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PREFACE

The world has already passed critical tipping points. Despite decades of progress, 
poverty, hunger, inequality, climate change, and environmental degradation continue 
to threaten global stability and human well-being. The United Nations’ Sustainable 
Development Goals (SDGs) offer a bold blueprint to tackle these challenges by 
2030—but time is running out. To meet these ambitious targets, we must turn to the 
most powerful tools available today. 

Artificial Intelligence (AI) and deep learning can help us collect better data, make 
faster decisions, personalize interventions, and scale solutions in ways never before 
possible. But unlocking this potential requires clarity, rigor, and a deep understanding 
of how AI models can be aligned with human needs. Artificial Intelligence can be a 
powerful engine for solving today’s most urgent challenges. Across every continent, 
AI models are being used to address the SDGs— from predicting poverty with 
satellite images, to fighting climate change, protecting biodiversity, and improving 
access to education and healthcare.

This book is a practical and engaging journey through some of the most impactful 
applications of deep learning and AI architectures in service of the SDGs. Whether 
you are a researcher, a student, or a decision-maker curious about how machine 
learning can serve people and the planet, this book will show you some real use 
cases, with concisely explained methods. 

Each chapter includes:
- A technical breakdown of the method used, written clearly and concisely;
- An illustration of the architecture (such as CNN-LSTM, GAN, GNN, etc.);
- A balanced view of the pros and cons of the approach in that specific context;
- The state-of-the-art references, with DOI links for deeper reading;
- A link to a curated Awesome List of resources such as surveys, relevant papers, 
  datasets, codes, benchmarks, and educational content to help you go further.

We’ve structured this book to be as hands-on and approachable as possible with 
real examples of AI solving real problems. If you care about the planet, people, and 
progress, and want to see how machine learning is being used for good, this book 
is for you.

Yet much remains to be done; advancing the SDGs demands a new generation of 
AI solutions that are not only powerful, but also ethical, transparent, frugal, resource-
efficient, and deeply aligned with the needs of people and planet.





9

S
D

G
 #

1

   
	

   
   

    
    

  N
O POVERTY

HUMANS

Around 712 million people – 8.5% of 
the global population–  live today on 
less than $2.15 per day, the extreme 
poverty line relevant for low-income 
countries. Three-quarters of all 
people in extreme poverty live in 
Sub-Saharan Africa or fragile and 
conflict-affected countries. 

Estimating poverty with AI is 
especially useful in regions where 
ground data is scarce, outdated, 
or difficult to collect. AI models 
can infer poverty indicators from 
alternative data sources like satellite 
imagery, mobile phone usage, or 
night-time lights, offering timely and 
granular insights.

SDG#1 POVERTY 
ESTIMATION FROM 
SATELLITE IMAGES WITH 
TRANSFORMERS

Source (Retrieved on 
March 25th, 2025): 
https://www.
worldbank.org/
en/topic/poverty/
overview
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SDG#1 POVERTY ESTIMATION FROM 
SATELLITE IMAGES WITH TRANSFORMERS

A transformer architecture can predict poverty estimates from satellite 
images by leveraging its ability to capture spatial patterns and contextual 
relationships within data. Through self-attention mechanisms, transformers 
encode and decode pixel-level features and their interactions across 
the image, allowing them to identify key indicators of poverty such as 
infrastructure, land use, and settlement patterns. By training on labeled 
datasets to learn the mapping between the ground truth poverty data as 
socioeconomic indicators surveyed on the ground and the satellite images, 
transformers can learn to correlate specific image features with poverty 
levels, enabling accurate predictions across different geographical regions. 
The architecture consists of encoder and decoder blocks with multi-head 
attention and feed-forward layers. Positional encoding is added to retain 
sequence order information. Their ability to model long-range dependencies 
has led to applications beyond NLP and vision and offer a scalable and 
effective solution for poverty estimation, facilitating targeted interventions and 
resource allocation in areas of need. However, challenges related to sparse 
data labeling, spatial uncertainty due to the anonymization of the poverty 
surveys, interpretability, and computational cost need to be addressed to 
ensure the applicability of transformer-based poverty prediction systems in 
real-world scenarios.

Transformers can analyze complex data patterns and can map 
socioeconomic indicators with satellite image features, enabling accurate 
poverty estimation. They utilize self-attention mechanisms to weigh 
input relevance and process entire sequences of diverse data sources 
simultaneously, enhancing parallelization. 

Complexity, interpretability, 
and the resource-intensive 

nature of transformers 
pose challenges for 

real-world scenarios.

Transformers offer parallel 
computation, capture 

long-range dependencies, 
and enable contextual 

understanding.
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https://doi.org/10.1016/j.jag.2021.102651



13

S
D

G
 #

2

   
   

   
    

    
 NO HUNGER

HUMANS

SDG#2 CROP DISEASE 
DETECTION WITH 
PRETRAINED NETWORKS 
AND ENSEMBLE LEARNING

Source (Retrieved 
on March 25th, 
2025): https://
sdgs.un.org/goals/
goal2#progress_
and_info

733 million people globally suffered 
from malnutrition in 2023, an 
increase of 152 million since 2019. 
An estimated 28.9 % of the global 
population – 2.33 billion people – 
were moderately or severely food 
insecure.

Automated early detection of 
diseases that can affect crops 
and livestock would cut costs for 
cultivators  and farmers and help 
prevent major losses and low yield, 

impacting food security.
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Combining multiple models 
improves predictive 

performance but increases 
complexity and training 

and inference times.

Pretrained networks 
facilitate the training of very 
deep networks by mitigating 

vanishing gradients.

SDG#2 CROP DISEASE DETECTION WITH 
PRETRAINED NETWORKS AND ENSEMBLE LEARNING

Ensemble learning such as bagging, boosting, and stacking allows the 
integration of diverse models to enhance generalization, effectively reducing 
variance and bias. ResNet introduces residual connections, allowing identity 
mappings. Xception utilizes depthwise separable convolutions for efficient 
computation. Both architectures have been influential in advancing deep 
learning and are widely used in image recognition tasks.

ResNet addresses the degradation problem in deep networks by introducing 
residual learning. It uses shortcut connections to skip one or more layers, 
allowing gradients to flow directly through these connections during 
backpropagation. This approach enables the training of very deep networks 
with hundreds of layers. Xception builds upon the Inception architecture by 
replacing standard convolutions with depthwise separable convolutions. This 
factorizes convolutions into a depthwise convolution followed by a pointwise 
convolution, reducing computational cost while maintaining performance. 
Both architectures have set benchmarks in image classification tasks. 
Their designs have influenced subsequent neural network architectures. 
Ensemble learning combines predictions from these models to produce a 
more robust and accurate output. Bagging involves training multiple models 
independently on random subsets of data and averaging their predictions, 
reducing variance. Boosting sequentially trains models, each correcting 
errors of its predecessor, aiming to reduce bias. Stacking combines outputs 
of several models using a meta-model to improve predictive accuracy. This 
approach leverages the strengths of diverse models, mitigating individual 
weaknesses. Understanding ensemble strategies is valuable for building 
robust models that are carefully tuned and validated to avoid overfitting. 

METHODS
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https://doi.org/10.1109/ACCESS.2024.3357099

K. Taji, et al., « An Ensemble Hybrid Framework: A Comparative Analysis 
of Metaheuristic Algorithms for Ensemble Hybrid CNN Features for Plants 
Disease Classification », IEEE Access, vol. 12, pp. 61886-61906, 2024, 
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Source (Retrieved on 
March 25th, 2025): 
https://www.
marketsandmarkets.
com/PressReleases/
artificial-intelligence-
healthcare.asp

With the increased digitalization 
of health data and the market size 
of AI for healthcare expected to 
reach USD 45 billion by 2026, the 
role of synthetic data in the health 
information economy needs to be 
precisely delineated to develop fault-
tolerant and patient-facing health 
systems. 

In healthcare, patient privacy is 
governed by strict regulations like 
HIPAA and GDPR, which synthetic 
data helps to mitigate by mimicking 
real data without revealing personal 
identities. This is particularly helpful 
when real datasets are small, 
fragmented, or unavailable, such as 
in rare diseases or underrepresented 
populations.
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SDG#3 AUGMENTATION OF 
HEALTHCARE DATA USING GAN

GANs require extensive 
training data, are 

computationally expensive, 
and may generate 

unrealistic samples.

GANs can learn to mimic 
any data distribution 

effectively to generate 
a balanced, high-

quality dataset

Generative Adversarial Networks (GANs) can simulate realistic biomedical 
data and synthetic images, improving model training with data augmentation, 
preserving patient privacy, and thus enhancing disease diagnosis, treatment 
planning, and medical research. GANs consist of a generator and a discriminator 
for adversarial training. The generator creates data; the discriminator evaluates 
authenticity. Through competition, both networks improve.

GANs consist of two neural networks: the generator and the discriminator. 
The generator aims to create realistic data samples, while the discriminator 
distinguishes between real and synthetic data. Over iterations, the generator 
learns to produce increasingly realistic outputs by minimizing the difference 
between its generated samples and real data. Trained with real data 
samples and those generated by the generator, the discriminator learns to 
differentiate. With opposing objectives, the generator seeks to minimize the 
log-probability that the discriminator correctly classifies synthetic data as 
synthetic, while the discriminator seeks to maximize this probability. Through 
iterative training, the generator improves its ability to generate realistic 
samples, while the discriminator becomes more adept at distinguishing 
between real and synthetic data. Ideally, this process leads to a state where 
the generator produces data that is indistinguishable from real data to 
augment the dataset to improve the performance of downstream tasks of 
classification or prediction. Applications include creating realistic images, 
enhancing image resolution, and data augmentation. Despite their potential, 
GANs are challenging to train due to issues like model collapse, where the 
generator produces limited varieties of data. Careful design of network 
architectures and training procedures is essential. 
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https://doi.org/10.1145/3583593



S
D

G
 #

3

21

G
O

O
D H

EALTH & WELL-BEIN
G

HUMANS

SDG#3 PREDICTION 
OF AIR POLLUTION 
USING CNN-LSTM

Sources (Retrieved 
on March 25th, 2025): 
https://earth.org/10-
facts-about-air-
pollution/ 
https://
ourworldindata.
org/air-pollution

Constant exposure to polluted air 
increases the risk of coronary and 
respiratory disease, stroke, diabetes 
and lung cancer. In 2017, air pollution 
was responsible for an estimated 5 
million deaths globally, amounting to 
nearly 9% of the world’s population.

With forecasting and predictive 
models, practitioners can better 
understand sources of pollution and 
provide warnings to the public ahead 
of peak pollution events. 



22

P
R

O
S

C
O

N
S

METHOD

SDG#3 PREDICTION OF AIR 
POLLUTION USING CNN-LSTM

Tuning and training the 
CNN-LSTM is complex and 
computationally intensive. 

It is prone to overfitting 
and slow convergence.

CNN-LSTM predicts 
accurately from multivariate 
time series due to its ability 
to capture spatial-temporal 

patterns efficiently.

A CNN-LSTM combines Convolutional Neural Networks (CNNs) and Long 
Short-Term Memory (LSTM) networks. It offers a powerful framework for 
predicting air pollution from multivariate spatiotemporal time series. CNN 
handles spatial extraction; LSTM captures time. By leveraging both spatial and 
temporal information, it can capture intricate relationships between various 
weather parameters and past pollution levels.

A CNN-LSTM model combines the strengths of CNNs in capturing spatial 
patterns and LSTMs in modeling temporal dependencies. In predicting air 
pollution from multivariate spatiotemporal time series, such as weather data 
and previous PM2.5 concentrations, the model first processes input data 
through CNN layers. CNN layers analyze spatial relationships within data, 
extracting relevant features like temperature, humidity, and wind speed 
from weather data. Filters slide across the input grid, capturing patterns 
and creating feature maps. This process helps identify spatial correlations 
between different regions and weather variables. Next, each LSTM layer 
receives the CNN’s output. LSTMs excel in capturing temporal dependencies 
by selectively retaining information over time through gates: forget, input, 
and output gates. This mechanism allows the model to remember long-
term dependencies and ignore irrelevant information. The LSTM layer 
processes the sequential nature of time series data, such as historical 
PM2.5 concentrations. It learns patterns and trends in past pollution levels, 
capturing how they evolve. By incorporating previous PM2.5 concentrations, 
the model considers the pollutant’s inertia and temporal dynamics. Temporal 
dependencies boost performance over static CNN and help with noisy or 
context-dependent sequences.  
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Source (Retrieved 
on March 25th, 
2025): https://
sdgs.un.org/goals/
goal4#progress_
and_info

SDG#4 PERSONALIZATION OF  
A CONVERSATIONAL 
TUTORING SYSTEM WITH LLM

Only 58% of students worldwide 
achieved at least the minimum 
proficiency level in reading at the 
end of primary schooling in 2019. A 
large share of countries is moving 
backwards in learning outcomes at 
the end of lower secondary school.

Developing personalized education 
tools with AI can help overcome 
shortages of qualified teachers 
and limited educational resources 
by delivering adaptive, self-
paced learning. It promotes 
equitable access to quality 
education, empowering students in 
underserved areas to improve their 
skills and future opportunities.
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SDG#4 PERSONALIZATION OF A CONVERSATIONAL 
TUTORING SYSTEM WITH LLM

LLMs are resource-intensive 
and prone to hallucination 

and stereotype amplification 
due to bias and low-
quality training data.

LLMs excel at zero-shot 
and few-shot learning 

across various application 
domains and tasks.

A Large Language Model (LLM) is based on a stack of transformer blocks, each 
containing self-attention and feedforward layers. The model begins with an 
embedding layer that converts input tokens (words or subwords) into dense 
vector representations. These embeddings are combined with positional 
encodings to provide information about token order. Each transformer block 
applies multi-head self-attention to allow the model to weigh relationships 
between tokens. The attention mechanism computes attention scores that 
determine how much focus to give to other tokens. Then, the result is passed 
through a feedforward neural network with non-linear activations. Layer 
normalization and residual connections help stabilize training and allow 
deep architectures. The outputs from each transformer layer are passed on 
to the next block, building increasingly abstract representations. The final 
transformer layer produces context-aware embeddings for each token. These 
are passed to a linear projection layer followed by a softmax to produce a 
probability distribution over the vocabulary. The model is trained to predict 
the next token in a sequence (causal language modeling) or to fill in blanks 
(masked language modeling). Some LLMs use decoder-only models (e.g., 
GPT), while others use encoder-decoder formats (e.g., T5). To handle long 
texts, techniques like attention masking and sliding windows are used.

LLMs are massive transformer-based architectures with billions of 
parameters. They are pretrained on diverse, very large-scale corpora and 
fine-tuned for specific downstream tasks. They are capable of reasoning, 
generation, translation and can be used in chatbots, summarization, 
question-answering, which makes them adequate for backing novel solutions 
in Education.

METHOD



27

3. OUTPUT

2. ARCHITECTURE

1. INPUT

LEGEND

Element-wise AdditionInferenceTraining Rotary Positional Encoding

Let’s start by looking 
at the picture. Can 
you tell me, what do 
you see in the sky?

… (looks away)

That’s okay. Take your 
time. Can you see 
what the woman in 
the picture is doing?

She is … she is 
standing …

A collection of pedagogical materials and a specific task A series of text prompts

Conversations and learning experiences through interactions based on natural language
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Scene: In a park

Person: One woman, 
two dogs

Objects: Wooden stick, 
tree, plane, etc.

Activities: A woman 
is carrying a wooden 
stick, playing with 
her dog in a park.

[Role & Task Definition] You 
are a primary school language 
teacher. You teach the student 
to describe the picture.
[Pedagogical Instruction] 
You are using the knowledge 
construction approach to 
help me describe the picture
[…]
[Behavior Constraint] Ask me 
only one question at a time. […]

Lesson: How to describe a picture

Let’s start by looking 
at the picture. Can 
you tell me, what do 
you see in the park?

Oh there’s a woman. She 
is playing with dogs.

Well done! Can you 
describe how the 
dogs are reacting?

They are happy, dogs 
love wooden sticks. 
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Scene : In a park

Person : One woman, 
two dogs

Objects : Wooden stick, 
tree, plane, etc.

Activities : A woman is 
carrying a wooden stick, 
playing with her dog in a park.
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FURTHER READING

Scan the QR code to access state-of-the-art 
research papers, datasets, codes, benchmarks, 
real-world use cases, and educational materials.

Z. Cai, et al., « Advancing Knowledge Together: Integrating Large 
Language Model-based Conversational AI in Small Group Collaborative 
Learning », In Extended Abstracts of the CHI Conference on Human 
Factors in Computing Systems (CHI EA ‘24), New York, NY, USA, no. 37, pp. 
1-9. 
https://doi.org/10.1145/3613905.3650868

W. Gan, et al., « Large Language Models in Education: Vision and 
Opportunities », In Proceedings of 2023 IEEE International Conference on 
Big Data (BigData), pp. 4776-4785, 2023. 
https://doi.org/10.48550/arxiv.2311.13160

S. Laato, et al., « AI-Assisted Learning with ChatGPT and Large Language 
Models: Implications for Higher Education », In Proceedings of 2023 IEEE 
International Conference on Advanced Learning Technologies (ICALT), 
Orem, UT, USA, pp. 226-230, 2023. 
https://doi.org/10.1109/ICALT58122.2023.00072

Z. Liu, S.X. Yin, and N.F. Chen., « Optimizing Code-Switching in 
Conversational Tutoring Systems: A Pedagogical Framework and 
Evaluation », In Proceedings of the 25th Annual Meeting of the Special 
Interest Group on Discourse and Dialogue, pp. 500–515, Sept. 2024. 
https://aclanthology.org/2024.sigdial-1.43.pdf

N. Rane, « Enhancing the Quality of Teaching and Learning through 
ChatGPT and Similar Large Language Models: Challenges, Future 
Prospects, and Ethical Considerations in Education », Social Science 
Research Network, (SSRN), Sept. 2023. 
https://doi.org/10.2139/ssrn.4599104
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in Education: A Systematic Scoping Review », British Journal of Educational 
Technology, 2023. 
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Source (Retrieved 
on March 25th, 
2025): https://
sdgs.un.org/goals/
goal5#progress_
and_info

SDG#5 GENDER-BASED 
VIOLENCE CLASSIFICATION 
FROM TWEETS WITH 
ATTENTION-BASED BI-GRU

Over 230 million girls and women 
worldwide are estimated to have 
undergone female genital mutilation 
as of 2024, and globally, around 
640 million girls and women were 
married before age 18, with India 
accounting for one-third. 

Using AI to detect gender-based 
violence (GBV) online is crucial 
for identifying harmful patterns 
and content at scale, which would 
be impossible through manual 
moderation alone. It helps protect 
vulnerable individuals by flagging 
threats, harassment, and abuse in 
real time, enabling faster intervention 
and making digital spaces safer and 
more equitable for all genders.
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SDG#5 GENDER-BASED VIOLENCE CLASSIFICATION 
FROM TWEETS WITH ATTENTION-BASED BI-GRU

A Bi-GRU (Bidirectional GRU) architecture is designed to capture information 
from both the past and future of a sequence. It consists of two types of GRU 
layers: one processes the input sequence from left to right (forward direction), 
and the other from right to left (backward direction). Each GRU layer outputs 
a hidden state at every time step, creating two distinct sequences of hidden 
states. The outputs from both GRUs are typically concatenated at each 
time step to provide a richer, bidirectional representation. This bidirectional 
nature allows the model to learn dependencies in both directions, improving 
performance on tasks with context-sensitive information. The sequence of 
concatenated hidden states is then passed to an attention mechanism for 
further refinement. The attention mechanism computes a context vector by 
assigning different attention weights to different time steps. These attention 
weights represent how important each hidden state is for the final prediction 
at a given time step. The context vector effectively provides a dynamic, 
focused summary of the entire input sequence at each step. The Bi-GRU with 
attention is particularly effective in handling long-range dependencies and 
long input sequences. Overall, the combination of bidirectional context from 
the GRUs and dynamic focus via attention provides a powerful architecture 
for sequence modeling.

A GRU is a type of recurrent neural network (RNN) designed to handle 
sequence data effectively. It was introduced to address the vanishing 
gradient problem found in traditional RNNs. GRUs have gating mechanisms 
that control the flow of information, making them more efficient than standard 
RNNs. Attention-based GRUs are lighter and faster than transformer models 
but still offer significant gains over plain RNNs or GRUs.

The performance of 
Bi-GRU with attention 

can be very sensitive to 
hyperparameters and 
needs large memory.

GRUs offer a good trade-
off between complexity 

and performance in 
sequential modeling tasks.

METHOD
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3. OUTPUT

2. ARCHITECTURE

1. INPUT
Collection of tweets with 5 types of labels for training: emotional, 

sexual, economic, physical violence and harmful practice

15 Jun 2020
Replying to @someone
Ugly and fat with %!@ hair. Sad to be you :(

15 Jun 2020
Replying to @someone
As a “nigger“ and concerned citizen: you’re a @¡$# !

15 Jun 2020
Replying to @someone
You are a #&$@! as far as I’ve seen

3

15 Jun 2020
Replying to @someone
4chan wants you. good luck ¡#@%

1

20 Jun 2022
Replying to @someone
You are a !%¡&! @#!! monster to kill

3

physical_violence

economic_violence

20 Jun 2022
Replying to @someone
As a “nigger“ and concerned citizen: you’re a ¡#@%

Preprocessing

replace #hashtag 
replace @username 
remove missing values
remove punctuations
remove stop words
remove numbers
remove retweet
eliminate special characters 
lowering
lemmatization
emoji’s handling
replace url

Input layer

Word Embedding

Spell 
Check

Point 
of Speech

W

GloVe

DxK Representation Text

ConvolutionPoolingConcatenation
Normalization

Merge 
layer

Output 
layer

Bi-GRU

Bi-GRU

Bi-GRU

Attention weights

Tweet classification
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FURTHER READING

Scan the QR code to access state-of-the-art 
research papers, datasets, codes, benchmarks, 
real-world use cases, and educational materials.
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7th Workshop on Online Abuse and Harms (WOAH), pp. 170-186, Toronto, 
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https://aclanthology.org/2023.woah-1.17/
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Detection on Twitter Messages », Mathematics, vol. 9, issue 8, no. 807, 2021. 
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Mexican Tweets »,  Artificial Intelligence and Pattern Recognition, pp. 24-32, 
2021. 
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C. Suman, et al., « An Attention Based Multi-Modal Gender Identification 
System for Social Media Users », Multimedia Tools and Applications,  
pp. 1-23, 2021. 
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M.Z. Ur Rehman, et al., « A Context-Aware Attention and Graph Neural 
Network-Based Multimodal Framework for Misogyny Detection », Inf. 
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SDG#6 WATER SANITATION 
PREDICTION USING LS-SVM

Source (Retrieved on 
March 25th, 2025): 
https://www.
worldvision.org/
clean-water-news-
stories/global-
water-crisis-facts

More than 1,000 children under 5 
die every day from diseases related 
to lack of clean water, sanitation, 
and hygiene and 1.69 billion people 
live without access to adequate 
sanitation.

Developing AI tools for water 
pollution prediction enables the early 
detection of contamination risks by 
analyzing complex environmental 
data in real time. This supports 
timely intervention, protects public 
health, and ensures more effective 
management of water resources.
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LS-SVMs are 
computationally intensive 

and sensitive to the choice 
of kernel parameters.

LS-SVMs are able to capture 
non-linear relationships in 
data, providing accurate 

forecasts aiding in proactive 
sanitation measures.

METHOD

LS-SVM (Least Squares Support Vector Machine) modifies the standard SVM 
formulation by replacing the quadratic loss function with a least squares loss 
function. This change leads to a linear system of equations instead of the 
typical convex quadratic optimization problem. The idea behind SVM is to 
find a hyperplane that separates classes with a maximum margin. SVR is an 
extension of SVM used from predicting numerical values using regression. In 
LS-SVM, the objective is to minimize the squared error between the predicted 
values and the true values, while maintaining a large margin for separation. 
Like traditional SVM, LS-SVM uses a kernel function to map the input features 
into a higher-dimensional space where linear separation is easier. The kernel 
trick allows LS-SVM to handle non-linear relationships by computing the inner 
products in the higher-dimensional space without explicitly mapping the 
data. The architecture consists of two main parts: the feature transformation 
(via the kernel) and the model learning phase. In the model learning phase, 
LS-SVM seeks to minimize a loss function that combines both the squared 
error and a regularization term for margin maximization. The regularization 
term ensures that the solution does not overfit the data. The choice of kernel 
(e.g., linear, polynomial, Gaussian) significantly affects the model’s ability to 
generalize to different types of data.

Least Squares Support Vector Machines (LS-SVMs) can predict 
water quality by learning from historical data to classify or regress water 
parameters. It minimizes simultaneously the margin and the sum of square 
errors (SSEs) on training samples to make accurate predictions in water 
pollution monitoring and contaminant identification.

SDG#6 WATER SANITATION PREDICTION 
USING LS-SVM
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3. OUTPUT

2. ARCHITECTURE

1. INPUT

K(X, X1)X1
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K(X, X3)X3

K(X, X4)X4

K(X, Xi)Xi

Xn K(X, Xn)

Input space LS-SVM network
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Evaluation of Water, Sanitation and Defecation Practices
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FURTHER READING

Scan the QR code to access state-of-the-art 
research papers, datasets, codes, benchmarks, 
real-world use cases, and educational materials.
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March 25th, 2025): 
https://www.un.org/
en/climatechange/
damilola-ogunbiyi-
ending-energy-
poverty

Almost 800 million people globally 
have no electricity, and about 
2.6 billion, a third of the world’s 
population, have no access to 
clean cooking fuels. The lack of 
clean energy not only harms the 
environment but also kills 1.6 million 
people in the world every year 
from fumes from burning fuels like 
charcoal to cook food. 

Developing AI tools for energy 
control and scheduling enables 
smarter, real-time management 
of energy resources, improving 
efficiency and reducing costs. 
These tools can help balance supply 
and demand, integrate renewable 
energy, and optimize usage across 
grids, buildings, and devices.

SDG#7 CONTROLLING & 
SCHEDULING ENERGY WITH 
DEEP REINFORCEMENT 
LEARNING
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METHOD

DRL can be unstable, 
sensitive to hyperparameter 

settings, and requires 
significant computational 

resources and training data.

DRL ensures efficient 
decision-making, adapts to 
dynamic environments, with 

continuous improvement.

DRL involves training agents using neural networks to optimize decisions 
from collected observations of an environment. The agent learns from 
interactions by receiving rewards for each of its actions, aiming to maximize 
the reward signal over time. The agent takes actions in the environment, 
observes the resulting states, and receives feedback in the form of a reward.
The agent’s goal is to learn a policy that maps states to actions to maximize 
its cumulative reward. Deep learning models, particularly deep neural 
networks, are used to approximate the value function or policy due to the 
high-dimensionality of state spaces. The value function, typically denoted 
as V(s), estimates the expected future reward from a given state s, while the 
policy p(s) defines the action to take at each state. Deep Q-Network (DQN) 
uses a neural network to approximate the Q-value function, Q(s,a), where Q 
represents the expected future reward for state s and action a. DQN uses 
discrete action spaces and is based on a value function. It estimates the 
maximum possible reward attainable from a given state using a Q-value 
function updated via the Bellman equation. DDPG (Deep Deterministic 
Policy Gradient), suitable for continuous action spaces, operates on a policy 
gradient method where it directly learns the optimal policy that maximizes 
reward, unlike DQN, which selects actions based on Q-values. DDPG utilizes 
actor-critic architecture to stabilize learning in such environments.

Deep Reinforcement Learning (DRL) can optimize energy management 
by learning to make decisions that maximize efficiency and reduce costs, 
adapting to dynamic environments like power systems, and improving over 
time with continuous feedback and adjustments. DRL algorithms typically rely 
on exploration and exploitation strategies, like epsilon-greedy (which balances 
random actions and learned actions) or entropy maximization.

SDG#7 CONTROLLING & SCHEDULING ENERGY 
WITH DEEP REINFOREMENT LEARNING
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3. OUTPUT

2. ARCHITECTURE

1. INPUT
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research papers, datasets, codes, benchmarks, 
real-world use cases, and educational materials.
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SDG#8 PREDICTION OF 
GHG EMISSIONS WITH 
TABULAR BACKBONES

The ‘average’ person produces 6.28 
tonnes of GHG emissions annually. 
But this number varies widely by 
country and income level. Wealthier, 
higher-consuming populations 
may emit up to 110 tonnes of CO2 
equivalent (CO2eq) per year. Among 
lower-income groups, emissions can 
be as low as 1.6 tonnes of CO2eq per 
year.

Predicting GHG emissions with 
AI can enable accurate, real-time 
forecasting based on complex and 
dynamic data from various sectors 
to help policymakers and industries 
monitor progress, design effective 
mitigation strategies, and meet 
climate targets more efficiently.
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The TFM architecture typically includes an embedding layer to handle 
categorical features by converting them into dense vector representations. 
Continuous features (numeric variables) are often passed directly into the 
model, possibly undergoing normalization or scaling. These embeddings 
and numeric features are then concatenated to form a unified input vector 
for the model. The model often uses feedforward neural networks (i.e., fully 
connected layers) to process the data, with one or more hidden layers. Each 
hidden layer applies linear transformations followed by non-linear activation 
functions like ReLU (Rectified Linear Unit) to introduce complexity. Dropout or 
batch normalization is typically applied between layers to reduce overfitting 
and stabilize training. The final layer of the network produces a single scalar 
value for regression tasks or a probability distribution for classification tasks. 
To handle feature interactions effectively, more sophisticated techniques like 
attention mechanisms or cross-product transformations are used. Unlike 
traditional models (like decision trees or logistic regression), TFMs leverage 
deep learning to automatically capture complex relationships between 
features. The model is trained using backpropagation and gradient-based 
optimization methods (e.g., Adam or SGD) to minimize a loss function.

Tabular foundation models (TFM) are trained on large tabular datasets to 
capture generalized representations. They use attention or transformer-style 
architectures tailored for table formats and they can learn representations 
of column types, distributions, and cross-feature relations outperforming 
XGBoost and traditional MLPs on structured data. They reduce the need for 
manual feature engineering and domain-specific preprocessing.

Tabular foundation 
models require large-

scale pretraining datasets 
and are computationally 
expensive to fine-tune.

Tabular foundation models 
support downstream tasks 
with few labeled samples 

using transferability.

SDG#8 PREDICTION OF GHG EMISSIONS 
WITH TABULAR BACKBONES

METHOD
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3. OUTPUT

2. ARCHITECTURE

1. INPUT
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FURTHER READING

Scan the QR code to access state-of-the-art 
research papers, datasets, codes, benchmarks, 
real-world use cases, and educational materials.

Y. Gorishniy, I. Rubachev, and A. Babenko, « On Embeddings for Numerical 
Features in Tabular Deep Learning », arXiv:2203.05556, 2022. 
https://arxiv.org/abs/2203.05556

D. Singh, et al., « Machine-Learning- and Deep-Learning-Based Streamflow 
Prediction in a Hilly Catchment for Future Scenarios Using CMIP6 GCM 
Data », Hydrol. Earth Syst. Sci., vol. 27, pp. 1047-1075, 2023. 
https://doi.org/10.5194/hess-27-1047-2023

A. Verma, et al., « Performance Comparison of Deep Learning Models for 
CO2 Prediction: Analyzing Carbon Footprint with Advanced Trackers », In 
Proceedings of 2024 IEEE International Conference on Big Data (BigData), 
Washington, DC, USA, pp. 4429-4437, 2024. 
https://doi.org/10.1109/BigData62323.2024.10825767

Z. Wang, et al., « AnyPredict: Foundation Model for Tabular Prediction », 
arXiv:2305.12081, 2023. 
https://doi.org/10.48550/arXiv.2305.12081

X. Wu , et al., « Carbon Emissions Forecasting Based on Temporal Graph 
Transformer-Based Attentional Neural Network », Journal of Computational 
Methods in Sciences and Engineering. vol. 24, no. 3, pp. 1405-1421, 2024. 
https://doi.org/10.3233/JCM-247139

T. Zhang, et al., « Generative Table Pre-training Empowers Models for 
Tabular Prediction », arXiv:2305.09696, 2023. 
https://arxiv.org/abs/2305.09696
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Source (Retrieved 
on June 18th, 2025): 
https://techjury.net/
industry-analysis/iot/

SDG#9 IOT ANOMALY 
DETECTION WITH MLP

By 2025, there will be approximately 
13.1 billion connected devices, 
and the number of installed IoT 
devices is projected to reach 42.62 
billion. As IoT adoption accelerates, 
particularly in industrial settings, the 
scale and complexity of connected 
systems make them increasingly 
vulnerable to faults, cyberattacks, 
and system failures.

AI can detect anomalies and 
threats in real time, helping to 
prevent disruptions, data theft, and 
cascading failures across connected 
systems.
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A Multilayer Perceptron (MLP) consists of at least three types of layers: an 
input layer, one or more hidden layers, and an output layer. The input layer 
receives the raw data, such as features or images, and passes it to the next 
layer. Each neuron in the input layer corresponds to a feature in the input data, 
and these inputs are forwarded to the first hidden layer. The hidden layers 
are fully connected layers, meaning every neuron in one layer is connected 
to every neuron in the next layer. Each connection has an associated weight 
that is learned during training, which helps in adjusting the strength of the 
signal passed between neurons. The output of each neuron is computed as a 
weighted sum of the inputs followed by a non-linear activation function, such 
as ReLU (Rectified Linear Unit) or sigmoid. The choice of activation function 
introduces non-linearity, enabling the MLP to model complex relationships 
between inputs and outputs. The MLP can have multiple hidden layers, 
allowing it to learn hierarchical feature representations and increasing 
its capacity to model intricate patterns. The output layer is responsible 
for producing the final prediction, with the number of neurons typically 
matching the number of output classes for classification or a single neuron 
for regression tasks. During training, the MLP is optimized by minimizing a 
loss function through backpropagation.

MLPs are versatile models suitable for various tasks, including 
classification, regression, and function approximation, due to their simple 
yet powerful architecture. They can handle a variety of input types, including 
tabular data, images (when pre-processed), and other structured data. They 
can capture complex, non-linear relationships between inputs and outputs.

MLPs are sensitive to 
hyperparameters tuning and 
can be prone to overfitting.

MLP is a simple architecture, 
fast to train with basic 

hardware. It doesn’t require 
explicit feature engineering.

SDG#9 IOT ANOMALY DETECTION WITH MLP

METHOD
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3. OUTPUT

2. ARCHITECTURE

1. INPUT
Collection of loT telemetry data for intrusion detection and threat analysis
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FURTHER READING

Scan the QR code to access state-of-the-art 
research papers, datasets, codes, benchmarks, 
real-world use cases, and educational materials.

B.D. Ananya, K.S. Mahalakshmi, and P. Joshi, « Advancing IoT Security: 
A Stacked Hybrid AI Approach for Anomaly Detection », 2024 IEEE 
International Conference on Electronics, Computing and Communication 
Technologies (CONECCT), Bangalore, India, 2024, pp. 1-6, 2024.
https://doi.org/10.1109/CONECCT62155.2024.10677130

R. Ahmad, I. Alsmadi, « Machine Learning Approaches to IoT Security: A 
Systematic Literature Review », Internet of Things, vol. 14, 2021. 
https://doi.org/10.1016/j.iot.2021.100365

G. Raman, N. Somu, and A.P. Mathur, « A Multilayer Perceptron Model for 
Anomaly Detection in Water Treatment Plants », International Journal of 
Critical Infrastructure Protection, vol. 31, 2020. 
https://doi.org/10.1016/j.ijcip.2020.100393

S. Tsimenidis, T. Lagkas, and K. Rantos, « Deep Learning in IoT Intrusion 
Detection », J. Netw. Syst. Manage., vol. 30, no. 8, 2022. 
https://doi.org/10.1007/s10922-021-09621-9

G. Sivapalan, K.K. Nundy, S. Dev, B. Cardiff, and D. John, « ANNet: A 
Lightweight Neural Network for ECG Anomaly Detection in IoT Edge 
Sensors », in IEEE Transactions on Biomedical Circuits and Systems,  
vol. 16, no. 1, pp. 24-35, Feb. 2022. 
https://doi.org/10.1109/TBCAS.2021.3137646

L. Van Efferen and A.M.T. Ali-Eldin, « A Multi-Layer Perceptron Approach 
for Flow-Based Anomaly Detection », In Proceedings of 2017 International 
Symposium on Networks, Computers and Communications (ISNCC), 
Marrakech, Morocco, pp. 1-6, 2017. 
https://doi.org/10.1109/ISNCC.2017.8072036
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Source (Retrieved 
on June 18th, 
2025): https://www.
unodc.org/unodc/
frontpage/2024/
May/8-facts-you-
need-to-know-about-
human-trafficking-in-
the-21st-century.html 

SDG#10 COMBATING 
HUMAN-TRAFFICKING WITH 
SWIN TRANSFORMER

With nearly half of the world’s 
population living on less than $6.85 
per person per day, or with at least 
three billion people worldwide 
living in areas severely affected 
by climate change and non-
climatic environmental degradation, 
millions of individuals have become 
vulnerable to exploitation. 

AI can combat human trafficking 
by analyzing patterns in online ads 
at scale, financial transactions, and 
travel data to detect suspicious 
activity and identify trafficking 
networks. It enables law enforcement 
and NGOs to act faster and more 
precisely, improving victim rescue 
efforts and disrupting criminal 
operations.
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The key idea of Swin Transformer is the use of a shifted window approach, 
where the windows used for attention are shifted between successive 
layers, enabling the model to capture both local and global context across 
different layers. The input image is first divided into patches, and each patch 
is embedded into a fixed-size token vector using a patch embedding layer. 
These tokenized patches are processed through several Swin Transformer 
blocks, where each block consists of a series of multi-head self-attention 
layers applied within the local windows. The attention mechanism operates 
within these windows to capture local dependencies, but shifting the 
windows at each layer helps the model learn global dependencies as well. 
The attention computation is performed in linear time, more computationally 
efficient compared to standard Transformers, which operate in quadratic 
time. In addition to the window-based attention, Swin Transformers also 
incorporate a shifted window partitioning strategy where the windows overlap 
in successive layers, ensuring the model can learn from various spatial 
configurations. Each Swin Transformer block consists of a window-based 
multi-head self-attention layer and an MLP-based feedforward network, 
followed by normalization layers (LN). The architecture is hierarchical, i.e.,  
the resolution of the input representation progressively decreases through 
the network, while the number of channels (features) increases.

Swin Transformer (Shifted Window Transformer) is a state-of-the-art 
architecture designed to efficiently handle high-resolution images while 
maintaining strong performance in computer vision tasks. Unlike traditional 
transformer architectures which apply global attention over the entire image, 
Swin Transformer uses local attention within non-overlapping windows to 
reduce computational complexity.

SDG#10 COMBATING HUMAN-TRAFFICKING 
WITH SWIN TRANSFORMER

Swin transformers require 
significant computational 

resources and high memory 
consumption during training.

Swin transformers can 
efficiently model local and 

global visual features in 
images with high scalability.

METHOD
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3. OUTPUT

2. ARCHITECTURE

1. INPUT
A collection of images of hotel rooms
(e.g., from TraffickCam-Hotels-50K dataset)

A queried image to identify the hotel

Recognition and identification 
of the hotel from the 
input image
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FURTHER READING

Scan the QR code to access state-of-the-art 
research papers, datasets, codes, benchmarks, 
real-world use cases, and educational materials.

S.S. Esfahani, et al., « Context-specific Language Modeling for Human 
Trafficking Detection from Online Advertisements », In Proceedings of the 
57th Annual Meeting of the Association for Computational Linguistics (ACL), 
pp. 1180-1184, Florence, Italy, 2019. 
https://aclanthology.org/P19-1114/

A. Hatamizadeh, et al., « Swin UNETR: Swin Transformers for Semantic 
Segmentation of Brain Tumors in MRI Images », Lecture Notes in Computer 
Science, vol. 12962, Springer, Cham, 2022. 
https://doi.org/10.1007/978-3-031-08999-2_22

A.P. Joshi, et al., « HotelWatch: A Hotel Identification System to Combat 
Human Trafficking, » 2024 IEEE International Conference on Big Data 
(BigData), Washington, DC, USA, pp. 2801-2810, 2024.
https://doi.org/10.1109/BigData62323.2024.10825725

V.K. Saxena, et al., « MATCHED: Multimodal Authorship-Attribution 
To Combat Human Trafficking in Escort-Advertisement Data », 
arXiv:2412.13794, 2024. 
https://arxiv.org/abs/2412.13794

A. Stylianou, et al., « Hotels-50K: A Global Hotel Recognition Dataset », In 
Proceedings of AAAI Conference on Artificial Intelligence, 2019. 
https://doi.org/10.1609/aaai.v33i01.3301726

Y. Tang, et al., « Self-Supervised Pre-Training of Swin Transformers for 3D 
Medical Image Analysis », In Proceedings of 2022 IEEE/CVF Conference on 
Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 
pp. 20698-20708, 2022. 
https://doi.org/10.1109/CVPR52688.2022.02007
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Source (Retrieved on 
March 25th, 2025): 
https://www.who.
int/health-topics/
floods#tab=tab_1 
https://www.
worldbank.org/en/
topic/waterresources 
management

Chronic water scarcity affecting 
more than 40% of the global 
population, hydrological uncertainty, 
and extreme weather events (floods 
and droughts) are perceived as 
some of the biggest threats to global 
prosperity and stability. Water-
related disasters account for 70% of 
all deaths related to natural disasters. 
Flood damages are estimated at 
around USD 120 billion per year 
(only from property damage).

Accurately predicting extreme 
events and flood damages is critical 
for warning the populations and 
prioritizing disaster response. 

SDG#11 PREDICTING 
SEA LEVEL CHANGE 
USING LSTM
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METHOD

LSTM (Long Short-Term Memory) is a type of Recurrent Neural Network 
(RNN) designed to address the limitations of traditional RNNs, specifically the 
vanishing and exploding gradient problems. LSTM models are particularly 
effective for processing and predicting sequences of data, where temporal 
dependencies are important. Unlike RNNs, LSTMs have specialized units 
called memory cells that help retain information over long time periods. 
LSTM consists of three primary gates: the input gate, the forget gate, and 
the output gate. The input gate controls how much new information from 
the current time step should be stored in the memory cell. The forget gate 
decides what portion of the past information should be discarded from the 
memory, allowing the model to «  forget » irrelevant data. The output gate 
determines what part of the memory cell should be output at the current time 
step, which influences the hidden state passed to the next time step. The 
cell state is a key feature of LSTM carrying information across time steps 
with minimal changes. During training, the model learns how to update the 
cell state and the gates, allowing it to capture long-term dependencies in 
the data. LSTMs are typically trained using backpropagation through time, 
where gradients are computed at each time step and propagated back 
through the network to update the weights.

Long Short-Term Memory (LSTM) is a type of recurrent neural network (RNN) 
designed to overcome the vanishing gradient problem and capture long-term 
dependencies. LSTM cells have memory units that can store and retrieve 
information over extended periods. LSTMs are suitable for modeling complex 
patterns. They learn from past sea level variations to predict future changes, 
aiding in understanding and mitigating the impacts of climate change.

LSTMs require large 
amounts of data for effective 
but they are computationally 
expensive to train and may 
overfit on small datasets.

LSTMs can capture long-
term dependencies and 

patterns over longer 
sequences compared 
to traditional RNNs.

SDG#11 PREDICTING SEA LEVEL CHANGE  
USING LSTM
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3. OUTPUT

2. ARCHITECTURE

1. INPUT
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FURTHER READING

Scan the QR code to access state-of-the-art 
research papers, datasets, codes, benchmarks, 
real-world use cases, and educational materials.

N.A.A.B.S. Bahari, et al., « Predicting Sea Level Rise Using Artificial 
Intelligence: A Review », Arch. Computat. Methods Eng. vol. 30, pp. 4045-
4062, 2023. 
https://doi.org/10.1007/s11831-023-09934-9

A.L. Balogun and N. Adebisi, « Sea Level Prediction Using ARIMA, SVR 
and LSTM Neural Network: Assessing the Impact of Ensemble Ocean-
Atmospheric Processes on Models’ Accuracy », Geomatics, Natural 
Hazards and Risk, vol. 12, no. 1, pp. 653-674, 2021. 
https://doi.org/10.1080/19475705.2021.1887372

K. Ishida, et al., « Hourly-Scale Coastal Sea Level Modeling in a Changing 
Climate Using Long Short-Term Memory Neural Network », Science of The 
Total Environment, vol. 720, 2020. 
https://doi.org/10.1016/j.scitotenv.2020.137613

W. Li, A. Kiaghadi, and C. Dawson. « High Temporal Resolution Rainfall–
Runoff Modeling Using Long-Short-Term-Memory (LSTM) Networks », 
Neural Comput. Appl. 33, pp. 1261-1278, 2021. 
https://doi.org/10.1007/s00521-020-05010-6

O.M. Sorkhabi, B. Shadmanfar, M.M. Al-Amidi, « Deep Learning of Sea-Level 
Variability and Flood for Coastal City Resilience », City and Environment 
Interactions, vol. 17, 2023. 
https://doi.org/10.1016/j.cacint.2022.100098

P. Van Katwyk, et al., « A Variational LSTM Emulator of Sea Level 
Contribution from the Antarctic Ice Sheet », Journal of Advances in 
Modeling Earth Systems, vol. 15, no. e2023MS003899, 2023. 
https://doi.org/10.1029/2023MS003899



57

S
D

G
 #

12

R
E

S
P

O
N

SIB
LE CONSUMPTION & PRODU

C
TIO

N

HUMANS

Source (Retrieved 
on March 25th, 
2025): https://
sdgs.un.org/goals/
goal12#progress_
and_info

SDG#12 WASTE 
CLASSIFICATION 
WITH ZERO-SHOT 
LEARNING WITH CLIP

In 2022, 19% of global food was 
wasted, totalling 1.05 billion tonnes, 
with household waste accounting for 
60%. This waste generates significant 
greenhouse gas emissions, costing 
over $1 trillion annually, while 783 
million people suffer from hunger.

Classifying waste using image 
detection enables efficient and 
accurate sorting, which improves 
recycling rates. It helps automate 
the process, reducing the need for 
manual labor for more sustainable 
waste management practices.
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Zero-shot learning with CLIP uses a unified architecture that bridges vision 
and language by aligning images and text in a shared embedding space. The 
architecture consists of two main components: an image encoder and a text 
encoder. The image encoder can be a Vision Transformer (ViT) or a ResNet 
network, which processes images and converts them into feature vectors. 
The text encoder is a Transformer-based model (like GPT or BERT) that 
processes textual descriptions and converts them into corresponding feature 
vectors. Both encoders are trained simultaneously in a contrastive learning 
framework, where the goal is to bring the feature vectors of matching image-
text pairs closer together in the shared embedding space. During training, 
the model is fed with a large dataset of paired image-text data, learning to 
understand. The model uses a contrastive loss function, such as InfoNCE 
loss, to maximize the similarity of positive pairs (correct image-text pairs) 
and minimize the similarity of negative pairs (incorrect image-text pairs).  
This results in the image and text encoders learning to map both modalities 
into a shared vector space, where similar images and descriptions are closer 
together. During inference, the model can take a textual description as input 
and retrieve the most relevant image by comparing the text’s feature vector 
with the image feature vectors.

Zero-shot learning with CLIP (Contrastive Language-Image Pretraining) 
allows models to perform tasks like image classification, object detection 
without task-specific training by leveraging large-scale image-text pair 
datasets. By aligning images and textual descriptions in a shared embedding 
space, CLIP can generalize to a wide variety of tasks using natural language 
prompts, making it versatile and efficient across many domains.

CLIP’s performance relies 
heavily on the alignment 
between language and 

visual information in 
the training data.

Zero-shot learning with 
CLIP enables models to 

generalize across a wide 
range of tasks without 
task-specific training.

SDG#12 WASTE CLASSIFICATION WITH 
ZERO-SHOT LEARNING WITH CLIP

METHOD
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3. OUTPUT

2. ARCHITECTURE

1. INPUT
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FURTHER READING

Scan the QR code to access state-of-the-art 
research papers, datasets, codes, benchmarks, 
real-world use cases, and educational materials.

F.S. Alrayes, et al., « Waste Classification Using Vision Transformer Based 
on Multilayer Hybrid Convolution Neural Network », Urban Climate, vol. 49, 
2023. 
https://doi.org/10.1016/j.uclim.2023.101483

N. Islam, et al., « EWasteNet: A Two-Stream Data Efficient Image 
Transformer Approach for E-Waste Classification », In Proceedings of 2023 
IEEE International Conference On Software Engineering and Computer 
Systems (ICSECS), Penang, Malaysia, pp. 435-440, 2023. 
https://doi.org/10.1109/ICSECS58457.2023.10256321

K. Huang, et al., « Recycling Waste Classification Using Vision Transformer 
on Portable Device ». Sustainability, vol. 13, issue 21, no. 11572, 2021. 
https://doi.org/10.3390/su132111572

A. Kurz, et al., « WMC-ViT: Waste Multi-class Classification Using a Modified 
Vision Transformer », In Proceedings of 2022 IEEE MetroCon, Hurst, TX, 
USA, pp. 1-3, 2022. 
https://doi.org/10.1109/MetroCon56047.2022.9971136

N.N.I. Prova, « Garbage Intelligence: Utilizing Vision Transformer for Smart 
Waste Sorting », In Proceedings of 2024 Second International Conference 
on Intelligent Cyber Physical Systems and Internet of Things (ICoICI), 
Coimbatore, India, pp. 1213-1219, 2024.
https://doi.org/10.1109/ICoICI62503.2024.10696177

A. Radford, et al., « Learning transferable visual models from natural 
language supervision », In Proceedings of International Conference on 
Machine Learning (ICML), pp. 8748-8763, 2021. 
https://proceedings.mlr.press/v139/radford21a/radford21a.pdf
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Between 2013 and 2022, disasters 
worldwide claimed 42,553 mortalities 
each year. The number of persons 
affected by disasters per 100,000 
population has increased by over 
two-thirds, from 1,169 in 2005-2014 to 

1,980 in 2013-2022.

Satellite image segmentation of 
floods provides rapid, large-scale 
identification of affected areas, 
enabling timely and informed disaster 
response. It helps emergency teams 
prioritize regions needing immediate 
aid and plan evacuation or rescue 
operations more effectively with 
better coordination, resource 
allocation, and mitigation of further 
risks during and after the disaster.

Source (Retrieved 
on March 25th, 
2025): https://
sdgs.un.org/goals/
goal13#progress_
and_info

SDG#13 FLOOD AREA 
SEGMENTATION FROM 
IMAGES USING UNET
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U-Net follows an encoder-decoder structure, designed to capture both local 
and global features while preserving spatial information. It consists of two 
main parts: a contracting path (encoder) and an expansive path (decoder). 
The encoder is typically made up of convolutional layers, followed by max-
pooling operations, which progressively downsample the image to extract 
high-level features. In the encoder, each block consists of two convolutional 
layers with ReLU activations, followed by a max-pooling layer to reduce 
spatial dimensions. The bottleneck layer connects the encoder and decoder, 
where the feature map is at its smallest spatial resolution, capturing the most 
abstract features of the image. The decoder path upsamples the feature map 
using transposed convolutions (or deconvolutions), progressively increasing 
the resolution of the feature map. At each upsampling step, the decoder 
concatenates the corresponding feature maps from the encoder (via skip 
connections), which helps retain fine-grained spatial details lost during 
downsampling. These skip connections allow the model to combine low-
level features from the encoder with high-level features from the decoder, 
enhancing the model’s ability to localize precise segmentation boundaries. 
The final layer of the decoder typically uses a 1x1 convolution to map the 
feature map to the desired output dimension (e.g., the number of classes for 
segmentation).

The U-Net architecture is a deep learning model primarily used for image 
segmentation tasks, where pixel-level classification is required. U-Net 
can capture both global context and fine spatial details, making it highly 
effective for medical imaging, satellite or drone imagery, and other pixel-
level classification tasks. Its output is a segmentation mask, with pixel-wise 
predictions for each class in a multi-class or binary segmentation task.

UNet may struggle with 
complex, large-scale 

objects without additional 
context modules.

UNet is highly accurate in 
pixel-level segmentation 
with few labeled images 

in the training set.

SDG#13 FLOOD AREA SEGMENTATION 
FROM IMAGES USING UNET

METHOD
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FURTHER READING

Scan the QR code to access state-of-the-art 
research papers, datasets, codes, benchmarks, 
real-world use cases, and educational materials.
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vol. 16, issue 12, no. 1670, 2024. 
https://doi.org/10.3390/w16121670

B. Gaffinet, R. Hagensieker, L. Loi, and G. Schumann, « Supervised 
Machine Learning for Flood Extent Detection with Optical Satellite Data », In 
Proceedings of IGARSS 2023  IEEE International Geoscience and Remote 
Sensing Symposium, Pasadena, CA, USA, pp. 2084-2087, 2023. 
https://doi.org/10.1109/IGARSS52108.2023.10282274

B. Ghosh, et al., « Automatic Flood Detection from Sentinel-1 Data Using a 
Nested UNet Model and a NASA Benchmark Dataset », PFG – Journal of 
Photogrammetry, Remote Sensing and Geoinformation Science, vol. 92,  
pp. 1-18, 2024. 
https://doi.org/10.1007/s41064-024-00275-1

A. Kazadi, et al., « FloodGNN-GRU: A Spatio-Temporal Graph Neural 
Network for Flood Prediction », Environmental Data Science, vol. 3, no. e21, 
2024. 
https://doi.org/doi:10.1017/eds.2024.19

O. Ronneberger, P. Fischer, and T. Brox, « U-Net: Convolutional Networks 
for Biomedical Image Segmentation », Lecture Notes in Computer Science, 
vol. 9351. Springer, Cham, 2015. 
https://doi.org/10.1007/978-3-319-24574-4_28

Y. Tang, et al., « A Siamese Swin-Unet for Image Change Detection », Sci. 
Rep., vol. 14, no. 4577, 2024. 
https://doi.org/10.1038/s41598-024-54096-8

C. Wu, et al., « UNet-Like Remote Sensing Change Detection: A Review of 
Current Models and Research Directions », IEEE Geoscience and Remote 
Sensing Magazine, vol. 12, no. 4, pp. 305-334, Dec. 2024. 
https://doi.org/10.1109/MGRS.2024.3412770
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Source (Retrieved on 
March 25th, 2025): 
https://coast.noaa.
gov/states/fast-facts/
coral-reefs.html

About 25% of all marine species 
are found in, on, and around coral 
reefs, rivaling the biodiversity of 
tropical rainforests. In 2016, heat 
stress encompassed 51 percent of 
coral reefs globally. The most recent 
global bleaching event lasted from 
2014 to 2017, with more than 75% 
mass bleaching-level heat stress 
of global reefs and nearly 30% 
mortality-level stress. 

Automating coral reef monitoring 
allows for continuous, large-scale 
observation of reef health with 
greater speed and consistency 
than manual surveys. It enables 
early detection of threats such as 
bleaching, pollution, or overfishing, 
allowing for timely conservation 
actions. 

SDG#14 CORAL REEF 
AUTOMATED ANNOTATION 
WITH TRANSFER LEARNING
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Transfer learning relies on using a model pre-trained on a large dataset (e.g., 
ImageNet) and adapting it to a new, related task with a smaller dataset (e.g., 
underwater images). The process begins by selecting a pretrained CNN 
model, such as VGG16, ResNet, or Inception, which has learned general 
feature representations from a large dataset of images. The initial layers of the 
pretrained model, which detect basic visual features like edges and textures, 
are kept fixed (frozen) to preserve their learned representations. The higher 
layers (closer to the output) of the model are unfrozen and fine-tuned to the 
new task-specific dataset, allowing the model to adapt to the new task. The 
feature extraction process begins with passing the input images through the 
frozen layers of the pretrained network, extracting relevant features from the 
image. The output from the last layer is passed to a fully connected layer, 
which is newly added to the architecture for task-specific classification. A 
softmax activation function is typically applied to the output layer to convert 
the model’s raw output into a probability distribution across different classes. 
The model is then trained on the target dataset, using a cross-entropy loss 
function to measure the difference between the predicted class probabilities 
and the true labels. During fine-tuning, only the weights of the unfrozen layers 
are updated, allowing the model to specialize in the new task while retaining 
the general feature representations learned from the large dataset.

Transfer learning leverages models pre-trained on large image datasets, 
requiring fewer labeled coral images to fine-tune the model specific to 
coral reefs. This approach significantly reduces the manual effort required 
for coral reef monitoring and analysis, enabling more comprehensive and 
frequent assessments of these critical ecosystems.

Transfer learning can lead 
to suboptimal performance 
if the pre-trained model’s 

domain is too different 
from the target task.

Transfer learning enables 
faster training, better 

performance, and reduced 
data requirements for new 
tasks, when data is scarce.

SDG#14 CORAL REEF AUTOMATED 
ANNOTATION WITH TRANSFER LEARNING
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FURTHER READING

Scan the QR code to access state-of-the-art 
research papers, datasets, codes, benchmarks, 
real-world use cases, and educational materials.

S. Andréfouët, et al., « Choosing the Appropriate Spatial Resolution for 
Monitoring Coral Bleaching Events Using Remote sensing », Coral Reefs, 
vol. 21, pp. 147-154, 2002. 
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Benthic Structures », In Proceedings of the NeurIPS 2024 Workshop on 
Climate Change AI (CCAI 2024), Vancouver, Canada, Dec. 2024. 
https://arxiv.org/abs/2412.08228

Q. Chen, et al., « A New Deep Learning Engine for CoralNet », In 
Proceeding of the 2021 IEEE/CVF International Conference on Computer 
Vision Workshops (ICCVW), Montreal, BC, Canada, pp. 3686-3695, 2021. 
https://doi.org/10.1109/ICCVW54120.2021.00412
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Reef Annotation and Localization », In Proceedings of Conference and 
Labs of the Evaluation Forum, 2021. 
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J.P. Leidig, « Coral Reef Image Collections for Machine Learning, Mapping, 
and Monitoring », In Proceedings of OCEANS 2022, Hampton Roads, VA, 
USA, pp. 1-4, 2022. 
https://doi.org/10.1109/OCEANS47191.2022.9976984

O. Younes, et al., « Automatic Coral Detection with YOLO: A Deep 
Learning Approach for Efficient and Accurate Coral Reef Monitoring », In 
Proceedings of the European Conference on Artificial Intelligence, pp. 170-
177, 2023. 
https://doi.org/10.1007/978-3-031-50485-3_16
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Source (Retrieved on 
March 25th, 2025): 
https://www.un.org/
sustainabledevelopment/
blog/2019/05/nature- 
decline-unprecedented 
-report/

Around 1 million animal and plant 
species are now threatened with 
extinction, many within decades, 
more than ever before in human 
history. The average abundance of 
native species in most major land-
based habitats has fallen by at least 
20%, mostly since 1900. 

Assessing biodiversity with AI 
enables faster, more accurate 
identification and monitoring of 
species across large and complex 
ecosystems. By automating analysis 
from images, audio, or environmental 
data, AI enhances conservation 
efforts and informs data-driven 
environmental policies.

SDG#15 ACOUSTIC 
BIODIVERSITY 
ASSESSMENT WITH VAE
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A VAE is a generative model designed to learn a probabilistic mapping from 
input data to a latent space, enabling the generation of new data points 
similar to the input distribution. It is based on an autoencoder architecture 
but introduces probabilistic elements for better representation learning and 
generation. It first compresses input signals into a lower-dimensional latent 
space (Encoder), generating a mean and variance for the latent variables, 
thus capturing the signal’s characteristics. It samples from the latent space 
using the mean and variance, allowing gradients to back-propagate and 
reconstructs the signal from the latent representation (Decoder). The model 
is trained to minimize the reconstruction loss (e.g., binary cross-entropy 
or mean squared error) between the original input and the reconstructed 
data. The VAE also minimizes a KL divergence that measures the difference 
between the learned latent distribution and a prior distribution (usually a 
standard Gaussian). The latent representations are fed into a classifier (e.g., 
a neural network) to predict signal classes. During training, the model learns 
both to reconstruct the input and to maintain a latent space that approximates 
the prior distribution, which is typically a standard normal distribution.
One of the key benefits of the VAE is that it enables unsupervised learning, 
as it does not require labeled data for training and can model complex data 
distributions.

Variational Autoencoders (VAEs) can assess acoustic biodiversity by first 
encoding audio spectrograms into a latent space that captures essential 
acoustic features. By training on diverse species sounds, the VAE learns to 
disentangle and represent unique acoustic signatures. During inference, the 
model can classify unseen recordings based on their latent representations, 
identifying different species or biodiversity indicators. 

VAEs require careful tuning, 
making the training process 
more complex and sensitive 
to hyperparameter settings.

VAEs can reduce signal 
dimensionality, extract 
robust features, and 

enable data generation 
for data augmentation.

SDG#15 ACOUSTIC BIODIVERSITY 
ASSESSMENT WITH VAE
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FURTHER READING

Scan the QR code to access state-of-the-art 
research papers, datasets, codes, benchmarks, 
real-world use cases, and educational materials.
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Methods in Ecology and Evolution, 2022.
https://doi.org/10.1111/2041-210x.14003

D.A. Nieto-Mora, et al., « Soundscape Characterization Using 
Autoencoders and Unsupervised Learning », In Proceedings of Italian 
National Conference on Sensors, 2024. 
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2023. 
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Processing Conference (EUSIPCO), pp. 274-278, 2022. 
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Quantitative Soundscape Analysis in Python », Methods in Ecology and 
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https://doi.org/10.1111/2041-210x.13711
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Source (Retrieved on 
March 25th, 2025): 
https://datatopics.
worldbank.
org/sdgatlas/
goal-15-life-on-land

Forests play a key role in the 
mitigation of climate change, 
removing an estimated 16 billion 
tons of carbon dioxide (CO2) from 
the atmosphere annually. Globally, 
between 2000 and 2020, forest area 
declined by 2.4 percent or close to 
100 million hectares. In 2020, forests 
accounted for almost a third of 
global land area.

Detecting deforestation with AI allows 
for real-time monitoring of forests 
using satellite and aerial imagery, 
enabling faster responses to illegal 
logging and land degradation. This 
timely and automated detection is 
crucial for enforcing environmental 
laws, protecting biodiversity, and 
mitigating climate change.

SDG#15 DETECTING 
DEFORESTATION 
USING CNN
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A Convolutional Neural Network (CNN) is designed for processing grid-like 
data, such as images. It is composed of several layers that work together to 
automatically learn hierarchical feature representations from raw data. The 
input layer typically consists of an image, which is represented as a 3D tensor 
(height, width, and color channels, e.g., RGB). The convolutional layers are 
the core building blocks, where small filters (kernels) slide over the image 
and perform convolutions to extract local features like edges, textures, and 
patterns. Each filter in the convolutional layer generates a feature map that 
captures spatial hierarchies in the image, with deeper layers capturing 
more complex patterns. After convolution, a non-linear activation function, 
usually ReLU (Rectified Linear Unit) is applied to introduce non-linearity 
and enable the network to learn more complex relationships. Pooling layers 
(typically max pooling) follow convolutional layers to downsample the feature 
maps, reducing their spatial dimensions while retaining the most important 
information. Pooling reduces computational load, makes the network invariant 
to small translations, and helps to prevent overfitting. Fully connected (FC) 
layers are placed at the end of the network to perform high-level reasoning 
and classification based on the extracted features. The output of the last fully 
connected layer is often passed through a softmax activation function (for 
multi-class classification) to output class probabilities.

CNN-based approaches can extract features that are relevant for the 
detection of deforestation, such as texture, shape, and spectral information, 
enabling accurate and scalable segmentation of deforested areas from 
satellite images. CNNs have revolutionized image classification, object 
detection, segmentation, and video analysis, providing state-of-the-art 
performance on many visual recognition tasks.

Due to limited contextual 
understanding, CNNs 

may miss subtle changes 
in satellite images with 
complex landscapes.

CNN can extract spatial features 
from images with translation 
invariance and learn spatial 

hierarchies of features without 
manual feature extraction.

SDG#15 DETECTING DEFORESTATION
USING CNN
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FURTHER READING

Scan the QR code to access state-of-the-art 
research papers, datasets, codes, benchmarks, 
real-world use cases, and educational materials.
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Geoscience and Remote Sensing Letters 18, no. 5, pp. 771-775, May 2021. 
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Source (Retrieved 
on March 25th, 
2025): https://
datatopics.worldbank.
org/sdgatlas/
goal-16-peace-
justice-and-strong-
institutions?lang=en

Today, almost a billion people live 
in fragile and conflict-affected 
situations. In 2022, civilians across 
the world faced more than 116,000 
violent events, a third of them in 
Ukraine. 

Detecting social conflicts with AI 
enables early identification of rising 
tensions through the analysis of 
news, social media, and other data 
sources. This allows governments and 
organizations to intervene proactively, 
potentially preventing violence and 
reducing harm. By providing real-
time insights into conflict dynamics, 
AI supports informed decision-
making for peacebuilding and crisis 

management.

SDG#16 PREDICTION 
OF SOCIAL CONFLICTS 
WITH GNN
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A Graph Neural Network (GNN) is a type of deep learning model designed 
to handle graph-structured data, where nodes represent entities, and edges 
represent relationships between them. GNNs aim to learn node or graph-level 
representations by propagating information through the graph’s structure. 
The input to a GNN typically consists of a graph with nodes and edges, 
where each node has a feature vector representing its properties. GNNs 
operate by iteratively updating the node representations through message 
passing between neighboring nodes based on the graph’s connectivity. In 
each layer of the GNN, nodes aggregate information from their neighbors 
and update their feature vector using a neighborhood aggregation function 
(such as mean, sum, or max). The aggregation step combines the features of a 
node’s neighbors to capture local graph structure, while the update function 
refines each node’s feature vector. This process is repeated across multiple 
layers, allowing nodes to incorporate information from progressively larger 
neighborhoods in the graph. After several layers of message passing, the 
final node representations are typically used for node-level tasks (e.g., node 
classification) or aggregated for graph-level tasks (e.g., graph classification). 
The GNN can also use a readout function to pool information across all nodes 
in a graph, which is particularly useful for graph-level predictions.

GNNs with spatial embeddings can effectively model non-Euclidean 
spatial data, representing the complex geographical and social relationships 
between regions or actors involved in social conflicts. Temporal embeddings 
allow GNNs to capture time-dependent patterns and evolving trends. This 
allows the prediction of conflict likelihood based on learned representations 
of the evolving social dynamics and network structure.

GNNs can be computationally 
intensive, require large, high-
quality labeled datasets and 

have limited expressivity. 
for complex structures.

GNNs can capture complex 
spatial relationships and 
temporal dependencies 
or intricacies and scale 

robustly to large networks.

SDG#16 PREDICTION OF SOCIAL 
CONFLICTS USING GNN

METHOD
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FURTHER READING

Scan the QR code to access state-of-the-art 
research papers, datasets, codes, benchmarks, 
real-world use cases, and educational materials.
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SDG#17 CLIMATE 
AGREEMENT NEGOTIATION 
WITH MARL

The surge in aid from 2019 to 
2022 was driven by extraordinary 
spending related to the COVID-19 
pandemic and the war in Ukraine 
with a record $211.3 billion. But 
during this period, less aid (-1.2% 
Official Development Assistance) 
has been allocated for activities not 
related to the pandemic and the war 
in Ukraine. 

AI agents can simulate negotiation 
scenarios, balance competing 
interests, and explore win-win 
outcomes among diverse 
stakeholders. They can process 
complex climate, economic, and 
policy data to recommend fair and 
effective solutions in real time. 
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MARL is a framework in which multiple agents learn to make decisions and 
interact with each other in a shared environment, each aiming to maximize 
its reward while considering the actions of other agents. It is an extension of 
traditional reinforcement learning (RL) to multi-agent settings. In MARL, each 
agent has its policy that dictates how it behaves based on its observations 
of the environment and possibly other agents. State space in MARL refers to 
the collective states of all agents and the environment, while action space is 
the set of all possible actions each agent can take individually. Each agent 
receives feedback in the form of rewards from the environment, and the goal is 
to maximize the expected sum of rewards, often through value-based, policy-
based, or actor-critic methods. Agents must consider the behavior of other 
agents when making decisions, which can lead to cooperative, competitive, 
or mixed strategies, depending on the task. In cooperative MARL, all agents 
share a common goal (e.g., maximizing a team’s total reward) and may share 
information about their states and actions. In competitive MARL, agents work 
against each other (e.g., in games like chess or poker), where the goal is to 
maximize individual rewards at the expense of others. Centralized training 
with decentralized execution is a common paradigm, where agents are 
trained with global information but act based on local observations during 
execution.

Multi-Agent Reinforcement Learning (MARL) enables agents to solve 
complex, real-world problems by leveraging cooperation, competition, and 
coordination, making it ideal for tasks involving multiple decision-makers 
in dynamic environments. Communication protocols can be used in some 
MARL setups, allowing agents to exchange information about their states 
and actions to improve coordination in cooperative environments.

MARL training can become 
unstable due to non-

stationary and changing 
environments, as other 
agents adapt and learn.

MARL enables efficient 
problem-solving through 
agent collaboration and 
competition in dynamic 

environments.

SDG#17 CLIMATE AGREEMENT 
NEGOTIATION WITH MARL

METHOD
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Ablation Study: An experimental 
approach in machine learning where 
specific components or features of a model 
are systematically removed or altered to 
assess their impact on performance.

Activation: Mathematical function applied 
to a neuron's output that introduces non-
linearity into the model, enabling neural 
networks to learn complex relationships 
and patterns in data.

Non-Linear Activation: Function 
applied to a neuron’s output that 
introduces non-linearity into the model, 
allowing it to learn complex patterns 
(e.g., ReLU, tanh).

ELU (Exponential Linear Unit): 
Activation function that smooths the 
negative part of the input using an 
exponential curve, helping improve 
learning by allowing small negative 
outputs.

GELU (Gaussian Error Linear Unit): 
Activation function that weights 
inputs by their value and probability 
under a normal distribution, used in 
Transformer models like BERT for 
smoother learning.

Leaky ReLU: Variant of ReLU that 
allows a small, non-zero gradient 
for negative input values, helping to 
mitigate the dying neuron problem.

Parametric ReLU (PReLU): Adaptive 
version of Leaky ReLU where the slope 
of the negative part is learned during 
training, improving model flexibility.

ReLU (Rectified Linear Unit): 
Activation function that outputs the 
input if it is positive and zero otherwise, 

widely used for its simplicity and 
effectiveness in deep networks.

SELU (Scaled Exponential Linear 
Unit): Scaled version of ELU designed 
to self-normalize the activations of 
neurons, maintaining a mean and 
variance close to zero and one, 
respectively.

Sigmoid: Activation function that 
maps any real-valued input to a value 
between 0 and 1, commonly used in 
binary classification tasks to produce 
probabilities.

Softmax: Activation function that 
transforms a vector of real numbers 
into a probability distribution, used 
in the output layer for multi-class 
classification tasks.

Tanh: Activation function that maps 
inputs to a range between -1 and 1, 
offering zero-centered output which 
can be beneficial for learning dynamics.

Adam: An optimization algorithm that 
computes adaptive learning rates for each 
parameter by considering both the first 
and second moments of the gradients, 
enhancing convergence speed and 
stability. 

Adversarial Training: A technique in 
machine learning where models are 
trained on adversarial examples—
inputs intentionally modified to mislead 
the model—to improve robustness and 
resistance to such attacks. 

Backpropagation: A supervised learning 
algorithm for training neural networks by 
propagating the error backward through 
the network, adjusting weights to minimize 
the loss function.

Bagging: A machine learning ensemble 
technique that trains multiple models 
(usually of the same type) on different 
subsets of the training data and combines 

GLOSSARY
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their predictions to improve accuracy and 
reduce variance.

Balanced Dataset: A dataset where each 
class or category is represented equally, 
preventing the model from being biased 
toward the majority class.

Batch Normalization: A technique to 
normalize the inputs of each layer in a neural 
network, improving training speed and 
stability by reducing internal covariate shift. 

Bias: A parameter in a neural network that 
allows the model to make predictions even 
when all input features are zero, enabling 
the model to fit the data more flexibly.

Boosting: An ensemble learning method 
that combines multiple weak learners to 
create a strong learner, typically by focusing 
on correcting the errors of previous models. 

Cell State: Internal memory component of 
the LSTM cell that can carry information 
over long sequences. It is controlled by 
gates to regulate what information should 
be added or removed from it.

Complexity: In machine learning, it refers to 
the capacity of a model to capture intricate 
patterns in data; higher complexity can 
lead to overfitting if not properly managed.

Contrastive Feature: A characteristic or 
attribute in data that highlights differences 
between classes, aiding in distinguishing 
between them.

Contrastive Learning: A self-supervised 
learning approach where models learn 
by comparing similar and dissimilar pairs 
of data, encouraging the model to learn 
useful representations.

Convergence: The process where a 
machine learning algorithm's performance 
stabilizes, indicating that further training 
will not significantly improve results.

Convolution: A mathematical operation 
used in convolutional neural networks 

(CNNs) to extract features from input data 
by applying a filter or kernel over it.

Atrous Convolution: A convolution 
operation that introduces gaps 
between kernel elements, allowing the 
network to capture multi-scale context 
without increasing the number of 
parameters.

Depthwise Convolution: A type of 
convolution where each input channel 
is convolved with its own set of filters, 
reducing the number of parameters 
and computation compared to 
standard convolutions.

Pointwise Convolution: Type of 
convolution that uses 1×1 kernels to 
transform the number of channels 
in the input without affecting spatial 
dimensions.

Separable Convolution: Efficient 
form of convolution that splits the 
process into depthwise and pointwise 
convolutions to reduce computation 
and parameters.

Cross-Entropy: A loss function commonly 
used in classification tasks that measures 
the difference between two probability 
distributions, typically the true labels and 
the predicted probabilities.

Cross-Product Transformation: A 
mathematical operation that combines two 
vectors to produce a third, often used in 
tasks like computing attention scores in 
neural networks.

Decoder: A component in models like 
sequence-to-sequence architectures 
that generates output sequences from 
encoded representations, such as in 
machine translation.

Deconvolution: Also known as transposed 
convolution, it's an operation used to 
upsample data, often used in tasks like 
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image segmentation to increase spatial 
resolution.

Dense Layer: A fully connected layer in 
a neural network where each neuron is 
connected to every neuron in the previous 
layer, enabling complex representations.

Discriminator: In Generative Adversarial 
Networks (GANs), a model that 
distinguishes between real and generated 
data, guiding the generator to produce 
more realistic outputs.

Down-Sampling: The process of reducing 
the spatial dimensions of data, typically to 
decrease computational load and capture 
broader context.

Dropout: A regularization technique 
where randomly selected neurons are 
ignored during training, preventing 
overfitting by ensuring the model doesn't 
rely on specific neurons.

Embedding: A technique to represent 
discrete variables, like words, as 
continuous vectors in a lower-dimensional 
space, capturing semantic relationships.

Encoder: A component in models like 
sequence-to-sequence architectures that 
processes input sequences into a fixed-
size context vector, which is then used by 
the decoder.

Ensemble: A method that combines multiple 
models to improve overall performance, 
often by reducing variance and bias.

Entropy Maximization: A strategy in 
machine learning where the model is 
encouraged to make predictions with high 
uncertainty, often used in semi-supervised 
learning to explore data distributions.

Epsilon-Greedy: A policy in reinforcement 
learning where the agent mostly chooses 
the best-known action but occasionally 

selects a random action to explore the 
environment.

Error Analysis: The process of examining 
the types and sources of errors in a 
model's predictions to identify areas for 
improvement.

Feature: An individual measurable 
property or characteristic of a phenomenon 
being observed, used as input to machine 
learning models.

Feedforward Layer: A layer in a neural 
network where connections between the 
nodes do not form cycles, allowing data to 
flow in one direction from input to output.

Flattening: The process of converting 
multi-dimensional data into a one-
dimensional vector, often used before 
feeding data into fully connected layers.

Forget Gate: Group of mathematical 
operations responsible for deciding which 
information from the previous cell state  
should be discarded or forgotten based 
on the current input and the previous 
hidden state.

Gating Mechanism: Group of 
mathematical operations used in neural 
network architectures such as LSTMs and 
GRUs to control the flow of information, 
deciding what should be passed on, 
updated, or forgotten.

Generalization: Model's ability to 
perform well on unseen data by capturing 
the underlying patterns rather than 
memorizing the training set.

Generator: Component of a Generative 
Adversarial Network (GAN) responsible for 
creating synthetic data samples intended 
to resemble the real data.

Gradient: Vector of partial derivatives 
indicating the direction and rate of fastest 
increase of a function, used during 
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training to update model weights via 
backpropagation.

Hidden State: Memory of a recurrent cell. It 
stores temporal information from previous 
time steps and is passed along the 
sequence to influence future predictions.

Hyperparameter: Configuration variable 
that is set before training a model (e.g., 
learning rate, number of layers) and 
governs the training process and structure 
of the model.

Inference: Phase in which a trained model 
is used to make predictions on new, unseen 
data without updating its parameters.

Input Gate: Group of mathematical 
operations that determines which new 
information from the current input and the 
previous hidden state (h) should be added 
to the cell state.

Interpolation: Process of estimating 
intermediate values between two known 
data points, often used in data augmentation 
or image resizing.

Inverted CNN: Architecture where 
convolutional layers are applied in reverse 
to upsample feature maps, commonly used 
in image generation and segmentation 
tasks.

IoT (Internet of Things): Network of 
physical objects—“things”—that are 
embedded with sensors, software, and 
other technologies for the purpose of 
connecting and exchanging data with 
other devices and systems over the 
internet.

Kernel Function: Mathematical function 
used to compute similarity between data 
points in high-dimensional space without 
explicitly mapping them, enabling non-
linear classification.

KL (Kullback-Leibler) Divergence: 
Statistical distance that measures how 
much a model’s probability distribution 

is different from a true probability 
distribution.

Kernel Trick: Technique in machine 
learning that applies a kernel function 
to compute inner products in a high-
dimensional space without explicitly 
performing the transformation.

Label: Target output or class assigned 
to a data point, used during supervised 
learning to guide model predictions.

Latent Space: Abstract feature space 
where high-dimensional data is represented 
in a compressed and meaningful way, often 
learned by autoencoders or GANs.

Layer: Building block of neural networks 
consisting of a set of neurons that process 
input data and pass output to the next 
layer in the network.

Layer Normalization: Technique that 
normalizes the inputs across the features 
of a layer, stabilizing and speeding up 
training of deep neural networks.

Logit: Raw output value of a model’s 
final layer before applying an activation 
function like softmax or sigmoid, typically 
used in classification tasks.

Loss Function: Mathematical function 
that quantifies the difference between 
predicted outputs and true targets, 
guiding the optimization of the model.

InfoNCE Loss: Loss function used in 
contrastive learning that encourages 
similar samples to have similar 
representations while dissimilar samples 
are pushed apart in the embedding 
space.

Reconstruction Loss: Loss function 
that measures the difference between 
the original data and its reconstructed 
version, commonly used in autoencoders.

Memory Cell or Unit: Core component 
of LSTM networks that retains long-term 



90

dependencies by selectively adding and 
removing information through gating 
mechanisms.

Meta-Learner: Higher-level model trained 
to learn how to optimize other models or 
learning tasks, commonly used in meta-
learning or few-shot learning.

Model Collapse: Failure mode in training 
GANs where the generator produces limited 
or identical outputs, reducing diversity and 
usefulness of generated data.

Model Performance Metrics: Quantitative 
measures (e.g., accuracy, precision, recall) 
used to evaluate the effectiveness of a 
model on specific tasks or datasets.

MSE: Mean Squared Error. A regression loss 
function that calculates the average of the 
squares of differences between predicted 
and true values.

Multi-Head Self-Attention: Mechanism that 
allows a model to jointly attend to information 
from different representation subspaces at 
different positions in the sequence.

NLP: Natural Language Processing. A field 
of AI focused on enabling computers to 
understand, interpret, and generate human 
language.

Output Gate: Group of mathematical 
operations that regulates what information 
from the updated cell state should be 
included in the current hidden state (h), 
which will be passed to the next time step 
in the sequence.

Overfitting: Condition in which a model 
learns noise and details from the training 
data to the extent that it performs poorly 
on new, unseen data.

Patch: Subsection or region of an input 
image or data sample used for localized 

processing in tasks like vision transformers 
or convolutions.

Pattern: Repeated or recognizable 
structure in data that a model attempts to 
learn and generalize during training.

Policy: Strategy used by an agent in 
reinforcement learning to decide which 
action to take based on the current state 
of the environment.

Pooling (Max / Average): Operation used 
in convolutional networks to reduce spatial 
dimensions by summarizing local regions, 
commonly through max or average 
functions.

Pretrained Network: Neural network 
model that has already been trained on 
a large dataset and can be fine-tuned for 
specific tasks to improve efficiency and 
performance.

Prior Distribution: Assumed probability 
distribution over model parameters or 
latent variables before observing any data, 
used in Bayesian methods.

Readout Function: Component in 
neural networks that maps internal 
representations to output predictions, 
often used in graph neural networks or 
recurrent architectures.

Regularization: Set of techniques (e.g., 
L1/L2 penalty, dropout) used to prevent 
overfitting by penalizing complex models 
or reducing reliance on specific features.

Residual Connection: Shortcut path in 
deep networks that adds the input of 
a layer directly to its output, enabling 
the training of very deep architectures. 
 
Reward: Signal received by an agent in 
reinforcement learning indicating how 
good an action was in a given state, 
guiding future behavior.

Sampling: Process of selecting a subset 
of data from a larger dataset or drawing 
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data points from a probability distribution 
for training or generation.

Downsampling: Technique used to 
decrease the number of data samples 
by removing data from the majority 
class, often used to correct imbalanced  
datasets. 

Upsampling: Technique used to increase 
the resolution or number of data, often by 
inserting values or interpolating between 
existing data points. 

Scalability: Model or system's ability 
to efficiently handle increased data, 
complexity, or computational load without 
significant performance degradation.

Scaling: Transformation that adjusts the 
size or range of data values, often used to 
standardize features before training.

Self-Attention: Mechanism that allows 
a model to focus on different parts of 
a single sequence when computing 
representations, crucial in transformer 
architectures.

Masked Self-Attention or attention 
Masking: A method used in attention 
mechanisms to prevent certain 
positions in the input sequence from 
contributing to the output, often used 
in tasks like language modeling to 
maintain causality.

SGD: Stochastic Gradient Descent. 
Optimization algorithm that updates model 
parameters using a subset (mini-batch) 
of the data at each iteration to speed up 
learning.

Skip Connection: Shortcut pathway that 
bypasses one or more layers in a network, 
facilitating gradient flow and helping 
mitigate vanishing gradient problems.

Sliding Window: Technique for processing 
data in overlapping or non-overlapping 

chunks, useful for sequence modeling and 
object detection.

Stacking: Ensemble method that combines 
the outputs of multiple models using a 
meta-model, leveraging their strengths for 
improved prediction.

Tensor: Multi-dimensional array of 
numerical values used to represent data 
in machine learning models, supporting 
operations across various dimensions.

Testing Set: Subset of data reserved for 
evaluating a trained model’s performance on 
unseen examples, ensuring generalization.

Token: Smallest unit of text (word, character, 
or subword) that is processed by NLP 
models during training and inference.

Training Set: Portion of the dataset used 
to fit and train the model by minimizing the 
loss function and adjusting parameters.

Tuning: Process of adjusting 
hyperparameters to improve model 
performance, often performed using 
grid search, random search, or Bayesian 
optimization.

Validation Set: Subset of the dataset used 
during training to monitor performance and 
tune hyperparameters without affecting the 
final test evaluation.

Vanishing Gradient: Problem in deep 
neural networks where gradients become 
too small during backpropagation, leading 
to extremely slow learning in earlier layers.

Variance: Measure of how much model 
predictions fluctuate for different training 
datasets; high variance indicates potential 
overfitting.

Vector Representation: Numerical 
encoding of data (e.g., words, images) in a 
fixed-length vector format that captures its 
essential features for model input.

Weight: Trainable parameter in a neural 
network that determines the strength of 
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the connection between neurons, updated 
during training to minimize loss.

XGBoost: Extreme Gradient Boosting: A 
scalable, distributed gradient-boosted 
decision tree (GBDT) open source 
machine learning library.

Zero-Shot Learning: Learning paradigm 
where a model is able to make predictions 
on classes it has never seen before 
by leveraging semantic or descriptive 
information.
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