter described above is
based on the spatial distribution of atomic positions with each atom being
represented as a point in real physical space. Naturally, the points repre-
senting the localized atoms in space are associated with heavy atomic nuclei
(eventually together with some internal electrons), whereas (outer) electrons
are distributed in space in the presence of the lattice formed by localized
atomic cores.

From the physical point of view it is quite interesting and important to
find if there are some more general restrictions which allows us to introduce
some universality classes of matter which persist even if periodicity is broken.
It is possible to look for such criteria which are due to global topological effects
(invariants) which cannot be removed under small deformation breaking sym-
metry. Classification of universal classes of topological states of matter takes
into account the global symmetries like time reversal, charge conjugation, and
their combination. The origin of particles themselves (fermions or bosons) is
equally important. This subject has become very popular now due to the dis-
covery of such new topological phases of matter as topological insulators or
topological superconductors [27].
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9.3 Quasicrystals

We cannot avoid to mention the application of lattice geometry to study
quasicrystals, or aperiodic regular structures. This is mainly due to the fact
that aperiodic crystals can be naturally described as projections of a higher
dimensional periodic structure to a subspace of lower dimension. In order to
obtain an aperiodic structure the subspace on which such a projection is
realized should be irrational with respect to the lattice vectors of the initial
periodic structure. Such a construction justifies the interest in the study of
higher dimensional periodic structures but creates at the same time a lot of
questions about the relevance of the choice of the dimension and of the orien-
tation of the subspace to project the structure. We do not enter in this very
popular domain which has a lot of applications not only in the analysis of
quasicrystals (fully recognized as an important class of physical systems by
awarding the Nobel prize for their discovery in 2011) but in various different
branches of physics and mathematics, including chaotic dynamical systems,
singularity theory, etc. For an introduction to quasicrystals and related math-
ematical domains see [17, 24].

9.4 Lattice defects

The classification of the mesomorphic states of matter uses an idealization
that the ordered phase of matter is extended indefinitely in space in order to
be globally invariant under an allowed subgroup H of E(3). This idealization
is not bad if the real sample under study is large enough (as compared to the
size of the unit cell) so that its symmetry can be recognized. But, in nature,
samples are not only limited in size, but they also can be non-perfect, i.e. they
can have defects.

Application to physically real objects of lattice theory is related to the
description and classification of typical defects and boundaries. The first step
in defect description should include the description of so called topologically
stable defects, which persist in the medium even under small (local) deforma-
tion.

A very intuitive and visual description of possible defects in regular
(periodic) physical materials (crystals, liquid crystals) is based on the “cut
and glue” construction of defects for regular lattices.

We give below several examples of such defect constructions. The sim-
plest defect is a vacancy which corresponds to removing one vertex of the
lattice without qualitatively disturbing the surrounding (see Figure 9.5, left).
This means that testing the lattice locally in any region outside of a small
neighborhood of a vacancy we cannot notice the presence of the defect.

A more complicated defect, linear dislocation, is shown in Figure 9.5, cen-
ter and right. To construct such a defect we remove (we can also insert) one
ray of points (eventually several parallel rays) and glue the two boundaries of
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Fic. 9.5 — Lattice with a vacation (left). Construction of a linear dislocation
(center). Lattice with a linear dislocation (right).

I
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F1G. 9.6 — Construction of the rotational disclination by removing the solid angle
/2 shown on the left picture.

the cut by a parallel translation along the transversal direction. For the two-
dimensional lattice the linear dislocation results in a point (codimention-2)
defect. But the evolution of the elementary cell along a closed path surround-
ing the defect does not modify the elementary cell. In order to characterize
the linear dislocation we can introduce the Burgers vector which characterizes
what happens with the closed contour chosen on the initially perfect lattice
after constructing the dislocation.

The next important defect of the regular lattice is the rotational discli-
nation. We can get it by removing (or adding) an angular wedge from the
regular lattice and then joining the two boundaries by rotating them. Exam-
ples of such a construction of 7/2 and 7 rotational disclinations are shown in
Figures 9.6 and 9.7. The effect of the evolution of the elementary cell along a
closed path surrounding the rotational disclination consists in rotation of the
elementary cell by an angle associated with rotational disclination.

We need to distinguish rotational disclination from the angular dislocation
shown in Figure 9.8. Angular dislocation is less typical as a defect of real
crystals but it turns out to be of primary importance in integrable dynamical
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F1G. 9.7 — Construction of the rotational disclination by removing the solid angle =
(Left) and 37/2 (Right). The reconstructed lattice after removing the 7 solid angle
(center).

F1c. 9.8 — Construction of the angular dislocation by removing or adding one of
the solid angles shown on the left picture. Reconstructed lattices after removing or
adding small or large sectors are shown together with transport of the elementary cell
along a closed path around the defect on the reconstructed lattice. The identification
of boundaries after removing or adding a solid angle is done by the parallel shift of
lattice points in the vertical direction.

systems as a defect of regular lattices associated with focus-focus singularities
(see next subsection).

9.5 Lattices in phase space. Dynamical models.
Defects.

Lattices appear naturally not only in the configuration space, as localized
positions of atoms or more complicated particles. We turn now to dynamical
systems, in particular to Hamiltonian systems. The basic object of our study
is the phase space formed by conjugated position and momentum variables.
The notion of integrable classical system leads to the appearance of toric
fibrations.
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The most evident appearance of lattices is associated with quantization of
classical Hamiltonian integrable systems. Integer values of actions correspond
to quantum states forming local lattices of quantum states.

Integrable problem in classical mechanics and corresponding quantum
problems are very special to be associated directly with concrete physical
systems. Certain qualitative features of integrable classical problems inher-
ited also by quantum systems remain valid after small deformation because
of their topological origin. This justifies the study of integrable systems from
the point of view of further analysis of generic (non-integrable) systems.

To see the relation of regular lattices and their defects to dynamical sys-
tems we can start with one-degree of freedom problem. The Hamiltonian sys-
tem describing the motion of a particle in a one dimensional potential can be
imagined for simplicity as harmonic or slightly anharmonic oscillator.

Near the minimum of the potential the classical phase portrait shown in
Figure 9.9, e can be topologically described as a system of circles (Figure 9.9, a),
fibered over an interval and a singular fiber, a point, associated with the
boundary point, the minimum. The corresponding system of quantum levels
is a sequence of points which can be deformed to a regular one-dimensional
lattice (with a boundary) associated to the harmonic oscillator (9.9, b). Small
deformations of the one-dimensional problem cannot change qualitatively nei-
ther classical fibration, nor the lattice of quantum states. Qualitative modi-
fication of classical fibration is related with bifurcation of the phase portrait
associated with the appearance of new stationary points on the energy surface.
Subfigure 9.9, f shows qualitatively new phase portrait after the bifurcation
associated with the formation of two new stationary points and the separatrix.
Classical fibration 9.9, ¢ now has a singular fiber (associated with a separatrix)
and three regular regions, associated with locally defined lattices.

Completely integrable classical Hamiltonian for a two-degree of freedom
system can be represented by its two-dimensional energy momentum (EM)
map each regular point of which is associated with a regular T2 fiber. The
corresponding quantum system is characterized by the joint spectrum of two
mutually commuting integrals of motion. In the case of the two-dimensional
isotropic harmonic oscillator (see Figure 9.10) two integrals of motion can be
chosen as the energy F, which is the eigenvalue of the Hamiltonian H and the
projection of angular momentum m which is the eigenvalue of L.

1 1
H = S0l +4i) + 503 +a), (9.1)
L, = p1g2 — p2¢a. (9.2)

Their joint eigenvalues form a regular two-dimensional lattice bounded by
two rays.

Along with special fibers associated to boundary lines of the energy-
momentum map, it is possible that integrable fibrations have also singular
fibers inside the energy momentum map. Typical images of energy momentum
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F1c. 9.9 — Classical and quantum bifurcations for the one degree of freedom system.
Situations before (a,b,e) and after (c,d,f) the bifurcation are shown. (a) Energy map
for a harmonic oscillator type system. Inverse images of each point are indicated.
(b) Quantum state lattice for a harmonic oscillator type system. (c¢) Energy map
after the bifurcation. Inverse images of each point are indicated. (d) Quantum state
lattice after bifurcation represented as composed of three regular parts glued to-
gether. (e) Phase portrait for a harmonic oscillator type system. Inverse images
are S* (generic inverse image) and S° - inverse image for a minimal energy value.
(f) Phase portrait after bifurcation.

F1a. 9.10 — Joint spectrum of two commuting operators (9.1, 9.2) together with the
image of a classical EM map for a two-dimensional isotropic harmonic oscillator.
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F1G. 9.11 — Typical images of the energy momentum map for completely inte-
grable Hamiltonian systems with two degrees of freedom in the case of: (a) integer
monodromy, (b) fractional monodromy, (c¢) nonlocal monodromy, and (d) bidromy.
Values in the lightly shaded area lift to single 2-tori; values in darkly shaded area
lift to two 2-tori.
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F1c. 9.12 — Two dimensional singular fibers in the case of integrable Hamiltonian
systems with two degrees of freedom (left to right): singular torus, bitorus, pinched
and curled tori. Singular torus corresponds to critical values in Figure 9.11 (c,d),
(ends of the bitorus line). Bitorus corresponds to critical values in 9.11 (c,d), which
belong to the singular line (fusion of two components). Pinched torus correspond to
the isolated focus focus singularity in Figure 9.11 (a). Curled torus is associated with
the critical values at the singular line in Figure 9.11 (b), (fractional monodromy).

maps possessing singular fibers for the two-degree-of-freedom Hamiltonian
systems are shown in Figure 9.11. Visualization of singular fibers is given in
Figure 9.12. The presence of singular fibers can be considered for classical
fibration as a singularity which naturally influences the regular character of
the fibration. For corresponding quantum systems regular regions of classi-
cal fibration correspond to locally regular lattices of common eigenvalues of
mutually commuting operators. Singular fibers result in formation of defects
of lattices of common eigenvalues.

For integrable systems with two-degrees of freedom the simplest codimen-
sion two singularity of the energy momentum map is the so called focus-focus
point associated with a pinched torus. Its manifestation on the joint spectrum
lattice for the corresponding quantum problem is shown in Figure 9.13 on the
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F1c. 9.13 — Joint spectrum of two commuting operators together with the image of
the classical EM map for the resonant 1 : (—1) oscillator [80]. Quantum monodromy
is seen as a result of transportation of the elementary cell of the quantum lattice
along a closed path through a non simply connected region of the regular part of
the image of the EM map.

example of the resonant 1 : (—1) oscillator. The two mutually commuting
integrals of motion for this example are given by

1 1

o= Wi+ - 505 +d), (9.3)
1

fo = piga+p2qi + Z(p% +ai+p5+a3)° (9.4)

It is clear that outside a small neighborhood of a codimension-2 defect
the lattice of common eigenvalues remains regular, i.e. it can be transformed
(within a local simply connected region of the image of the energy momentum
map) to a simple square lattice by an appropriate choice of variables (local
actions). At the same time the existence of a singularity imposes that along a
closed path surrounding the singularity the unique choice of action variables
does not exist. The evolution of the elementary cell of the local lattice along
a path surrounding the singularity leads to a new choice of local action vari-
ables. Transformation between initial and final choices of local action variables
is named a quantum monodromy. The type of quantum monodromy depends
on the type of singularity of integrable classical fibration. The simplest sin-
gularity of classical integrable fibration, i.e. singly pinched torus, corresponds
to transformation of the basis of the elementary cell of the quantum lattice

by the matrix M
10
u-(10). o5

which is defined up to the SL(2,Z) transformation.
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chart II

F1G. 9.14 — Two chart atlas which cover the quantum lattice of the 1 : (—1) resonant
oscillator system represented in Figure 9.13. Top plots show the choice of basis cells
and the gluing map between the charts. Bottom plots show the transport of the
elementary cell (dark grey quadrangles) in each chart. Central bottom panel shows
the closed path I' and its quantum realization (black dots) leading to nontrivial
monodromy (compare with Figure 9.13).

A possible choice of two overlapping simply connected charts with asso-
ciated evolution of elementary cells for each chart is used in Figure 9.14 to
explain the appearance of quantum monodromy for a lattice with a defect.
Among the different possible visualizations of such simple-monodromy defect
the most natural is that represented in Figure 9.15. Its construction is similar
to that used for the “angular dislocation defect” shown in Figure 9.8. The idea
of the construction of the defect is as follows. We cut from the regular lattice a
wedge shown in Figure 9.14, left, and identify points on the two boundary rays
of the cut. The wedge is chosen in such a way that the number of removed
points from the lattice is a linear function of the integral of motion. After
identification of the boundaries of the cut the reconstructed lattice remains
regular except in the neighborhood of a singular point and is characterized by
a quantum monodromy matrix (9.5).

Along with codimension-2 singularities classical fibrations for integrable
dynamical systems have codimension-1 singularity lines. Such singularity is
associated, for example, with a curled torus (see Figure 9.12) and can be
studied on a concrete example of the two-dimensional nonlinear 1 : (—2)
resonant oscillator.
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F1G. 9.15 — Construction of the 1:(—1) lattice defect starting from the regular Z>
lattice. The solid angle is removed from the regular Z? lattice and points on the so
obtained boundary are identified by vertical shifting. Dark grey quadrangles show
the evolution of an elementary lattice cell along a closed path around the defect
point.

Two integrals of motion for this problem are given by

fi = %(pf +4q7) — %(pi +43) + Ri(q, p), (9.6)
fa = Im[(q1 +ip1)* (g2 + ip2)] + Ra(q, p)- (9.7)

Here R; are higher order terms which ensure the compactness of the sub-
spaces with fixed energy. The corresponding image of the energy momentum
map together with the lattice of the joint quantum spectrum are shown in
Figure 9.16.

The new qualitative feature which appears with this example is the pos-
sibility to define a generalization of quantum monodromy in case when the
closed path on the image of the energy-momentum map crosses the line of
singularities. The construction of the defect by the cutting and gluing pro-
cedure of a regular lattice is shown in Figure 9.17. The key point now is
the possibility to go to sublattice (of index two in this concrete case) and to
show that it is possible to define what happens with the elementary cell when
crossing the line of singularities. At the same time being in regular region,
it is possible to return to the original elementary cell. The monodromy
matrix written in this case for an elementary initial cell includes fractional
entries. That is why the corresponding qualitative feature was named frac-
tional monodromy.

9.6 Modular group

In order to see the relation between lattices and functions of complex vari-
ables let us remember that an elliptic function is a function f meromorphic
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Fi1G. 9.16 — Joint quantum spectrum for two-dimensional nonlinear 1 : (—2) res-
onant oscillator [80]. The singular line is formed by critical values whose inverse
images are curled tori shown in Figure 9.12. In order to get the unambiguous result
of the propagation of the cell of the quantum lattice along a closed path crossing
the singular line, the elementary cell is doubled.

F1G. 9.17 — Representation of a lattice with a 1 : 2 rational defect by cutting and
gluing. Left: The elementary cell goes through cut in an ambiguous way. The result
depends on the place where the cell crosses the cut. Right: Double cell crosses the
cut in an unambiguous way.

on C for which there exist two non-zero complex numbers w; and wo with
wi/wy € R, such that f(z) = f(z +wy) and f(z2) = f(z 4+ wy) for all z.
Denoting the “lattice of periods” by A = {mw; 4+ nws | m,n € Z} , it follows
that f(z) = f(¢ 4 w) for all w € A. The complex numbers (w;,ws) generating
the period lattice are defined up to SL(2,Z) transformation, like quadratic
forms or bases of two-dimensional lattices. Note, that for two-dimensional real
lattices the group describing the transformation of bases is often extended by
including reflections. In such case the group is GL2(Z), which includes integer
2 by 2 matrices with determinant +1. In complex analysis the holomorphic
transformations includes only those with positive determinant, whereas trans-
formations with negative determinant are anti-holomorphic. This means that
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under holomorphic transformations a pair of complex numbers (vectors) aq, as
will generate exactly the same lattice as the lattice generated by wq,ws if and

only if
(o)-(ta)(2) 05

for some matrix in SLy(Z).
To compare with more general GL(2, R) group, let us consider the action
of the GL(2, R) group on the complex plane z € C

b az+b
c, g=|("° L(2,R); g-z= C. :
ze€C, ¢ (C d)EG(,R), g-z cz+de (9.9)
We verify easily that
det
A %(guz):ﬁ%(z). (9.10)

These transformations show that the upper half part, H, of the complex plane
is invariant under transformations by SLs(R) matrices with a positive deter-
minant. If we apply transformation with a negative determinant, the imagi-
nary part of the complex number changes the sign.

In order to study the rational transformations of the upper half complex
plane H, which leave the period lattice invariant we need to be restricted to
the SLy(Z) group rather than for a larger GL2(Z) one. Moreover, the element

—I = ( _01 _01 > from SLy(Z) acts trivially on H. Thus, we can conclude

that in fact it is the group PSLo(Z) = SL2(Z)/({£1} that acts. The subgroup
{£1} is the center of the image of SLy(Z) in PSLy(Z).
The name modular group is reserved for the group

G = SLy(Z)/{£1},

which is the image of the group SLs(Z) in PSL2(R). But sometimes the
discrete subgroup S Lo(Z) of the group SLs(R) is also named a modular group.

The interest in the study of the lattices and modular group action on
the upper half of the complex plane is related to the use of it as a model of
hyperbolic space.

It is quite instructive to describe the fundamental domain of the modular
group action on the upper half part of the complex plane and to compare
the action of the modular group on the complex plane with the action of the
SLs(Z) group on the cone of quadratic forms studied in chapter 6 in relation
to the two-dimensional lattice classifications.

The choice of the fundamental domain of the modular group action is
shown in Figure 9.18, where several images of the chosen fundamental domain
under the modular group action are also shown. Special care should be taken
for the indicated boundary of the fundamental domain in order to ensure that
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F1G. 9.18 — The fundamental domain of the modular group action on the upper
half complex plane.

only one point from each orbit of the modular group action on the upper half
of the complex plane is included in the fundamental region.

To describe the fundamental domain F' let us represent it as a union of
two subdomains F = FW U F®) | where

FO :={2eC:0< Rz < % |z > 1}, (9.11)

1
F? .= {zeC:—5 <Rz <0, |2 >1} (9.12)

Here C is the extended complex plane, note that oo is included in F™) but
not in F(®), The fundamental domain shown on Figure 9.18 by shading has
boundaries marked by solid lines and boundaries marked by dashed lines.
Only solid lines are included in the definition of the fundamental domain.
To see the topology of the fundamental domain we need to identify two ver-
tical boundaries and two halves of the circular boundary. The result is the
topological sphere.

To see in more details the action of the modular group on the upper half
complex plane let us introduce two generator of the SLy(Z) group.

Let
1 1 0 -1
(1) v (0 ), 013
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The corresponding mapping associated with the introduced action of SLo(Z)
on the complex plane are given by

Uz=z+1, Vz=-1/z (9.14)

Let us note further that
k 1k 2 3
U" = 0 1 ) Vi=—-1I; (VU)>=-1I. (9.15)

This means that from the point of view of the SLo(Z) group, V is a generator
of a subgroup of order four, VU is a generator of a subgroup of order six.

But returning to the group of mappings on the upper half complex plane,
i.e. to the PSLy(Z) group and taking into account the mentioned earlier fact
that —I acts trivially on the upper half complex plane (i.e. belongs to the
center), we can say that the mapping V has order two and the mapping U
has order three.

To characterize the fundamental domain we need to describe the stabilizers
of different points belonging to the fundamental domain, i.e. find different
strata of the group action. It can be checked [85] that all points have the
trivial stabilizer except for point 7 denoted s on Figure 9.18, points z = ™#/3,
and z = s2™/3 denoted respectively as h and A’ on Figure 9.18 and the oo
point of the extended complex plane. Point ¢ has a stabilizer generated by the
element V', i.e. the stabilizer of point i is a group of order two. Two points
z = €™/3 and z = s*™/3 belong to the same orbit. Their stabilizers are
conjugate and generated by VU or by UV. The order of stabilizer is three.
The oo point is invariant under the so called parabolic subgroup generated by
element U. The corresponding discrete subgroup has infinite order. So finally
we can say that the space of the orbits of the modular group action on the
extended upper half complex plane H* is a topological sphere with one point
belonging to the stratum with the stabilizer being the group of order two
and one point belonging to the stabilizer of order three and one point with
stabilizer of infinite order.

9.7 Lattices and Morse theory

Many important physical characteristics of periodic crystals depend on the
number and positions of stationary points of continuous functions defined on
the Brillouin zone (see section 8.4). For three-dimensional crystals the
Brillouin zone is a three-dimensional torus stratified by the action of the
point symmetry group of the crystal. Morse theory is an appropriate math-
ematical tool which allows us to relate the number of stationary points of a
smooth function with the topology of the space on which this function is
defined. In the presence of symmetry additional restrictions on the num-
ber and position of stationary points follow from group action, in particular,
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from the existence of zero-dimensional strata formed by critical orbits which
are stationary points for any invariant smooth function. In this section we
illustrate the application of Morse theory to the description of the minimal
possible system of stationary points for functions invariant with respect to
point groups of 14 three-dimensional Bravais classes.

9.7.1 Morse theory

We start with short reminder of Morse theory. Let us consider a smooth
real valued function f on a real compact manifold M of dimension d. If in a
local coordinate system {x;}, 1 <¢ < d = dim M, defined in a neighborhood
of a point m € M the function f satisfies equations

of o f
Bxi n 0’ det ({91’18%]

#0, (9.16)

of vanishing gradient and non-vanishing determinant of the Hessian, we say
that f has a non degenerate extremum at m. By a change of coordinates
{z;} — {y:} in a neighborhood of m the function can be transformed into
[ =>",eiy? with ¢; = 1. The number of “minus” signs is independent of the
coordinate transformation. It is called the Morse index p of this non degener-
ate extremum: for instance p = 0 for a minimum, x4 = d for a maximum, and
the intermediate values correspond to the different types of saddle points.
By a small generic deformation all stationary points can be made non degen-
erate. A function on M with all its extrema non degenerate is called a Morse
function. The essence of Morse theory is the relations between the numbers
¢, of extrema of Morse index k and the topological invariants of the manifold
M, its Betti numbers. The Betti number by is defined as the rank of the k-th
homology group of M. Intuitively by is the maximal number of k-dimensional
submanifolds of M which cannot be transformed into one another or into a
submanifold of smaller dimension. For instance for the sphere Sy of dimension
d, bg = bg = 1 and all the other b, vanish. More generally one has the Poincaré
duality: by = bg_x. The information about Betti numbers can be written in a
form of a Poincaré polynomial Py (t) of a manifold M

d
Py(t) =) bet"; d=dim(M); eg. Pg,(t)=1+t" (9.17)
=0

The Poincaré polynomial of a topological product of manifolds is the product
of the Poincaré polynomials of the factors. For instance, a d-dimensional torus
is the topological product of d circles. This gives the Betti numbers for the
d-dimensional torus Tj:

Ty = Sld = Pr, (t) = (1 + f,)d = bk(Td) = <Z> . (918)
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For a compact manifold M the system of Morse relations consists of one
equality

d d
S e —b) =0 & Y (1) = Z(—l)d_kbkdéfX(M),

k=0 k= =0
(9.19)
where x (M) is the Euler Poincaré characteristic, and the system of inequalities

o
o

¢
Z(—l)hk(ck —by) >0, 0<0<d, (920)
k=0

which can be simplified to a more crude form ¢, > bg. These simplified
inequalities are not equivalent to Morse inequalities (9.20) but give lower
bounds to the number of extrema of a Morse function.

For functions defined on the Brillouin zone (i.e. for a torus) for d = 2 and
d = 3 the relations (9.19), (9.20) become

d=2, cg—c1+c2=0, ¢>1<co, co+1<ec1>eca+1, (9.21)
d=3, co—cr+ca—c3=0, cg>1<¢c3, c1>co+2, ca>c3+2.

Thus for the two-dimensional torus the minimal number of stationary points
for a Morse function cannot be smaller than four, whereas for the three-
dimensional torus the minimal number is eight.

9.7.2 Symmetry restrictions on the number of extrema

In the presence of symmetry acting on a manifold all stationary points
belonging to the same orbit of the group action naturally have the same
Morse index. Moreover for invariant functions all orbits isolated in their strata
should be formed by stationary points. Such orbits are named critical orbits.
These stationary points are fixed (their position does not vary under small
deformation of the Morse function). Thus in the presence of symmetry it
is quite useful to find first all critical orbits and then verify if some other
stationary points should exist in order to satisfy Morse inequalities.

Before passing to the application of the Morse analysis for functions
defined on the Brillouin zone for different point symmetry groups we con-
sider two simpler examples for a function defined on the two-dimensional
sphere in the presence of symmetry. In the case of the Oy group action on
the sphere (see section 4.5.1, Figure 4.20) there are three critical orbits: one
consists of 6 points (stabilizer Cy, ), another of 8 points (stabilizer Cs, ), and
the third one is formed by 12 points (stabilizer Ca,). We have 26 fixed sta-
tionary points among which points with Cy, and Cj, stabilizers should be
stable, i.e. to be maxima or minima and cannot be saddles. One can easily
verify that six maxima/minima, eight minima/maxima and 12 saddles satisfy
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Morse inequalities and consequently the minimal number of stationary points
for a Morse function on the sphere in the presence of Oy symmetry is 26.

As another example let us study the Morse function of the sphere in case
of the Cy, point group action. There is only one critical orbit of the Cyj,
group action consisting of two points (see section 4.5.1, Figure 4.17). These
two points should have the same Morse index. In order to construct a Morse
function with the minimal number of stationary points it is necessary to add
two orbits of two points located on C, stratum. Positions of stationary points
on one-dimensional stratum are not fixed and the distribution of stationary
points among these three orbits is arbitrary. The only condition imposed by
the Morse relation for the function invariant under Csj action and possess-
ing the minimal possible number of stationary points is the existence of two
equivalent minima, two equivalent maxima and two equivalent saddles.

As a crystallographic application we give here the list of critical orbits and
the minimal number of stationary points for functions defined on the Brillouin
zone (three-dimensional torus) in the presence of point symmetry group action
for 14 Bravais classes. The results of the analysis are represented in the form of
Table 9.2 taken from [72]. For each of the 14 Bravais classes given in the first
column we list in columns 2-6 all critical orbits classified by their k-values.
Eight points corresponding to & = 0 (one point) and to 2k = 0 (seven points)
are critical for all Bravais classes. Under the presence of symmetry seven points
associated with the 2k = 0 form orbits consisting of one or several equivalent
points. The numbers of critical points in each individual orbit of the symmetry
group action are shown in column 3. For points with higher local symmetry
(i.e. for nk = 0 with n = 3,4,6) columns labeled by nk = 0 indicate the
number of critical points within the corresponding orbit of the group action.
The points between [| have to be maxima or minima. The column labeled
“nb” gives the minimal possible number of stationary points for each Bravais
class. This number for two Bravais classes, namely for Fmmm and Im3m,
is larger than the number of stationary points associated with critical orbits.
These additional stationary points which are obliged to exist for the Morse
functions are indicated explicitly as ncrit + Mnon—crit-

Finally, the last four columns give the possible distribution of stationary
points into subsets of stationary points with a given Morse index. Several
lines give alternative distributions for the simplest Morse type functions, i.e.
for Morse type functions with the minimal number of extrema.
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TAB. 9.2 — List of the critical orbits on the Brillouin zone for the action of point
symmetry group G of the 14 Bravais classes and the numbers and Morse indices of
extrema of G-invariant functions with the minimum number of stationary points.
Columns “nk” give the number of critical points satisfying the nk = 0 condition.
See text for further details.

Bravais class 0 2k 4k 3k 6k nb 0,3 1,2 2,1 3,0
P1 1 1,1,1,1,1,1,1 8 1 14141 14141 1
P2/m 1 1,1,1,1,1,1,1 8 1 1+1+1 14141 1
C2/m 1 1,1,1,2,2 8 1 1+2 1+2 1
Pmmm 1 1,1,1,1,1,1,1 8 1 14141 141+1 1
Cmmm 1 1,1,1,2,2 8 1 1+2 1+2 1
Fmmm 1 1,1,1,4 8+2 1 4 1+1+2 1
1+1 4 1+2 1

Immm 1 1,2,2,2 2 10 1 242 242 1
2 2+2 1+2 1

P4/mmm 1  1,1,1,2,2 8 1 1+2 1+2 1
I4/mmm 1 1,2,4 2 10 1 4 242 1
2 4 1+2 1

R3m 1 1,3,3 8 1 3 3 1
P6/mmm 1 1,3,3 2 2 12 1 2+3 2+3 1
2 243 1+3 1

2 1+3 1+3 2

3 243 142 1

Pm3m [1] 1,3,3 8 1 3 3 1
Fm3m [1] 3.4 6 14 1 3 6 4
1 4 6 3

Im3m [1] 1,6 2] 1046 1 6 1+6 2
2 6 6 1+1




Appendix A

Basic notions of group theory
with illustrative examples

We give in this appendix basic group-theoretical definitions used in the main
body of the book.

Group
A group G is a set with a composition law: o € M(G x G,G), which is
associative:
Vg, h,k € G, (goh)ok:go(hok),

which has a neutral element e:
Vge G, eog=g=goe

and every element has an inverse one:

Vged, 7', glog=e=gog
There are two usual notations for the group law and the neutral element.

For the group operation the sign + is used and for the neutral element 0 is
used. Examples: the additive group of integers Z, of real or complex numbers,
R or C, the additive group M,,, of m x n matrices with real (respectively,
complex) elements. This notation is generally restricted to Abelian groups,
i.e. the groups with a commutative law: a + b = b+ a. The inverse element of
a is denoted in this convention by —a and is called the opposite.

For the group operation the sign multiplication, X, is used (often this sign
is simply omitted). The neutral element is noted 1 or I. Examples: the multi-
plicative groups R*, C*; the n-dimensional linear groups GL,(R), GL,(C),
i.e. the multiplicative groups of the n x n matrices on R or C with non-
vanishing determinant. The inverse element of g is denoted by ¢~ !.

In all examples we have just given, the groups have an infinite or contin-
uous number of elements. An example of a finite group is S,, the group of
permutation of n objects, formed of n! elements. The number of elements of
a finite group G is named the order of the group and is denoted by |G|.
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Subgroup

When a subset H C G of elements of G forms a group (with the composi-
tion law of G restricted to H), we say that H is a subgroup of G and we shall
denote it by H < G (this is not a general convention) or by H < G when we
want to emphasize that H is a strict G-subgroup, i.e. H is a subgroup of G
and H # G. Note that from A < B and B < G it follows that A < G.

Examples!: The subset U(n) of matrices of GL,,(C) which satisfy m* =
m~1 is a subgroup of GL, (C); it is called the n-dimensional unitary group.

In particular U(1) < C*. Note also that GL,(Z) < GL,(R) < GL,(C).

Since the determinant of the product of two matrices is the product of their
determinants, in a group of matrices the matrices of determinant one form the
subgroup which is often referenced as “special*: for GL,(Z), GL,(R), GL,(C),
U(n) we denote them respectively by SLy(Z), SL,(R), SL,(C), SU(n).

Another general example of a subgroup is the one generated by one ele-
ment. Let ¢ € G and consider its successive powers: g, g2, ¢>, ... The order of
g is the smallest integer such that ¢ = I. If no such n exists, we say that g
is of infinite order. When g¢ is of finite order n the subgroup generated by ¢ is
formed of distinct powers of g; it is called a cyclic group of order n and it is
usually denoted by Z, or C,. For example >7#/" ¢ C* generates the cyclic
group

7, =C, = {e%““/",o <k<n-— 1} <U(1) < C*.

Note that the intersection of subgroups of G is a G-subgroup. Generally, the
union of subgroups is not a subgroup.

The important example of the orthogonal group O(n) can be introduced
as

O(n) = U(n) N GLn(R) < GL,(C), SO(n) = SU(n) N SLp(R) < SLy(C).

Note that the matrix elements of O(n) are real and those of U(n) are complex.

It is useful to have a complete list of the finite subgroups of O(2). The
matrices of O(2) of determinant +1 are rotations r(f) and reflections s(¢)
through the axis of azimuth ¢:

B (cosﬁ —sind

sind  cosd ) ,  6(mod 2m); (A1)

[ cos(2¢)  sin(2¢)
S(¢) - ( sm(2¢) _ COS(Q(]S) > ’ ¢(m0d 7'('). (Az)

They satisfy the following relations:
r(@)r(0) =r(0+0"); s(¢)s(¢) =r(2(s—¢)); (A.3)
r(0)s(¢) = s(0/2 + ¢) = s(¢)r(—0). (A.4)

L We denote by m " the transpose of the matrix m, i.e. (mT)ij = mj; and by m* the
Hermitian conjugate of m, i.e. (m*);; = m;;, the complex conjugate of m;.
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TAB. A.1 — Multiplication table of the group S3. The elements are given as per-
mutation matrices and also by their cycle decomposition. One sees from this table
that the alternate group As = {I,(123),(132)} formed by odd permutations is a

subgroup.
(1 0 0)(0 0 1)(0 1 0)(0 1 0 0 0 1)(1 0 0)
01 0 1 0 0 0 0 1 10 0 01 0 0 0 1
0 0 1 0 1 0 1 0 0 0 0 1 1 0 0 01 0

Ss I (123) (132) (12) (13) (23)

T T (123) (132) (12) (13) (23)
(123)]  (123) (132) I (13) (23) (12)
(132) 132 I (123) (23) (12) (13)

12 (12 23) (13) T (132) (123)
(13) (13) (12) (23) (123) I (132)
(23) (23) (13) (12) (132) (123) I
In particular:
r@O)r(—0) =1, (s(¢)° =1; (A.5)
s(@)r(0)s(¢) = r(=0);  r(0)s(d)r(0)~" = s(¢+90). (A.6)
We denote by C,, the n-element group formed by rotations r(27k/n), 0 <

k < n—1. When n > 2 the n reflections s(¢ + wk/n), 0 < k < n — 1 form
with C,, a non commutative group of 2n elements that we denote by C,,,(¢)?,
¢(mod 27/n).

Cp ={r2rk/n), 0<k<n-—1} (A7)
Cho(p) =C, U{s(¢+7k/n), 0<k<n-—1}. (A.8)

The C,, n € N, form the complete (countable) list of finite subgroups of
SO(2). The C,,,,(¢) are a continuous infinity of finite subgroups of O(2). They
are the symmetry groups of the regular n-vertex polygons.

Every finite group can be considered as a subgroup of permutation group
S, when n is large enough. The permutation group itself S,, is a subgroup of
O(n) < U(n) when its permutation 1,2,3,...,n +— iq,4s,...,1, is represented
by the matrix p;; with elements pi;, = p2s, = ... = ppi,, = 1 and all the other
elements are zero.

An example of S3 group is detailed in Table A.1 where the multiplication
table of six elements of S3 is given using the representation of elements by
permutation matrices and by their cycle decomposition.

The group Cj,(¢) has the same multiplication table as S3 when the follow-
ing correspondence (bijection) between the elements of the two groups is made:

I —1I, r(2n/3)« (123), r(4n/3)« (132),

s(¢) < (12), s(o+2mw/3) < (23), s(p+4mw/3) < (31).

The subgroup Cj, of the O(2) is the symmetry group of an equilateral triangle.
The representation of the group S3 by permutation matrices corresponds to

2 Alternative widely used notation is Dy,.
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orthogonal transformation of the three dimensional space leaving invariant the
line carrying the vector of coordinates (1, 1,1), so it leaves invariant the plane
orthogonal to it. In that plane, S3 permutes the vertices (1, —1,0), (0,1, —1),
(—1,0,1) of an equilateral triangle. This construction can be extended to the
symmetry group of the n — 1 dimensional simplex (regular tetrahedron in
3-dimensions). This symmetry group of orthogonal transformations is also
the permutation group of its n vertices.

GL,(Z) is another important example of groups. For the multiplication in
Z an integer n # 1 has no inverse; an n X n matrix with integer elements has
an inverse with integer elements if and only if its determinant is 4+1. Since
the product of two integer matrices (i.e. matrices with integer elements) is
an integer matrix, the integer matrices with determinant +1 form a group
GL(Z); (GLA(Z) = Z2 = {1}).

Lattice - notion from the theory of partially ordered sets.

The set of subgroups of a group is an example of a lattice. A lattice is a
partially ordered set such that for any two given elements, x,y there exists
a unique minimal element among all elements z such that z > z and z > v,
and similarly for any two given elements x,y, there exists a unique maximal
element among all elements z’ such that 2z’ < z and 2z’ < y. For any two
subgroups z,y belonging to the lattice of subgroups the unique minimal sub-
group z among all z such that z > x and z > y is the subgroup generated by
the union of = and y. The intersection of two given subgroups = and y is the
maximal subgroup among all subgroups z’ such that z’ < x and 2’ < y.
In particular, a lattice of subgroups of a group G has unique minimal and
maximal elements. The group G is the maximal element and the trivial sub-
group {/} is the minimal one.

Cosets

Let H < G. The relation among the elements of G : € yH is an equiv-
alence relation; it is reflexive: © € xH; symmetric: © € yH < y € zH,
transitive: x € yH, y € zH = x € zH. The equivalence classes are called
cosets. We denote by G : H the quotient set, i.e. the set of cosets.

Note that each coset has the same order (number of elements) as H.
For gH, the left multiplication by ¢ of the elements of H defines one-to-one
(bijective) correspondence between the two cosets H and gH. This gives the
relation

G| = |G : H||H|. (A.9)

The order of the quotient |G : H| is also called the index of the subgroup H
in G. This proves the Lagrange theorem (the oldest theorem in group theory
proven even before Galois had introduced the notion “group”):

Theorem. For the finite group G, the order of a subgroup divides the
order of group, |G/.
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Invariant subgroup

When defining cosets, we could have pointed out that we were using left
cosets; similarly we can introduce right cosets Hz. In general «H # Hzx.
When left and right cosets are identical, H is named an invariant subgroup®.
We will also write this property H < G.

HaG¥ H<G vYgeG, g¢H=Hqy. (A.10)

Evidently, every subgroup of an Abelian group is invariant.

Every non-trivial group has two invariant subgroups: {1} and G itself.
If there are no other invariant subgroups, the group G is named simple. The
set of invariant subgroups forms a lattice (sublattice of the subgroup lattice).
Beware that K <« H, H <1 G does not imply K < G.

Quotient group

When K <G is an invariant subgroup there is a natural group structure on
G : K;indeed gKohK = (gK)(hK) = gKhK = (gh)K, i.e. the multiplication
of cosets is well defined. We call this group the quotient group* of G by K
and we denote it by G/K. Since the determinant of a matrix is invariant by
conjugacy by an invertible matrix, the “special” subgroups are invariant. The
corresponding quotient groups are

GLn(C)/SLn(C) =C*;  GL,(R)/SL,(R) =R™;
U(n)/SU(n)=U(1); O(n)/SO(n)= Zs.

Note that an index 2 subgroup is always an invariant subgroup because left
and right cosets coincide automatically.

Double cosets

A generalization of the cosets is the notion of the double cosets which
defines the following equivalence relation between elements of G.

When H < G,K < G, x € HyK is an equivalence relation between
z,y € G. Indeed let x = h(x)yk(z) with h(z) € H, k(z) € K, then y =
h(x)tzk(x)~1; if moreover y = h(y)zk(y), then x = h(z)h(y)zk(y)k(z) €
HzK. We will denote by H : G : K the set of H-K-double cosets of G. Note
that H: G: K # K :G: H.

When either H or K is an invariant subgroup of G, then the HK is a
subgroup of G and the double cosets are either left or right coset of HK.
Indeed assume H <1 G, then HaK = aHK.

Conjugacy classes
Two elements z,y € G are conjugate if there exists a ¢ € G such that
y = gxg~'. Conjugacy is an equivalence relation among the elements of a

3 An often used synonym is normal subgroup.
4 Sometimes this is called the “factor” group.
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group. A group is therefore a disjoint union of its conjugacy classes. Note
that gh is conjugate to hg. The elements of a conjugacy class have the same
order. In physical language the conjugate elements correspond to symmetry
operations equivalent with respect to the symmetry group.

Examples.

1)

U(n) or SU(n). Any unitary matrix can be diagonalized by conjugacy
with unitary matrices which can be chosen of determinant 1. So in U(n),
the unitary matrices with the same spectrum, i.e. with the same set of
eigenvalues, or same characteristic polynomial, form a conjugacy class
of U(n); indeed, by conjugacy in U(n) a unitary matrix can be brought
to diagonal form and by conjugacy with a permutation matrix (which
are also unitary) the eigenvalues can be put in a chosen order, e.g. in
increasing values.

GL,(C) or SL,(C). The situation is different: by conjugacy in SL,(C)
one can put the eigenvalues of a matrix of the group in a given order
along the diagonal; however if there are degenerate eigenvalues, the
matrix might not be diagonalizable, but one can put it in Jordan form
(some 1’s on the first diagonal above the main diagonal). For example,
for SLy(C), the conjugacy classes can be labeled by the trace ¢ of the
matrix ¢ = z + 2z~ ! (where z and 2! are the eigenvalues) when ¢ # 4-2
because for ¢ = +2 the eigenvalues are degenerate. Among the matri-
ces with trace t = 2, the matrices =1 form each a conjugacy class;
the other matrices of trace 2 form one conjugacy class since they are

equivalent to ( 0 1

). The other matrices of trace —2 form another

-1 1

0 -1
that the characteristic polynomials of the matrices of GL,,(C) or SL,(C)
are not sufficient to label the conjugacy classes.

conjugacy class which contains . This example also shows

O(2). The equations (A.6) shows that all reflections s(¢) form a unique
conjugacy class of O(2) while each pair of rotations and its inverse, r(6)
and r(—#), form one conjugacy class.

SO(n). The matrices of SO(n) have in general non real eigenvalues
(which form pairs of complex conjugate phases); so they cannot be
diagonalized by conjugacy with real matrices. However they can be put
in the form of diagonal 2 x 2 blocks when n is even, and each block is
a matrix r(0) defined in equation (A.1); when n is odd there is also a
single 1 (which can be placed at the end of the diagonal). So conjugate
matrices of SO(n) have same set of the +6’s (the rotation angles). For
instance, conjugate classes of the 3-dimensional rotation group SO(3)
contain all rotations with the same single rotation angle ( in absolute
value modulo 7).
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//@

C 3
3C, C, 3G 2

C3v
3C2V

I 1

F1G. A.1 — Partially ordered set of conjugacy classes of subgroups of the Cs, group.

5) Sp. To describe the conjugacy classes of S, one needs the notion of
partition. A set of integers whose sum is n form a partition of n; the
partition is defined by these integers independently of their order. The
conjugacy classes of S, are labeled by the partitions of n, corresponding
to the decomposition of a permutation into k cycles {¢;,1 < ¢ < k} of
length I(¢;) with >, l(¢c;) = n.

Partially ordered set of conjugacy classes of subgroups

Two G-subgroups H, H' are said to be conjugate if there exists g € G
such that H' = gHg!'. This is an equivalence relation among subgroups of
a group. We denote by [H]s the conjugacy class of H. When a subgroup is
alone in its conjugacy class, this is an invariant subgroup.

We have seen that the subgroups of a group form a lattice. Beware that
this is not generally true for the set of subgroup conjugacy classes. We can say
that partial order [H|s < [K]g between conjugacy classes of subgroups exists
when 3z € G, tHx~! < K but there is no element of G which conjugates
K into a strict subgroup of H. Equivalently, if a G-subgroup H cannot be
conjugate to one of it strict subgroup, then the conjugacy relation among
G-subgroups is compatible with the partial order of the subgroup lattice. It is
clear that there exists a natural partial order on the set of conjugacy classes
of finite (respectively, finite index) subgroups of a group G. Figure A.1 gives
an example.

Center

An element which commutes with every element of a group G forms a
conjugacy class by itself (this is always the case of the identity). These ele-
ments form a subgroup called the center of G and often denoted by C(G).
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The center is an invariant subgroup of G. If the group A is Abelian, C'(A) = A.
Examples:

C(GLn(C)) =C*I, C(GLy(R)) =R"I,
C(Wmn)=UMI, COM)=2I.
Similarly :

C(SL,(R)) formn>2
SO(2) forn =2

ZsI for n even

C(SLn(R)) = { {I} for n odd

C (SO(n)) = {

Centralizers, Normalizers.

The centralizer of X C G is the set of elements of G which commute with
every element of X; this set is a G-subgroup. We denote it by Cq(X). If X
coincides with G, the centralizer becomes the center of G: C(G) = Cg(G).

The normalizer of X C G is a G-subgroup

Ne(X)={g€G, gXg~'=X}. (A.11)

Note that Cq(X) < Ng(X), i.e. the centralizer of X is an invariant subgroup
of the normalizer of X.

From the definition of the normalizer, when H < G, the normalizer N¢(H)
is the largest G-subgroup such that H < Ng(H). For instance if Ng(H) = G,
then H <1 G is the invariant subgroup of G.

Homomorphism
A group homomorphism or, shorter, a group morphism between the groups
G, H is a map G % H compatible with both groups laws

G5 H, plry)=px)py), p(1)=1€H. (A.12)

This implies
pla) = p(a) . (A.13)

A morphism of a group G into the groups GL,(C), GL,(R), U(n), O(n)
respectively is called a n-dimensional (complex, real) linear, unitary, orthog-
onal representation of G,

The image of the morphism G % H is denoted by Im p. It is a subgroup
of H, Im p < H, which includes images of all elements of G.

The kernel Ker p of the morphism G % H is the set K € G which is
mapped on I € H. Ker p is an invariant subgroup of G. There is an important
relation between image and kernel: Im p = G /Ker p.
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Gn+1

F1G. A.2 — Schematic representation of an exact sequence of homomorphisms of
groups.

Sequence of homomorphisms
Let us consider the following sequence of homomorphisms of Abelian
groups:
GG B G ™5 Gy B Gy - (A.14)

Such a construction, named complex, is quite useful to relate topological and
group-theoretical properties. If for all n we have Im p,_; = Ker p,, the
sequence in (A.14) is an exact sequence of homomorphisms.

Examples: If H <G and G 2 G/H we can write
1-H5G%G/H—1, (A.15)

where H - G is the injection map, i.e. Vo € H, i(x) = 2 € G. An exact
sequence of this type is named short exact. The part of the diagram 1 —
H % G means that 1 — H is the injection of the unit into H and Ker 7 = 1,
i.e. i is injective. The fact that p is surjective is expressed by G - G/H — 1,
For any homomorphism p there is always a short exact sequence

1%KerpLG$ImpH1, (A.16)

Isomorphism

A bijective morphism p is called an isomorphism. In other words if Ker p =
Ig, and Im p = H than p is an isomorphism and G ~ H. When we want to
classify groups, this will be done up to isomorphism, except if we precise
explicitly a more refined classification. Often when we write about “abstract
groups” we mean an isomorphism class of groups.
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Examples:

For every prime number p there is (up to isomorphism) only one group of
order p: this is Z,,.

There are exactly two non-isomorphic groups of order 4.

Automorphism

An isomorphism from G to G is called an automorphism of G. The com-
position of two automorphisms is an automorphism. Moreover there exists
the identity automorphism I such that Vg € G, I(g) = g, and every
automorphism has an inverse. Thus the automorphisms of G form a group,
Aut G. The conjugation by a fixed element g € G induces a G-automorphism:
(grg~ Y (9y~tg™1) = g(zy=1)g~! which is an “inner” automorphism. The
set of inner automorphisms forms a subgroup of Aut G that we denote by
In Aut G. Note that the elements ¢ € C(G) of the center of G induce the
trivial automorphism I, so we have the exact sequence:

1—>C’(G)—>Gi>InAutG—>17

An automorphism which is not inner, is called outer automorphism. We note
that In Aut G in an invariant subgroup of Aut G.

Making groups from groups

Given two groups G1, G2, one can form a new group, G X Go, the direct
product of G and Ga: the set of elements of G; x G4 is the product of the
set of elements of G and of Gy, i.e. the set of ordered pairs: {(g1,92),91 €
G1, g2 € Ga}, the group law is

(91,92)(h1, ha) = (g1h1, g2h2).

When Gy # G2, G1 X Gy # G4 X G1, but they are isomorphic, i.e. G; X Gy ~
G2 X Gl.
Given a morphism @ P K one defines the semi-direct product as the

group whose elements are the pairs (k,q),k € K,q € Q, and the group law is
[using ¢ - k as a short for (6(q))(k)]:

(k1, 1) (k2. q2) = (k11 - k2, q142). (A.17)
Here we denote this semi-direct product by K >1Q).
Examples:
The semi-direct product of R™ and GL,,(R) is called the affine group
Affn(R) =R" < GL,(R). (A.18)

Similarly one can define the complex affine group: Aff,,(C) = C* > GL,,(C).
The Euclidean group FE, is the semi-direct product of R™ and orthogonal

group
En, =R">10(n) < Affu(R).
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Group extensions

Given two groups K, (@, a very natural problem is to find all groups F
such that K < F and Q@ = E/K. E is called an extension of @ by K.
The extension can be represented by a diagram

1-K—F—E/K —1,

which is not an exact sequence. The main problem is to classify different
extensions up to equivalence.

The semi-direct product (and its particular case, the direct product) are
particular examples of an extensions. But in the general case of an extension
FE of Q by K there is no subgroup of E isomorphic to the quotient Q.

Such an example is given by SU(2) as an extension of SO(3) by Zs:

1— Zy — SU(2) —» SO(3) — 1.

SU(2) is the group of two-by-two unitary matrices of determinant 1. Its cen-
ter Z5 has two elements, the matrices 1 and —1. These matrices are the
only square roots of the unit. The three-dimensional rotation group SO(3)
is isomorphic to SU(2)/Z,. This group has an infinity of square roots of 1:
the rotations by 7 around the arbitrary axis. So SO(3) is not a subgroup of

SU(2).






Appendix B

Graphs, posets, and topological
invariants

The purpose of this appendix is to give a minimal required system of defi-
nitions and mathematical constructions needed to understand and to follow
the discussion of the visualization of lattices by graphs and calculation of
corresponding topological invariants introduced in Chapter 6, section 6.7.

We start by several intuitively evident but important definitions.

A graph G = (V, E) consists of a finite set V' of vertices (nodes) and a
finite set E of edges. Every edge e € E consists of a pair of vertices, u and
v, called its endnodes. We will denote the edge e by uv. Two vertices are
said to be adjacent if they are joined by an edge. We will mainly consider
here simple graphs, i.e. graphs in which every edge has distinct endnodes (no
loops) and no two edges have the same two endnodes (no parallel or multiple
edges). When every two nodes in G are adjacent, the graph G is said to be a
complete graph. The complete graph on n nodes is usually denoted by K,,.

Let G = (V, E) be a graph. A graph H = (W, F) is said to be a subgraph
of Gt W CV and F C E. Given an edge e € E in G, G\e := (V, E\e) is
called the graph obtained from G by deleting e.

Contracting an edge e := wv in G means identifying the endpoints u and
v of e and deleting the parallel edges that may be created while identifying u
and v. G/e denotes the graph obtained from G by contracting the edge e. For
an edge set F' C F, G/F denotes the graph obtained from G by contracting
all edges of F' (in any order).

Two graphs G = (V, E) and G’ = (V', E’) are said to be isomorphic, G ~
G, if there exists a bijection f: V — V' such that wv € E < f(u)f(v) € E'.

A graph is said to be connected if, for every two nodes u,v € G, there
exists a path in G joining u and v. The rank of the graph is the number of
nodes minus the number of connected components.
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3
Rank 2@4 Wr
1 5
4 12345 1

3 (12 (14 @23 @4 () 5

0 (12345) |

Fia. B.1 — Ranked partially ordered set of contractions for a graph representing the
14.28-0 4-d lattice. Only fused vertices are shown for contracted subgraphs. Lines
symbolize the partial order imposed by contractions.

For a given simple connected graph we can construct all graphs which can
be obtained from the initial graph by one or several contractions of edges.
The set of so obtained graphs form a partially ordered set (see definition of
partially ordered set or poset in appendix A). An example of such a partially
ordered set (Poset) is shown in Figure B.1. In Figure B.1 only the initial graph
is shown. Graphs obtained by contractions of the initial graph are represented
just by labels of nodes which were fused during the contraction. The rank is
well defined for all contracted graphs. Contracting one edge decreases rank by
one. Thus we obtain the so called ranked partially ordered set of contractions,
P. There are some number of topological invariants which can be introduced
for the ranked partially ordered set P.

The simplest invariant is the number of elements of rank k of the poset P.
This invariant is named a simply indexed Whitney number of second kind, W.
More complicated invariants are the doubly indexed Whitney numbers, W;;
of the second kind. In order to introduce them we need to study subsets of P
with rank 7 = ¢ and with rank r = j. Whitney number W;; of the second kind
gives the number of pairs {(x?,27) : * < 27} of elements of P which satisfy the
order relation. If 7 and j are neighboring integers, the corresponding Whitney
number is just equal to the number of contraction lines between neighboring
rows of a poset. It is clear that simply indexed Whitney numbers are a special
case of doubly indexed ones, namely Wy ; = Wj.
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From Figure B.1 we immediately find the doubly indexed Whitney num-
bers which can be represented in the form of a triangular table

Graph Woo WL' Wi Wi Wi4
1 7 10 5 1
O 7 24 22 7
10 20 10
14.28-0 5 5
1

which shows some equivalence between W;; values which remains valid for a
wide class of graphs.

The formal definition of the doubly indexed Whitney numbers of the sec-
ond kind can be written as follows

Wi-(P):|{(xi,xj):mi§mj}}, (B.1)

where |S| means the cardinality of the set S, i.e. the number of elements in
the set.

The construction of the Whitney numbers of the first kind is based on
the preliminary introduction of the Mobius function for a ranked partially
ordered set. To be maximally concrete we restrict ourselves always to posets
of contractions for a simple connected graph, which is one of the subgraphs of
a complete graph K,,. We start by calculating values of the Mébius p-function
for all elements of the poset P. To find these values we use p(g,g) = 1 for the
initial graph g. Next, for b # g we calculate p(b,0) as a sum

pu(b,0) = — Z (e, 9), (B.2)

g>c>b

over all ¢ which are partially ordered with respect to b and are strictly greater
than b. The result of this calculation is illustrated in Figure B.2, upper right
subfigure; it gives a system of simply indexed Whitney numbers of the first
kind, w; = wp;. Generalization to doubly indexed Whitney numbers of the
first kind is similar to what we have done for Whitney numbers of the second
kind.

To calculate doubly indexed Whitney numbers of the first kind wg; we
need to analyze only the sub-poset of the initial poset taking into account the
elements with the rank not exceeding r — k where r is the rank of the initial
graph, and calculate p-values for this sub-poset. The lower left sub-figure of
B.2 visualizes the “neglected” part of the initial poset by using dashed lines.
For this sub-poset we calculate 1(b) values with respect to the rank 2 level.
This explains why for all b = (ij) elements now p(b) =1 and wy; = 4. Going
to the lower rank r = 1 we see that the value of ©(123), for example, should
be calculated with respect to the level with the rank equal 2 and we have
only three contributions from (12), (13),(23) elements which all equal —1.
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Rank 1 4

N
2 (12 (13 (23) (3% 4
1 (123) (134  (234) (12)(34) 5
0 (1234) -2

Wii Q Woi
4

-9 4
5 4

F1c. B.2 — A ranked partially ordered set of contractions for a graph represent-
ing the 8.12 3-d lattice. The upper left subfigure shows initial graph and for each
contraction step indicates fused vertices for contracted graphs. Lines symbolize the
partial order imposed by contractions. The upper right subfigure reproduces the
same poset and for each element a shows the value of the M6bius function p(a,0).
On the right of the poset the values wo; = w; of the Whitney numbers of the first
kind are given which are the sum of p-values for all elements of the same rank. In a
similar way the lower left and right subfigures illustrate calculation of the Whitney
numbers of the first kind for wi; and for wa;.

Completing calculations for all elements of rank 1 we get wis = —9 and in a
similar way we get wis = 5.

Finally, to calculate Whitney number ws; we need to study only the sub-
poset of the initial poset taking into account the elements with the rank not
exceeding 1 and calculate p-values for this sub-poset. Lower right sub-figure
of B.2 visualizes the “neglected” part and indicates corresponding p(b) values
and wo;.
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TAB. B.1 — Doubly indexed Whitney numbers of the first and second kind for
several graphs corresponding to some of four-dimensional zonotopes.

+
Graph woo  wit Wiz wiz wia o ywy Wor Woa Wog

1 4 6 -4 1 16=N, 4 6 4
W 4 12 12 -4 32=N, 4 12 12
6 12 6 24=N, 6 12

8.16-0 4 4  8=Njy 4

1 -5 10 —-10 4 30 = Ny 10 10 5

O ) -20 30 =15 T0=MN 10 30 30
10 =30 20 60 = Ny 10 20
20.30-0 10 =10 20= N3 )

1 —6 13 —-12 4 36 = Ny 6 11 6

oy 6 -24 30 -12 T72=N; 6 24 24
11 —-24 13 48= N, 11 24
12.36-12 6 —6 12= N3 6

1 —6 15 —17 7 46 = Ny 11 15 6

< 6 —30 48 —24 108=N; 11 42 36

15 —42 27  84=N, 15 30

22.46-0 11 —11 22=N; 6
1

1 -7 19 -23 10 60=N, 12 17 7

9/ 7 —36 60 —31 134=N, 12 49 44

17 —49 32 98 =N, 17 36

24.60-12 12 —12 24=N; 7

1 —-10 35 =50 24 120=DNy, 15 25 10

@ 10 —-60 110 —-60 240=N; 15 75 7
25 =75 50 150 =N, 25 60
30.120-60 15 =15 30= N3 10
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Table B.1 gives Whitney numbers of the first and of the second kind for
several four-dimensional zonotopes. Face numbers for corresponding zono-
topes are given along with Whitney numbers of the first kind because of the
simple relation between face numbers and Whitney numbers of the first kind.
Namely, for subgraphs of K, representing zonotopes we have [56]

> wi =N, (B.3)
j=k

where w,irj = |wg;| and Ny, are the number of k-faces of the zonotope associated
with the graph.

Only W1, W;sW;3 are shown in table B.1 for the Whitney numbers of the
second kind. The rest of the table can be easily reconstructed taking into
account the symmetry of the table, namely W;; = W;4 and Wyy = Wyg = 1.

We note also that the singly indexed Whitney numbers of the first kind
are the coefficients of the chromatic polynomial. The chromatic polynomial

Pa(t) = wopt™ " (B.4)
k=0

shows how many different coloring of graph nodes are possible with ¢ colors
with the restriction on adjacent nodes to be of different color.
For more details on relevant material see [1, 20, 9].
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Notations for point and
crystallographic groups

The notation used for symmetry groups varies depending on the science
domain and on the class of groups used in applications.

Point symmetry groups of three-dimensional space are the most widely
used in different concrete applications. In fact, they are not the abstract groups
but their representations in three-dimensional Euclidean space.

There are seven infinite families of groups and seven exceptional groups.
The different notations for these groups are given in Table C.1.

We characterize shortly these groups here using Schoenflies notation.

The seven infinite series of point groups are:

C), - group of order n generated by rotation over 27 /n around a given
axis; n=1,2,3,... Cq is a trivial, “no symmetry” group. In the limit n — oo
we get the Coo = SO(2) group.

San - group of order 2n generated by rotation-reflection over 7/n around a
given axis; n = 1,2, ... For n-odd, the group S4x2 is often noted as Copy1 ;.
i.e. as an extension of the Cy,41 group by inversion. In particular Sy, = C;.
In the limit n — oo we get the Csp group.

Chn - Group of order 2n obtained by extension of C, by including reflection
in plane orthogonal to the symmetry axis. n = 1,2, ... For n = 1, the notation
Cy = Chp, is used. In the limit n — oo we get the Cwp, group.

Chy - Group of order 2n obtained by extension of C),, by adding reflection
in plane including the symmetry axis. n = 2,3, ... In the limit n — co we get
the Csop = O(2) group.

D,, - Group of order 2n obtained by extension of C}, by including symmetry
axes of order two orthogonal to the C), axis. n = 2,3,... In the limit n — oo
we get the D, group.

D,q - Group of order 4n obtained by extension of D, by including
reflection in the symmetry plane containing the C), axis, but not contain-
ing orthogonal Cy axes. n = 2,3... In the limit n — oo we get the Dy,

group.
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TaB. C.1 — Different notations for point groups.

Schoenflies C, Son  Cun Cho D, D,a D,
ITC (evenn) n  (2n) n/m nmm 022 (2n)2m n/mmm
ITC (odd n) n 7 (2n)  nm n2 nm (2n)2m
Conway nn  nx nx *NN n22 2xn, *n22
Schoenflies T Ty Th O Oy, I Iy
ITC 23 43m  m3 432  m3m 235 m35
Conway 332 %332 3%2 432 432 532 *H32

D, - Group of order 4n obtained by extension of D, by including
reflection in the symmetry plane orthogonal to the C,, axis and containing
all orthogonal C5 axes. n = 2,3... In the limit n — oo we get the D.op
group.

The seven exceptional groups:

T - A group of order 12 contains all rotational symmetry operations of a
regular tetrahedron.

Ty - Group of order 24. The symmetry group of a regular tetrahedron.

T}, - Group of order 24 obtained by extension of group 7" by adding an
inversion symmetry operation.

O - A group of order 24 contains all rotational symmetry operations of a
regular octahedron (or cube).

Oy, - Group of order 48. The symmetry group of a regular octahedron (or
cube).

I - A group of order 60 contains all rotational symmetry operations of a
regular icosahedron (or dodecahedron).

I;, - Group of order 120. The symmetry group of a regular icosahedron (or
dodecahedron).

C.1 Two-dimensional point groups

There are two families of finite two-dimensional point groups.

A C,,, group of order n, is generated by rotation over 27/n. n=1,2,3,...

Another family of groups is the extension of C,, by reflection in line passing
through the rotation axis. There is no universal notation for groups in this
family. D,, or Cp,, notation is used because of obvious correspondence with
notation for three-dimensional point groups.

Two continuous two-dimensional point groups SO(2) and O(2) can be
described equally as Co, and Do, (Cooy) groups respectively.
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C.2 Crystallographic plane and space groups

For the notation for two- and three-dimensional crystallographic groups
we simply refer to the International Tables of Crystallography [14] or to any
basic book on crystallography.

C.3 Notation for four-dimensional
parallelohedra

We give here correspondence between different notations used for four-
dimensional lattices. Delone was the first to give in 1929 a list of 51
combinatorial types of four-dimensional lattices. In [41] he gave figures of
three-dimensional projections for all 51 found types, numerated consecutively
by numbers from 1 to 51. For each of these 51 types he gave also numbers of
facets of each type and in cases when several polytopes have the same numbers,
he added information which allows us to make a distinction between different
polytopes. In 1973 Shtogrin [87] found one combinatorial type missed by
Delone. We give in Tables C.2 and C.3 characterization of all 52 types. Column
“Delone” gives numbering used by Delone in [41] together with his description
of the set of facets in the form used by Delone, namely: (n1)g, + (n2)k, + - .-
where (n;)g, gives the number n; of facets with k; 2-faces. The combinatorial
type discovered by Shtogrin is denoted as St.

In the tables we refer also to two types of notations used by
Engel [11, 49, 53]. A short notation indicates the number of facets and uses
consecutive numbers 1,2, ... to label polytopes within the subset of polytopes
with the same number of facets. The more detailed notation uses symbol
N¢.Ny-ng where N¢ is the number of facets, N, is the number of vertices,
and ng is the number of hexagonal 2-faces. When such labeling is insufficient, a
full description uses 2-subordinate and 3-subordinate symbols K, ... giving
numbers K, of 2-faces with n, edges in case of the 2-subordinate symbol and
numbers K, of 3-faces with n, 2-faces in the case of 3-subordinate symbol.

For zonohedral polytopes we give also the notation used by Conway [32]
and slightly different but essentially the same notation used by Deza and
Grishukhin [44] (see column DG). For non-zonohedral polytopes we do not
use Conway notation which is based on a rather different principle and give
notation used by Deza and Grishukhin for a zonotope contribution Z(U)
which allows us to write a non-zonohedral polytope as a Minkowski sum of
Pyy = 24.24-0 and a zonotope Z(U).
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TaB. C.2 — Combinatorial types of four-dimensional zonohedral lattices.
Correspondence between notations.

m Engel Engel (full) Delone Conway DG
10 30-2 30.120-60 1 K K
490660; 8201410 1014 + 20g
9 30-1 30.102-36 19 K33 K§<73
410806365 6121218 1812 + 126
98-4 98.96-40 4 Ks—1 Ks—1
490640; 66812126144 414 + 612 + 125 4 64
8 24-16 24.72-26 6 Ks —2 K5 —2
4766265 68810124142 214 + 412 + 108 + 8¢
26-8 26.78-24 5 Ksy—1—1 Ks—2x1
492624; 63881219 1012 + 8 + 8¢
7 16-1 16.48-16 8 Ki+1 K,+1
448616; 6685142 214 + 8 + 66
20-3 20.54-16 10 Ks—3 K5 —3
464616; 6388124 415 + 83 + 8
22-2 22.54-12 11 991 991
4726125 616126 612 + 166
24-12 24.60-12 7 Ky—2—-1 Ky—1-2
4g6612; 61088126 612 + 8s + 106
6 12-1 12.36-12 16 Cs5 + C5 Cs+ C5
436612; 812 124
14-2 14.36-8 13 Ky Ky
44465; 6884129 219 + 48 + 86
20-2 20.42-6 12 o Cion
46666; 61286122 219 + 65 + 126
991 992.46-0 9 Cizo Cizo
4g4; 616126 612 + 16
5 10-1 10.24-4 17 C3+1+1 C3+2x1
43064; 6684 43 + 6
14-1 14.28-0 15 Cyi+1 Cyi+1
4485 612129 219 + 12
20-1 20.30-0 14 Cs Cs
460; G20 206
4 81 8.16.0 18 1+1+14+1 4x1

doy; 63 86
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TaB. C.3 — Combinatorial types of four-dimensional lattices obtained as a sum
Poy+ Z(U) of 24-cell Py = 24.24-0 and a zonotope Z(U). Correspondence between
notations for polytopes and for zonotope contribution to the sum.

m Engel Engel (full) Delone Z(U), [DG]
10 30-3 30.120-42 2 Ks—1
4725366425 6682101212614 414 + 612 + 1210 + 25 + 66
30-4 30.120-36 3 K
36454954636; 66861218 1812 + 65 + 8¢
9 28-6 28.104-24 21 Ks—2x1
36452554624; 64861981210 1012 + 810 + 68 + 46
28-5 28.104-30 20 K5 —2
4705366305 64841014124140 294 + 412 + 1440 + 48 + 45
8 26-9 26.88-12 24 Ks—1—-2
3124385600125 62810108126 612 + 12109 + 63 + 46
26-10 26.88-18 22 Ks—3
36456542618; 62831012124 419 + 1210 + 83 + 26
26-11 26.88-24 25 K,+1
474524624; 62881014145 214 + 1410 + 83 + 26
28-3 28.94-12 24 Ky—1-2
36460954612; 64861012126 612 + 1219 + 65 + 46
28-2 28.94-18 23 Ca991
4785366185 64851012124 612 + 1219 + 63 + 46
7 2417 24.72-0 31 Ciz
324412572; 818126 612 + 18s
24-18 24.72-12b 30 Cao1 +1
312448536612; 81410812 219 + 810 + 14g
24-19 24.72-12a 32 C3+ C5
3124485366125 8121012 1249 + 128
24-20 24.72-24 33 Ky
434624; 816106142 214 + 610 + 166
26-6 26.78-6 28 Cao1 +1
31245254866; 628101012122 212 + 1219 + 10s + 26
26-7 26.78-12 27 C391
36470530612; 628101012122 292 + 1219 + 108 + 26
28-1 28.88-0 29 Coao

364729545 64861012124 612 + 1219 + 65 + 44
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m  Engel Engel (full) Delone Z(U), [DG]
6 24-15 24.62-0 37 Cy+1
324432548; 818104125 219 + 410 + 183
24-13 24.62-6 38 C3+2x1
31845053066; 816108 810 + 163
24-14 24.62-12 39 Co91
312468512612; 81810412 212 + 410 + 183
26-3 26.68-0 35 Cs
318454942; 628121012 1210 + 125 + 26
26-4 26.68-6 34 C34+2x1
31247252466; 628121012 1210 + 1253 + 26
26-5 26.72-0 36 Cy+1
3124705365 628101012129 219 + 1219 + 105 + 26
5 24-8 24.52-0 41 4x1
330440530; 820104 419 + 20g
24-9 24.52-6 42 C3+1
324458951266; 820104 419 + 20g
24-10 24.56-0c 43 4 x1
324456524; 816105 810 + 163
24-11 24.56-0d 44 Cy
324456524; 818104127 212 + 410 + 183
26-2 26.62-0 40 4x1
318478518; 628121012 1210 + 125 + 26
4  24-6 24.42-0 47 3 x1
3424365185 824 24
24-5 24.42-6 St Cs
336454663 824
24-7 24.46-0 48 3x1
3364525125 820104 419 + 20g
26-1 26.56-0 45 3 x1
324490; 628121012 1210 + 125 + 26
3 24-3 24.36-0 49 2x1
35443656; 324 245
24-4 24.40-0 48 2x1
3484525 820104 419 + 203
2 24-2 24.30-0 50 1
3724245 824 24g
1 24-1 24.24-0 51 24-cell

396; 824 244 itself




Appendix D

Orbit spaces for plane
crystallographic groups

A standard ITC [14] representation of 2D-plane crystallographic groups is
given below along with corresponding description of orbit spaces (orbifolds)
and with notation suggested by Conway which describes the topology and the
singularity structure of orbifolds.

Orbifolds for five Bravais symmetry groups for two-dimensional lattices
are discussed in section 4.5. Here we complete the discussion of orbifolds by
treating all the rest of the 2D-symmetry groups.

Comments to figures are given here in parallel with explication of Conway
notation [31, 33, 34].

The simplest group pl (see Figure D.1) contains only translations and
possesses only one type of orbit. By taking the elementary cell of the lattice
formed by two independent translations we get a representation of a space
of orbits as a parallelogram with respective points on the boundary being
identified. After such identification we get that topologically the space of
orbits for the pl group is a torus. The presence of two nontrivial closed paths
on the space of orbits (two generating circles for a torus) is manifested in the
Conway notation as (). An interpretation of this notation () is related to the
fact that the torus can be obtained from a sphere by joining one handle.

Group p2 is discussed in 4.5.

The next example is the pm group (see Figure D.2). Along with transla-
tions the group pm contains reflection axes. There are two different axes which
are not related by translation symmetry operation. Due to the presence of re-
flection axes the space of orbits has a boundary. For the pm group there
are two inequivalent (by translation) boundaries formed by points belong-
ing to orbits with stabilizer m. Each generic (principal) orbit with stabilizer
1 = C1 has two points in the elementary cell. Restricting to one point for each
generic 1-orbit leads to the shaded region with the left and right boundary
being identified. This identification leads to a cylinder as an orbifold. Two
circular boundaries of this cylinder are formed by orbits with stabilizer m. All
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=

pl O - torus

FiG. D.1 — Orbifold for the pl crystallographic 2D-group.

pm ** cylindre

F1G. D.2 — Orbifold for the pm crystallographic 2D-group.

other points represent generic orbits with stabilizer 1 = C. The presence of
a circular boundary is indicated in Conway notation by *. Consequently, the
Conway notation for pm orbifold is .

Group pg has only glide reflections (dash lines) in addition to two indepen-
dent translations. All orbits are principal with the stabilizer 1. Due to glide
reflection each elementary cell has two points from each orbit of the symmetry
group action. The choice of one representative point from each orbit leads to
the shaded region (see Figure D.3). Points on lower and upper boundaries
should be identified because they are related by a translation. Points on left
and right boundaries should be also identified but respecting the direction of
the arrows. This identification is a result of transformation of the left bound-
ary into the right boundary by the glide reflection (half-translation followed
by a reflection). The resulting orbifold from the topological point of view is
a Klein bottle. Conway notation for the Klein bottle is x x. Two signs X are
used to indicate that the Klein bottle can be obtained from a sphere by adding
two crosscaps.

The group ¢m contains reflection axes and glide reflection axes. Principal
orbits (with stabilizer 1) have four points in the elementary cell. We can
choose one point from each orbit by taking the shaded region of the elementary
cell shown in Figure D.4. The boundary of this shaded region is formed by
points belonging to orbits with stabilizer m (thick solid line). Two dash-dot
lines forming the boundary of the triangle should be identified respecting the
orientation of arrows because they are transformed one into another by a glide
reflection. From the topological point of view the orbifold for the cm group
is a Mobius band. The boundary of the band which is a topological circle is
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pg XX Klein bottle

F1G. D.3 — Orbifold for the pg crystallographic 2D-group.

cm  * X Moebius band

F1a. D.4 — Orbifold for the em crystallographic 2D-group.

formed by orbits with stabilizer m. Conway notation for the orbifold is *x.
This notation indicates that there exists one boundary and one crosscap is
glued to the demi-sphere to get the Mobius band.

The group p2mm is discussed in 4.5.

The group p2mg contains two independent rotation centers of order two
and reflections in only one direction. It has also glide reflections (dash lines)
whose axes are perpendicular to the reflection axes. The centers of rotation
lie on glide reflection axes. There are two orbits with stabilizer 2 = C and
each 2-orbit has two points in the elementary cell. Points with stabilizer m
belong to reflection axes (solid lines). Each m-orbit has two points in one
elementary cell. Each principal orbit has four points in the elementary cell.
To form the space of orbits we choose the shaded rectangular region shown
in figure D.5. Points situated on the glide reflection axes symmetrically with
respect to the 2 = (5 axes should be identified. This gives the orbifold which
from the topological point of view is a disk with a boundary formed by orbits
with stabilizer m. Inside the disk there are two isolated orbits with stabilizer 2.
Conway notation for an orbifold of p2mg group is 22x. According to convention
the orders of isolated rotation centers which do not belong to the boundary
should be indicated before the boundary symbol, *.

The group p2gg contains two rotation centers of order two and glide
reflections (dash lines) in two orthogonal directions. There are no reflec-
tions. The centers of rotation are not located on the glide reflection axes (see
Figure D.6). The elementary cell contains two different orbits with stabi-
lizer 2. Each orbit with stabilizer 2 has two representative points in the
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-
-
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p2mg 22*  disc with
2 C, points

Fi1a. D.5 — Orbifold for the p2mg crystallographic 2D-group.

p2gg 22X real projective plane
with two C, points

F1a. D.6 — Orbifold for the p2gg crystallographic 2D-group.

elementary cell. Each generic orbit with stabilizer 1 has four points in the
elementary cell. The triangular shaded region shown in Figure D.6 contains
one representative point from all orbits. Generic points on the boundary of a
triangle should be identified under the action of 2-symmetry operations. Two
half-sides of the base of the triangle can be first glued together. This leads to
a subfugure D.6, right, which shows that the diametrically opposite points on
the boundary of the disk should be identified. This is a standard construction
of the real projective plane. Thus, the orbifold for the p2gg group is a real
projective plane with two singular 2 points. The Conway notation for this orb-
ifold is 22x. Initial 22 shows that there are two isolated 2 points. Symbol x
indicates gluing of one crosscap. Remember that to get the real projective
plane it is necessary to glue to a sphere one crosscup, whereas gluing two
crosscaps leads to the Klein bottle.

The group ¢2mm is discussed in 4.5.

The group p4 has two rotation centers of order four and one rotation
center of order two. It has no reflection or glide reflections. Every principal
orbit has four points in each elementary cell. The 2-orbit has two points in the
elementary cell. Each of two Cy4 orbits belonging to its own stratum (Wyckoff
positions) has one point in the elementary cell. The shaded square shown
in Figure D.7 includes one point from each orbit taking into account that
points equivalent under Cy rotation should be identified. The result of such
identification is a sphere with three marked points, two Cy (not conjugate)
orbits and one C5 orbit. The notation for the orbifold is 442 indicating the
absence of the boundary and spherical topology.

The group p4mm is discussed in 4.5.



Appendix D. Orbit spaces for plane crystallographic groups 239

w &

p4 442 sphere with two C, points
and one C, point

Fi1Ga. D.7 — Orbifold for the p4 crystallographic 2D-group.

<, ©

p4gm  4#2 disc with C, point inside
and C, point on the boundary

Fi1G. D.8 — Orbifold for the p4dgm crystallographic 2D-group.

The group pdgm has rotation centers of order four which form one orbit
with stabilizer Cy. These rotation centers do not lie on reflection axes. The
Cy orbit has two representative points in each elementary cell. The group
pdgm has reflection axes in two orthogonal directions. There are rotation
centers of order two which lie at the intersection of reflection axes. These order
two rotation centers form one orbit with stabilizer 2m. Each elementary cell
contains two points belonging to the orbit with stabilizer 2m. The group pdgm
has also two families of glide reflection axes - one in horizontal and vertical
directions, the other at the angle of 7/4 with these. Principal orbits (stabilizer
(1) has eight representative points in the elementary cell. Collecting one point
from each orbit we get the space of orbits represented by a shaded triangle
in figure D.8. Points on horizontal and vertical sides of this triangle should
be identified due to action of Cj rotation. Points belonging to the reflection
axis (thick solid line in Figure D.8) form the boundary of the space of orbits
together with one Cs-orbit on this boundary. Topologically the orbifold for
the pdgm group is a disc with one C5 point on the boundary and one C point
inside. The Conway notation for this orbifold is 4x2.

The group p3 has three different rotation centers of order three but no
reflections or glide reflections. Each principal orbit with stabilizer 1 = C; has
three representative points in the elementary cell. Each of three orbits with
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S

333 sphere with three C, points

F1G. D.9 — Orbifold for the p3 crystallographic 2D-group.

& O

p3ml  *333 disc with three Cs points
on the boundary

Fi1G. D.10 — Orbifold for the p3m1 crystallographic 2D-group.

stabilizer 3 = C'3 forms its own stratum and has one representative point in
the elementary cell. We can choose the domain of the elementary cell with
one point from each orbit as shown in Figure D.9 by the shaded rhombus.
The points on the sides of this rhombus equivalent with respect to order
three rotation should be identified. This gives for the space of orbits from
the topological point of view the sphere with three marked points being each
representative of different strata with stabilizer 3 = C'5. Conway notation for
this orbifold is 333 indicating the absence of the boundary and existence of
three singular points.

The group p3ml has three different rotation centers of order three and
reflection axes forming sides of an equilateral triangle. Each rotation center lies
at the intersection of the reflection axes. There are additional glide reflections
in three distinct directions whose axes are located halfway between adjacent
parallel reflection axes. Each principal orbit has six representative points in the
elementary cell. Orbits with stabilizer m (formed by points lying on reflection
axes) have three representative points in the elementary cell. All these orbits
belong to the same stratum. Finally, each of three orbits with stabilizer 3m has
one representative point in the elementary cell and belongs to its own stratum.
Collecting one point from each orbit we get the space of orbits represented
in figure D.10 as a shaded triangle with its boundary. From the topological
point of view the orbifold is a disc with three singular points at its boundary.
The Conway notation for the orbifold of the group p3ml is %x333.

The group p31lm has two different types of rotation centers of order three.
One rotation center of order three lies at the intersection of reflection axes
forming an equilateral triangle. The stabilizer of the corresponding orbit is 3m.
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m 3*3 disc with two Cj3 points

one inside and one on the boundary

F1G. D.11 — Orbifold for p31m crystallographic 2D-group.

=

po 632 sphere with one Cg point
one C; point and one C, point

F1G. D.12 — Orbifold for the p6 crystallographic 2D-group.

This orbit has one representative point in the elementary cell. Another order
three rotation center does not lie on the reflection axes and form an orbit with
stabilizer C5. The corresponding orbit has two representative points in the
elementary cell. Points belonging to reflection axes form orbits with stabilizer
m. Each such orbit has three representative points in the elementary cell. The
group p31lm has also glide reflections in three distinct directions, whose axes
are located halfway between adjacent parallel reflection axes. Principal orbits
(with stabilizer C7) have six points in the elementary cell. Taking one point
from each orbit we form the shaded triangle (see Figure D.11) corresponding
to the space of orbits after identification of points on the sides equivalent
with respect to C3 rotation. After such identification the orbifold becomes a
topological disc with one singular point on the boundary and one C3 point
inside. The Conway notation of the orbifold is 3%3.

The group p6 has one rotation center of order six, two rotation centers of
order three and three rotation centers of order two. It has no reflection axes
or glide reflection axes. Orbits with stabilizer Cs = 6, C3 = 3, Cy = 2, and
C71 = 1 have respectively one, two, three, and six points in the elementary cell.
The domain including one point from each orbit is shown by the shading in
Figure D.12. To get the space of orbits we need to identify the points on the
boundary of the shaded domain equivalent with respect to Cy = 2 and C3 = 3
rotations. After such identification the space of orbits becomes a sphere with
three singular points corresponding to orbits with stabilizers Cg = 6, C3 = 3,
and Cy = 2 respectively. The notation for this orbifold is 632.

The group p6mm is discussed in 4.5.

This completes the discussion of orbifolds for all plane crystallographic
groups.






Appendix E

Orbit spaces for 3D-irreducible
Bravais groups

There are three cubic Bravais groups Pm3m, Im3m, Fm3m, correspond-
ing to the same point symmetry group, Op. We construct orbifolds for these
three-dimensional irreducible Bravais groups to see the difference of group
actions.

We start with the Pm3m group. Its elementary cell includes one point
of the simple cubic lattice and is supposed to be of volume one. We use
this primitive cell to represent different strata of the symmetry group action.
Different strata (or systems of different Wyckoff positions according to ITC)
are shown in Figure E.1.

There are two zero dimensional strata with stabilizer Oy,, characterized as
Wyckoff position a and b. The stabilizers of these two strata are not conjugate
in the symmetry group of the lattice. Points a correspond to points forming
the simple cubic lattice. Points b are situated in the center of the cubic cell
formed by points a. Eight points of type a are shown in Figure E.1 but as soon
as each point equally belongs to eight cells there is only one point a per cell.

There are also two zero-dimensional strata with stabilizer Dy; which are
not conjugate in the symmetry group of the lattice. They are labeled as ¢ and
d (according to ITC). There are three positions of type ¢ per cell and three
positions of type d per cell. Each point of type ¢ belongs to two cells whereas
each point of type d belongs to 4 cells. That is why there are 6 points of type
c and 12 points of type d drawn in Figure E.1.

There are six different one-dimensional strata of the Pm3m group action
on the space. Two one-dimensional strata have as stabilizers two Cy, sub-
groups which are not conjugate in the lattice symmetry group. These two
strata are shown on the same subfigure in Figure E.1. Each orbit of e (solid
line) symmetry type has six points per primitive cell. Two points of each orbit
are situated on each of three disconnected intervals shown by solid thick line.
As soon as these solid lines are edges of the primitive cell and belong, in fact,
to four cells, all other edges are equivalent and consequently belong to the
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s 1
0, = m3m; a Op, = m3m; b Dyyj, = 4/mmm; ¢ Dy, = 4/mmm;, d
Cyy =4mmse, f Cs,=3m; g Cy, =mm2; h Cy, = mm2; i
/
P
/
Cyy, = mm2;j Cy=m;k Cy=m;l

Fi1G. E.1 — Different strata for Pm3m Bravais group.

same stratum. Orbits of f type are situated inside the primitive cell on six
intervals marked by the dash-dot line. One point of each orbit belongs to one
of six equivalent intervals forming one stratum.

The Cj3, stratum (type g of Wyckoff positions) consists of orbits having
eight points per cell situated on the diagonals of primitive cell.

There are three non-conjugated Cs,, strata (types h, i, j of Wyckoff posi-
tions). These strata are shown in three subfigures of Figure E.1. Each orbits
has 12 points per cell for each of these three strata.

There are also three two-dimensional strata k, [, m. Each of them has Cs =
m group as the stabilizer, but all of these three stabilizers are non-conjugate
subgroups of the lattice symmetry group. The last three subfigures of E.1 show
these strata. (Better visualization of m stratum can be done by using three
rather than one subfigures. This is done for the F'm3m group in figure E.7,
see three initial figures for stratum k.) Each orbit belonging to these strata
has 24 points per cell.

At last, all points which do not belong to the mentioned above strata form
generic stratum with trivial stabilizer 1 = C. It consists of orbits having 48
points per cell.
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k : ehi
1: fhj
b ml : fgi
/// ¢ m?2 : egj
V.
J
i c
h
4 e d

F1Gc. E.2 — Primitive cell and orbifold for the Pm3m three-dimensional Bravais

group.

In order to construct the orbifold of the Pm3m group action we can choose
a closed region (simplex) shown in Figure E.2. Its vertices are points from
different zero-dimensional strata a, b, c,d. Six of its edges are also formed by
points belonging to different one-dimensional strata: e : a — d; f : b — ¢;
g:a—b h:c—d;i:a—c j:b—d (Each edge is indicated by its two
boundary vertices.) Among four faces, two belong to the same stratum of type
m, namely, m1: fgi and m2 : egj (the face is indicated by its three boundary
edges). Each of two other faces belongs to its proper stratum: k : ehi, [ : fhj.
Internal points belong to generic stratum, n.

Topologically, the orbifold of the Pm3m group is a three-dimensional disk
with all internal points belonging to the generic stratum and the boundary
formed by 13 different strata.

Now we turn to the Im3m Bravais group. In order to have a cell whose
symmetry coincides with the symmetry of the lattice, we are obliged to take
a double cell which has volume 2 and includes two lattice points per cell.
Different strata of the Im3m action are shown in Figure E.3. It is instructive to
briefly compare the system of strata of Im3m with that of Pm3m by ignoring
the difference in volumes of cells. The notation of strata by Latin letters follows
again the notation of Wyckoff positions in ITC. Zero dimensional stratum a
(stabilizer Op,) of Im3m includes points of strata a and b of Pm3m. Zero
dimensional stratum b of Im3m (stabilizer D) includes points of strata ¢ and
d of Pm3m. Zero dimensional strata ¢ (stabilizer D34) and d (stabilizer Do)
of Im3m are the new ones as compared to stratification imposed by Pm3m.

One-dimensional stratum e of Im3m includes points belonging to e and f
strata of Pm3m. Stratum f (stabilizer C3,) of Im3m action coincides with
the stratum g of Pm3m. The group I'm3m has three one-dimensional strata
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0y, = m3m; a Dyj, = 4lmmm; b D3g=3m; ¢ Doy = 4m2; d
Cyy = 4mm; e Cs3y, =3m; f Cyy, = mm2; g Cyy, = mm2; h
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Cy, = mm2; h Cr=2;i Cr=2;i Cr=2;i

Co=m;j Co=m;j Co=m; k

F1c. E.3 — Different strata for the I'm3m Bravais group. In order to simplify visual-

ization of the stratum d with stabilizer D24 only translationally inequivalent points
are represented.

g, h,i with stabilizer C5,. The one-dimensional stratum g of Im3m action
coincides with stratum h of Pm3m. The one-dimensional stratum h of Im3m
includes points of two strata i and j of Pm3m. The one-dimensional stratum
i of Im3m is a new one as compared to the stratification imposed by Pm3m.

The two-dimensional stratum j (stabilizer Cy) of Im3m includes points
belonging to two strata k and | of Pm3m. The two-dimensional stratum k
(stabilizer Cy) of Im3m reproduces stratum m of Pm3m.
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k : efh

j:egh
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F1G. E.4 — Double cell and orbifold for the Im3m three-dimensional Bravais group.

In order to construct the orbifold and to take only one point from each
orbit we can take the region shown in Figure E.4. The choice of this region
coincides with the choice of the asymmetric unit suggested by ITC for the
Im3m group. One should only additionally take into account the following
important facts.

i) The two points marked by b in E.4 belong to the same stratum b and
moreover to the same orbit with stabilizer Dy,. This can be easily seen
because all points on the line c¢d have stabilizer Cy and this C5 rotation is
obviously rotation around the cd line. This C; symmetry transformation uni-
fies not only two points marked b into one orbit but also it acts on any point
of the beb triangular face of the chosen region. This indicates that pairs of
respective points in two cbd triangles should be identified in order to construct
the orbifold including only one point from each orbit. From the topological
point of view the result of gluing two cbd triangles is the orbifold shown in
Figure E.5. It can be represented as a three-dimensional body having the
geometrical form of a double cone with two special points (¢, d) at its apexes
and two special points (a,b) on the equator. Moreover, all other points of the
equator belong to two different (h and e) one-dimensional strata. Two other
one-dimensional strata connect on the surface of double cone points a and ¢
(stratum f) and points b and d (stratum g). Inside a double cone there is one
more one-dimensional stratum ¢ connecting points ¢ and d. All other internal
points belong to generic stratum /. Boundary points of the double cone which
do not belong to the mentioned above zero-dimensional and one-dimensional
strata form two two-dimensional strata. Stratum k consists of points of the
upper part of the double cone boundary. This two-dimensional stratum has
one-dimensional strata f, h, and e as its boundary. Stratum j consists of
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d

F1c. E.5 — Schematic representation of the orbifold for the Im3m three-dimensional
Bravais group.

points of the lower part of the double cone boundary. This two-dimensional
stratum has one-dimensional strata g, e, and h as its boundary.

In the case of the F'm3m Bravais group the choice of the cell respecting the
Oy, holohedry of the lattice leads to the quadruple cell of volume 4 as compared
to the primitive cell. All zero-, one- and two-dimensional strata of the lattice
symmetry group action on this quadruple cell are shown in Figures E.6, E.7.

The notation of strata by Latin letters follows again the notation of
Wyckoff positions adapted in ITC. A zero dimensional stratum with stabi-
lizer Dy, is shown in two subfigures in order to see better the location of all
points. In this case one orbit includes 24 points per quadruple cell. In a simi-
lar way a one-dimensional stratum of type f (stabilizer Cj,) is represented in
four sub-figures. Two of three non-conjugated in the lattice symmetry group
strata with stabilizer Cy,, namely strata of type h and 4, are also shown in two
sub-figures. A two-dimensional stratum of type j (stabilizer Cy) is represented
in two subfigures which coincide with figures of stratum j of Bravais group
Im3m. A two-dimensional stratum of type k (stabilizer Cy) is represented in
six subfigures. Three of these subfigures reproduce figures of stratum k for the
Im3m group or stratum m for the Pm3m group.

In order to construct the orbifold we need to take one representative point
from each orbit. This can be done by restricting the quadruple cell to the
region having tetrahedral geometry (see figure E.8) with coordinates of
vertices
a:{0,0,0}; b:{1/2,0,0}; c:{1/4,1/4,1/4}; d:{1/4,1/4,0}. B

This choice coincides with the choice of the asymmetric unit for the F'm3m
group made in ITC. The Fm3m orbifold is a topological three-dimensional
disk. All its internal points belong to the generic C stratum. The stratification
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Dy =4m2; d Cyy = 4mm; e C3y =3m; f C3y=3m; f

Cs, =3m; f Cs,=3m;f Cy, =mm2; g Cy, =mm2; h
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/
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F1G. E.6 — Different zero- and one-dimensional strata for the Fm3m Bravais group.

of boundary is similar to the Pm3m orbifold. For Fm3m all four vertices
belong to different zero-dimensional strata, but among six edges there are
two belonging to the same stratum, and among four faces, three belong to the

same stratum.
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Fic. E.8 — Schematic representation of orbifold for the Fm3m three-dimensional
Bravais group.
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