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How can Artificial Intelligence (Al) be effectively leveraged with the United Nations
Sustainable Development Goals (SDGs)? Beyond the hype, Al has the potential
to transform global challenges into opportunities—if applied responsibly and
inclusively. Yet, connecting complex technical systems to urgent sustainability
issues requires clarity, methodological rigor, and illustrative evidence.

This book offers a structured and visually engaging exploration of how Al can support
each of the 17 SDGs. By combining technical depth with accessible illustrations, it
bridges the gap between advanced Al concepts and their practical applications in
domains such as poverty estimation, climate action, health, and education. Readers
will encounter real-world case studies, annotated diagrams, and examples that
highlight both the promises and the limitations of Al for sustainability.

Designed as both a reference and a guide, the book speaks to researchers,
practitioners, policymakers, and students who want to understand not only the «
what » and « why » but also the « how » of Al for sustainable development. By
the end of this illustrated tour, readers will gain a clearer vision of where Al truly
contributes, where caution is needed, and how innovation can be directed to serve
the common good.

The author, Laure Berti-Equille is a Research Director in applied Data Science and
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| PREFACE ]

The world has already passed critical tipping points. Despite decades of progress,
poverty, hunger, inequality, climate change, and environmental degradation continue
to threaten global stability and human well-being. The United Nations’ Sustainable
Development Goals (SDGs) offer a bold blueprint to tackle these challenges by
2030—Dbut time is running out. To meet these ambitious targets, we must turn to the
most powerful tools available today.

Artificial Intelligence (Al) and deep learning can help us collect better data, make
faster decisions, personalize interventions, and scale solutions in ways never before
possible. But unlocking this potential requires clarity, rigor, and a deep understanding
of how Al models can be aligned with human needs. Artificial Intelligence can be a
powerful engine for solving today’s most urgent challenges. Across every continent,
Al models are being used to address the SDGs— from predicting poverty with
satellite images, to fighting climate change, protecting biodiversity, and improving
access to education and healthcare.

This book is a practical and engaging journey through some of the most impactful
applications of deep learning and Al architectures in service of the SDGs. Whether
you are a researcher, a student, or a decision-maker curious about how machine
learning can serve people and the planet, this book will show you some real use
cases, with concisely explained methods.

Each chapter includes:

- A technical breakdown of the method used, written clearly and concisely;

- An illustration of the architecture (such as CNN-LSTM, GAN, GNN, etc.);

- A balanced view of the pros and cons of the approach in that specific context;

- The state-of-the-art references, with DOI links for deeper reading;

- Allink to a curated Awesome List of resources such as surveys, relevant papers,
datasets, codes, benchmarks, and educational content to help you go further.

We’ve structured this book to be as hands-on and approachable as possible with
real examples of Al solving real problems. If you care about the planet, people, and
progress, and want to see how machine learning is being used for good, this book
is for you.

Yet much remains to be done; advancing the SDGs demands a new generation of

Al solutions that are not only powerful, but also ethical, transparent, frugal, resource-
efficient, and deeply aligned with the needs of people and planet.
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SDG#1 POVERTY
ESTIMATION FROM
SATELLITE IMAGES WITH
TRANSFORMERS

Around 712 million people — 8.5% of Source (Retrieved on
H R March 25th, 2025):

the global population— live today on https-iwww,

less than $2.15 per day, the extreme worldbank.org/

en/topic/poverty/
overview

poverty line relevant for low-income
countries. Three-quarters of all
people in extreme poverty live in
Sub-Saharan Africa or fragile and
conflict-affected countries.

Estimating poverty with Al s
especially useful in regions where
ground data is scarce, outdated,
or difficult to collect. Al models
can infer poverty indicators from
alternative data sources like satellite
imagery, mobile phone usage, or
night-time lights, offering timely and
granular insights.




SDG#1 POVERTY ESTIMATION FROM
SATELLITE IMAGES WITH TRANSFORMERS

Transformers offer parallel Complexity, interpretability,
computation, capture and the resource-intensive
long-range dependencies, nature of transformers
and enable contextual pose challenges for
understanding. real-world scenarios.

CONS

Transformers can analyze complex data patterns and can map
socioeconomic indicators with satellite image features, enabling accurate
poverty estimation. They utilize self-attention mechanisms to weigh
input relevance and process entire sequences of diverse data sources
simultaneously, enhancing parallelization.

- J

METHOD

A transformer architecture can predict poverty estimates from satellite
images by leveraging its ability to capture spatial patterns and contextual
relationships within data. Through self-attention mechanisms, transformers
encode and decode pixel-level features and their interactions across
the image, allowing them to identify key indicators of poverty such as
infrastructure, land use, and settlement patterns. By training on labeled
datasets to learn the mapping between the ground truth poverty data as
socioeconomic indicators surveyed on the ground and the satellite images,
transformers can learn to correlate specific image features with poverty
levels, enabling accurate predictions across different geographical regions.
The architecture consists of encoder and decoder blocks with multi-head
attention and feed-forward layers. Positional encoding is added to retain
sequence order information. Their ability to model long-range dependencies
has led to applications beyond NLP and vision and offer a scalable and
effective solution for poverty estimation, facilitating targeted interventions and
resource allocation in areas of need. However, challenges related to sparse
data labeling, spatial uncertainty due to the anonymization of the poverty
surveys, interpretability, and computational cost need to be addressed to
ensure the applicability of transformer-based poverty prediction systems in
real-world scenarios.
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(FURTHER READING )

0. Hall, et al., « A Review of Explainable Al in the Satellite Data, Deep
machine Learning, and Human Poverty Domain », Patterns, vol. 3, Issue 10,
no. 100600, 2022.

https://doi.org/10.1016/j.patter.2022.100600

R. Jarry, M. Chaumont, L. Berti-Equille, and G. Subsol, « Comparing
Spatial and Spatio-Temporal Paradigms to Estimate the Evolution of Socio-
Economic Indicators from Satellite Images », In 2023 |IEEE Int. Geosci.
Remote Sens. Symp., pp. 5790-5793, Jul. 2023.
https://doi.org/10.1109/IGARSS52108.2023.10282306

M. Kakooei and A. Daoud, « Increasing the Confidence of Predictive
Uncertainty: Earth Observations and Deep Learning for Poverty
Estimation », IEEE Transactions on Geoscience and Remote Sensing, vol.
62, pp. 1-13, no. 470461, 2024.

https://doi.org/10.1109/TGRS.2024.3392605

C. Yeh, et al., « SustainBench: Benchmarks for Monitoring the Sustainable
Development Goals with Machine Learning », In 2021 NeurlPS International
Conference, Datasets and Benchmarks Track, Dec. 2021.
https://openreview.net/forum?id=5HR3vCylgD

C. Yeh, et al., « Using Publicly Available Satellite Imagery and Deep
Learning to Understand Economic Well-Being in Africa », Nat. Commun.,
vol. 11, no. 2583, 2020.

https://doi.org/10.1038/s41467-020-16185-w

Y. Yuan, et al., « SITS-Former: A Pre-trained Spatio-spectral-temporal
Representation Model for Sentinel-2 Time Series Classification », Int. J. of
Applied Earth Observation and Geoinformation, no. 106, 2022.
https://doi.org/10.1016/j.jag.2021.102651

Scan the QR code to access state-of-the-art
research papers, datasets, codes, benchmarks,
real-world use cases, and educational materials.
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SDG#2 CROP DISEASE

DETECTION WITH

PRETRAINED NETWORKS
AND ENSEMBLE LEARNING

733 million people globally suffered
from malnutrition in 2023, an
increase of 152 million since 2019.
An estimated 28.9 % of the global
population — 2.33 billion people —
were moderately or severely food
insecure.

Automated early detection of
diseases that can affect crops
and livestock would cut costs for
cultivators and farmers and help
prevent major losses and low yield,

impacting food security.

HWUMANg

Source (Retrieved
on March 25th,
2025): https:/
sdgs.un.org/goals/
goal2#progress_
and_info
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SDG#2 CROP DISEASE DETECTION WITH
PRETRAINED NETWORKS AND ENSEMBLE LEARNING

Combining multiple models
improves predictive
performance but increases
complexity and training
and inference times.

Pretrained networks
facilitate the training of very
deep networks by mitigating

vanishing gradients.

CONS

Ensemble learning such as bagging, boosting, and stacking allows the
integration of diverse models to enhance generalization, effectively reducing
variance and bias. ResNet introduces residual connections, allowing identity
mappings. Xception utilizes depthwise separable convolutions for efficient
computation. Both architectures have been influential in advancing deep
learning and are widely used in image recognition tasks.

ResNet addresses the degradation problem in deep networks by introducing
residual learning. It uses shortcut connections to skip one or more layers,
allowing gradients to flow directly through these connections during
backpropagation. This approach enables the training of very deep networks
with hundreds of layers. Xception builds upon the Inception architecture by
replacing standard convolutions with depthwise separable convolutions. This
factorizes convolutions into a depthwise convolution followed by a pointwise
convolution, reducing computational cost while maintaining performance.
Both architectures have set benchmarks in image classification tasks.
Their designs have influenced subsequent neural network architectures.
Ensemble learning combines predictions from these models to produce a
more robust and accurate output. Bagging involves training multiple models
independently on random subsets of data and averaging their predictions,
reducing variance. Boosting sequentially trains models, each correcting
errors of its predecessor, aiming to reduce bias. Stacking combines outputs
of several models using a meta-model to improve predictive accuracy. This
approach leverages the strengths of diverse models, mitigating individual
weaknesses. Understanding ensemble strategies is valuable for building
robust models that are carefully tuned and validated to avoid overfitting.

14
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(FURTHER READING )

R. Kumar, et al., « Hybrid Approach of Cotton Disease Detection for
Enhanced Crop Health and Yield », IEEE Access, vol. 12, pp. 132495-
132507, 2024.

https://doi.org/10.1109/ACCESS.2024.3419906

L. Li, S. Zhang, and B. Wang, « Plant Disease Detection and Classification
by Deep Learning—A Review », IEEE Access, vol. 9, pp. 56683-56698,
2021.

https://doi.org/10.1109/ACCESS.2021.3069646

A. Nader, M.H. Khafagy, and S.A. Hussien, « Grape Leaves Diseases
Classification using Ensemble Learning and Transfer Learning »,
International Journal of Advanced Computer Science and Applications
(IJACSA), vol. 13, no. 7, 2022.
http://dx.doi.org/10.14569/IJACSA.2022.0130767

H.N. Ngugi, et al., « Revolutionizing Crop Disease Detection with
Computational Deep Learning: A Comprehensive Review », Environ. Monit.
Assess., vol. 196, no. 302, 2024.

https://doi.org/10.1007/s10661-024-12454-z

R. Rashid, et al., « An Early and Smart Detection of Corn Plant Leaf
Diseases Using loT and Deep Learning Multi-Models », IEEE Access, vol.
12, pp. 23149-23162, 2024,

https://doi.org/10.1109/ACCESS.2024.3357099

K. Taji, et al., « An Ensemble Hybrid Framework: A Comparative Analysis
of Metaheuristic Algorithms for Ensemble Hybrid CNN Features for Plants
Disease Classification », IEEE Access, vol. 12, pp. 61886-61906, 2024,
https://doi.org/10.1109/ACCESS.2024.3389648

Scan the QR code to access state-of-the-art
research papers, datasets, codes, benchmarks,
real-world use cases, and educational materials.
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SDG#3 AUGMENTATION
OF HEALTHCARE
DATA USING GAN

4 )
With the increased digitalization Source (Retrieved on
of health data and the market size frarch 25th, 2025):
ps://www.

of Al for healthcare expected to marketsandmarkets.

reach USD 45 billion by 2026, the SomiPressRelsases/
. . - gence-

role of synthetic data in the health healthcare.asp

information economy needs to be

precisely delineated to develop fault-

tolerant and patient-facing health

systems.

In healthcare, patient privacy is
governed by strict regulations like
HIPAA and GDPR, which synthetic
data helps to mitigate by mimicking
real data without revealing personal
identities. This is particularly helpful
when real datasets are small,
fragmented, or unavailable, such as
in rare diseases or underrepresented
populations.
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SDG#3 AUGMENTATION OF
HEALTHCARE DATA USING GAN

GANSs can learn to mimic GANSs require extensive
any data distribution training data, are
effectively to generate computationally expensive,
a balanced, high- and may generate
quality dataset unrealistic samples.

CONS

Generative Adversarial Networks (GANs) can simulate realistic biomedical
data and synthetic images, improving model training with data augmentation,
preserving patient privacy, and thus enhancing disease diagnosis, treatment
planning, and medical research. GANs consist of a generator and a discriminator
for adversarial training. The generator creates data; the discriminator evaluates
authenticity. Through competition, both networks improve. J

/ METHOD \
GANs consist of two neural networks: the generator and the discriminator.
The generator aims to create realistic data samples, while the discriminator
distinguishes between real and synthetic data. Over iterations, the generator
learns to produce increasingly realistic outputs by minimizing the difference
between its generated samples and real data. Trained with real data
samples and those generated by the generator, the discriminator learns to
differentiate. With opposing objectives, the generator seeks to minimize the
log-probability that the discriminator correctly classifies synthetic data as
synthetic, while the discriminator seeks to maximize this probability. Through
iterative training, the generator improves its ability to generate realistic
samples, while the discriminator becomes more adept at distinguishing
between real and synthetic data. Ideally, this process leads to a state where
the generator produces data that is indistinguishable from real data to
augment the dataset to improve the performance of downstream tasks of
classification or prediction. Applications include creating realistic images,
enhancing image resolution, and data augmentation. Despite their potential,
GANs are challenging to train due to issues like model collapse, where the
generator produces limited varieties of data. Careful design of network
architectures and training procedures is essential.

\_ J

()




1. INPUT

[> Real patient data
Y= of
en = :

X-ray, Blood reports, Medical reports, Medical test results, CT, MRI, Ultrasound output,
ECG, EMG signals, Doctors and technicians’ discussions and instructions

2. ARCHITECTURE
S/ SYNTHETIC
Generator DATA
Inputs Inputs
| Input | Input 2
embedding embedding S
. 2 s
(=] =
- ©
— [=4
(0] o
OR
SYNTHETIC
?
Feed Forward
— 3.0UTPUT A ~
Pathology
Prognosis detection
c c
o o
° AUGMENTED °
B DATASET kS
a o
Cancer type stage 1 Pneumonia
Cancer type stage ... Healthy
\ Cancer type stage 5 Covid J
LEGEND

Add & _II Multilayer @ Multihead Element-wise Position
Norm Perceptron ‘Self—Attention 69 Addition ® Embedding

ﬂ



(FURTHER READING )

R. J. Chen, et al., « Synthetic Data in Machine Learning for Medicine and
Healthcare », Nat. Biomed. Eng., vol. 5, pp. 493-497, 2021.
https://doi.org/10.1038/s41551-021-00751-8

Y. Chen, et al., « Generative Adversarial Networks in Medical Image
Augmentation: A Review », Computers in Biology and Medicine, 144, 2022.
https://doi.org/10.1016/j.compbiomed.2022.105382

K.K. Dixit, et al., « Data Augmentation with Generative Adversarial Networks
for Deep Learning in Healthcare », In Proceedings of 2023 International
Conference on Artificial Intelligence for Innovations in Healthcare Industries
(ICAIIHI), Raipur, India, 2023, pp. 1-6.
https://doi.org/10.1109/ICAIIHI57871.2023.10489462

K. Rais, M. Amroune, and M.Y. Haouam, « Medical Image Generation
Techniques for Data Augmentation: Disc-VAE versus GAN », In Proceedings
of 2024 6th International Conference on Pattern Analysis and Intelligent
Systems (PAIS), El Oued, Algeria, 2024, pp. 1-8.
https://doi.org/10.1109/PAIS62114.2024.10541221

A. Solanki and M. Naved (Eds), « GANs for Data Augmentation in
Healthcare », Springer Cham Publisher, Nov. 2023.
https://doi.org/10.1007/978-3-031-43205-7

Z.Yang, Y. Li, and G. Zhou, « TS-GAN: Time-series GAN for Sensor-based
Health Data Augmentation », ACM Trans. Comput. Healthcare, vol. 4, no. 2,
Article 12, April 2023.

https://doi.org/10.1145/3583593

Scan the QR code to access state-of-the-art
research papers, datasets, codes, benchmarks,
real-world use cases, and educational materials.
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SDG#3 PREDICTION
OF AIR POLLUTION
USING CNN-LSTM

Constant exposure to polluted air
increases the risk of coronary and
respiratory disease, stroke, diabetes
and lung cancer. In 2017, air pollution
was responsible for an estimated 5
million deaths globally, amounting to
nearly 9% of the world’s population.

With forecasting and predictive
models, practitioners can better
understand sources of pollution and
provide warnings to the public ahead
of peak pollution events.

Sources (Retrieved
on March 25th, 2025):
https://earth.org/10-
facts-about-air-
pollution/

https:/
ourworldindata.
org/air-pollution




SDG#3 PREDICTION OF AIR
POLLUTION USING CNN-LSTM

CNN-LSTM predicts Tuning and training the
accurately from multivariate CNN-LSTM is complex and
time series due to its ability computationally intensive.
to capture spatial-temporal It is prone to overfitting

patterns efficiently. and slow convergence.

CONS

A CNN-LSTM combines Convolutional Neural Networks (CNNs) and Long
Short-Term Memory (LSTM) networks. It offers a powerful framework for
predicting air pollution from multivariate spatiotemporal time series. CNN
handles spatial extraction; LSTM captures time. By leveraging both spatial and

temporal information, it can capture intricate relationships between various
weather parameters and past pollution levels.

N\ J

METHOD

~

A CNN-LSTM model combines the strengths of CNNs in capturing spatial
patterns and LSTMs in modeling temporal dependencies. In predicting air
pollution from multivariate spatiotemporal time series, such as weather data
and previous PM2.5 concentrations, the model first processes input data
through CNN layers. CNN layers analyze spatial relationships within data,
extracting relevant features like temperature, humidity, and wind speed
from weather data. Filters slide across the input grid, capturing patterns
and creating feature maps. This process helps identify spatial correlations
between different regions and weather variables. Next, each LSTM layer
receives the CNN’s output. LSTMs excel in capturing temporal dependencies
by selectively retaining information over time through gates: forget, input,
and output gates. This mechanism allows the model to remember long-
term dependencies and ignore irrelevant information. The LSTM layer
processes the sequential nature of time series data, such as historical
PM2.5 concentrations. It learns patterns and trends in past pollution levels,
capturing how they evolve. By incorporating previous PM2.5 concentrations,
the model considers the pollutant’s inertia and temporal dynamics. Temporal
dependencies boost performance over static CNN and help with noisy or
context-dependent sequences.
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(FURTHER READING )

X. Bai, et al., « Prediction of PM2.5 Concentration Based on a CNN-LSTM
Neural Network Algorithm », Peer J., vol. 12, no. e17811, Aug. 2024.
https://doi.org/10.7717/peerj. 17811

J. Duan, Y. Gong, J. Luo, et al. « Air-Quality Prediction Based on the ARIMA-
CNN-LSTM Combination Model Optimized by Dung Beetle Optimizer », Sci.
Rep. 13, 12127, 2023.

https://doi.org/10.1038/s41598-023-36620-4

L. Jovova and K. Trivodaliev, « Air Pollution Forecasting Using CNN-LSTM
Deep Learning Model », Proceedings of the 44th International Convention
on Information, Communication and Electronic Technology (MIPRO),
Opatija, Croatia, pp. 1091-1096, 2021.
https://doi.org/10.23919/MIPRO52101.2021.9596860

J. Wang, et al., « An Air Quality Index Prediction Model Based on CNN-
ILSTM », Sci. Rep., vol. 12, no. 8373, 2022.

https://doi.org/10.1038/s41598-022-12355-6

Q. Zhang, et al., « Deep-AIR: A Hybrid CNN-LSTM Framework for Fine-
Grained Air Pollution Forecast », arXiv: 2002.22957, 2020.
http://arxiv.org/pdf/2001.11957.pdf

X. Zhu, et al., « Enhancing Air Quality Prediction with an Adaptive PSO-
Optimized CNN-Bi-LSTM Model », Applied Sciences, vol. 14, issue 13, no.
5787, 2024.

https:/doi.org/10.3390/app14135787

Scan the QR code to access state-of-the-art
research papers, datasets, codes, benchmarks,
real-world use cases, and educational materials.
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SDG#4 PERSONALIZATION OF
A CONVERSATIONAL
TUTORING SYSTEM WITH LLM

Only 58% of students worldwide Source (Retrieved
H . on March 25th,
achlgyed at Iea§t the' minimum 2025): https./!
proficiency level in reading at the sdgs.un.org/goals/
end of primary schooling in 2019. A goald#iprogress_
and_info

large share of countries is moving
backwards in learning outcomes at
the end of lower secondary school.

Developing personalized education
tools with Al can help overcome
shortages of qualified teachers
and limited educational resources
by delivering adaptive, self-
paced learning. It promotes
equitable access to quality
education, empowering students in
underserved areas to improve their
skills and future opportunities.




SDG#4 PERSONALIZATION OF A CONVERSATIONAL
TUTORING SYSTEM WITH LLM

LLMs are resource-intensive
and prone to hallucination
and stereotype amplification
due to bias and low-
quality training data.

LLMs excel at zero-shot
and few-shot learning
across various application
domains and tasks.

CONS

LLMs are massive transformer-based architectures with billions of
parameters. They are pretrained on diverse, very large-scale corpora and
fine-tuned for specific downstream tasks. They are capable of reasoning,
generation, translation and can be used in chatbots, summarization,
question-answering, which makes them adequate for backing novel solutions
in Education.

- J

METHOD
4 N
AlLargelLanguageModel (LLM)is based onastack oftransformerblocks, each
containing self-attention and feedforward layers. The model begins with an
embedding layer that converts input tokens (words or subwords) into dense
vector representations. These embeddings are combined with positional
encodings to provide information about token order. Each transformer block
applies multi-head self-attention to allow the model to weigh relationships
between tokens. The attention mechanism computes attention scores that
determine how much focus to give to other tokens. Then, the result is passed
through a feedforward neural network with non-linear activations. Layer
normalization and residual connections help stabilize training and allow
deep architectures. The outputs from each transformer layer are passed on
to the next block, building increasingly abstract representations. The final
transformer layer produces context-aware embeddings for each token. These
are passed to a linear projection layer followed by a softmax to produce a
probability distribution over the vocabulary. The model is trained to predict
the next token in a sequence (causal language modeling) or to fill in blanks
(masked language modeling). Some LLMs use decoder-only models (e.g.,
GPT), while others use encoder-decoder formats (e.g., T5). To handle long
texts, techniques like attention masking and sliding windows are used.

- J
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Targets
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3.0UTPUT

[> Conversations and learning experiences through interactions based on natural language

J

" c 0 c
% 328 Let’s start by looking 32 Let’s start by looking
55 at the picture. Can 55 at the picture. Can
3 H you tell me, what do 3 H you tell me, what do
S5 you see in the sky? S5 you see in the park?
= 2% 23
Sz ® ... (looks away) S= Oh there’s a woman. She
=5 = -;—:’ is playing with dogs.
Scene: Ina park 3 That’s okay. Take your :9:’
Person : One woman, time. Can you see Well done! Can you
two dogs what the woman in describe how the
Objects : Wooden stick, the picture is doing? dogs are reacting?
tree., ;.:\I.ane, ete. . Sheis ... sheiis They are happy, dogs
Activities : A woman is standing ... love wooden sticks.
carrying a wooden stick,
playing with her dog in a park.
LEGEND
—> Training —> Inference @ Element-wise Addition ® Rotary Positional Encoding
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W. Gan, et al., « Large Language Models in Education: Vision and
Opportunities », In Proceedings of 2023 IEEE International Conference on
Big Data (BigData), pp. 4776-4785, 2023.
https://doi.org/10.48550/arxiv.2311.13160

S. Laato, et al,, « Al-Assisted Learning with ChatGPT and Large Language
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International Conference on Advanced Learning Technologies (ICALT),
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https://doi.org/10.1109/ICALT58122.2023.00072

Z. Liu, S.X. Yin, and N.F. Chen., « Optimizing Code-Switching in
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ChatGPT and Similar Large Language Models: Challenges, Future
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https:/doi.org/10.2139/ssrn.4599104
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SDG#5 GENDER-BASED
VIOLENCE CLASSIFICATION
FROM TWEETS WITH
ATTENTION-BASED BI-GRU

(Over 230 million girls and women\ Source (Retrieved
worldwide are estimated to have ggz";’)"’;:’t::‘;
undergone female genital mutilation sdgs.un.org/goals/
as of 2024, and globally, around gg;’jﬁffg’ess—

640 million girls and women were
married before age 18, with India
accounting for one-third.

Using Al to detect gender-based
violence (GBV) online is crucial
for identifying harmful patterns
and content at scale, which would
be impossible through manual
moderation alone. It helps protect
vulnerable individuals by flagging
threats, harassment, and abuse in
real time, enabling faster intervention
and making digital spaces safer and
more equitable for all genders.




SDG#5 GENDER-BASED VIOLENCE CLASSIFICATION
FROM TWEETS WITH ATTENTION-BASED BI-GRU

The performance of
Bi-GRU with attention
can be very sensitive to
hyperparameters and
needs large memory.

GRUs offer a good trade-
off between complexity
and performance in
sequential modeling tasks.

CONS

A GRU is a type of recurrent neural network (RNN) designed to handle
sequence data effectively. It was introduced to address the vanishing
gradient problem found in traditional RNNs. GRUs have gating mechanisms
that control the flow of information, making them more efficient than standard
RNNSs. Attention-based GRUs are lighter and faster than transformer models
but still offer significant gains over plain RNNs or GRUs.

- J

METHOD

4 N
A Bi-GRU (Bidirectional GRU) architecture is designed to capture information
from both the past and future of a sequence. It consists of two types of GRU
layers: one processes the input sequence from left to right (forward direction),
and the other from right to left (backward direction). Each GRU layer outputs
a hidden state at every time step, creating two distinct sequences of hidden
states. The outputs from both GRUs are typically concatenated at each
time step to provide a richer, bidirectional representation. This bidirectional
nature allows the model to learn dependencies in both directions, improving
performance on tasks with context-sensitive information. The sequence of
concatenated hidden states is then passed to an attention mechanism for
further refinement. The attention mechanism computes a context vector by
assigning different attention weights to different time steps. These attention
weights represent how important each hidden state is for the final prediction
at a given time step. The context vector effectively provides a dynamic,
focused summary of the entire input sequence at each step. The Bi-GRU with
attention is particularly effective in handling long-range dependencies and
long input sequences. Overall, the combination of bidirectional context from
the GRUs and dynamic focus via attention provides a powerful architecture
for sequence modeling.
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— 1.INPUT N

> Collection of tweets with 5 types of labels for training: emotional,
sexual, economic, physical violence and harmful practice
@ 15 Jun 2020 @ 15 Jun 2020
Replying to @someone Replying to @someone
You are a #&$@! as far as I've seen As a “nigger* and concerned citizen: you're a @;$# !
3
@_15 Jun 2020 @ 15 Jun 2020
Replying to @someone Replying to @someone

Ugly and fat with %!@ hair. Sad to be you :( 4chan wants you. good luck i#@%
1

. J
— 2. ARCHITECTURE

Preprocessing Input layer

i replace #hashtag
i replace @username
remove missing values
remove punctuations
remove stop words
remove numbers % GloVe
: remove retweet

eliminate special characters

lowering

lemmatization

emoji’s handling
- replace url

Word Embedding
DxK Representation Text :

e i Concatenation Pooling Convolution
Normalization: H ;

Merge
layer

Bi-GRU

Output /I\\l’

layer

ry
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TV

Bi-GRU

" Attention weights
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3.0UTPUT

Tweet classification

(" )
@ 20 Jun 2022
Replying to @someone . .
You are a !%;j&! @#!! monster to kill physical_violence
3
- J
( )
@ 20 Jun 2022
Replying to @someone

As a “nigger” and concerned citizen: you're a (#@% ©conomic_violence
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Scan the QR code to access state-of-the-art
research papers, datasets, codes, benchmarks,
real-world use cases, and educational materials.

\L J

J\




SDG#6 WATER SANITATION
PREDICTION USING LS-SVM

4 )

More than 1,000 children under 5 Source (Retrieved on

H H March 25th, 2025):
die every day from diseases r.ela'ted https-/iwww,
to lack of clean water, sanitation, worldvision.org/

H HTH clean-water-news-

qnd hyglene and 1.69 billion people stories/global-

live without access to adequate water-crisis-facts
sanitation.

Developing Al tools for water
pollution prediction enables the early
detection of contamination risks by
analyzing complex environmental
data in real time. This supports
timely intervention, protects public
health, and ensures more effective
management of water resources.




SDG#6 WATER SANITATION PREDICTION
USING LS-SVM

LS-SVMs are able to capture
non-linear relationships in
data, providing accurate
forecasts aiding in proactive
sanitation measures.

LS-SVMs are
computationally intensive
and sensitive to the choice
of kernel parameters.

CONS

~

Least Squares Support Vector Machines (LS-SVMs) can predict
water quality by learning from historical data to classify or regress water
parameters. It minimizes simultaneously the margin and the sum of square
errors (SSEs) on training samples to make accurate predictions in water
pollution monitoring and contaminant identification.

/ METHOD \
LS-SVM (Least Squares Support Vector Machine) modifies the standard SVM
formulation by replacing the quadratic loss function with a least squares loss
function. This change leads to a linear system of equations instead of the
typical convex quadratic optimization problem. The idea behind SVM is to
find a hyperplane that separates classes with a maximum margin. SVR is an
extension of SVM used from predicting numerical values using regression. In
LS-SVM, the objective is to minimize the squared error between the predicted
values and the true values, while maintaining a large margin for separation.
Like traditional SVM, LS-SVM uses a kernel function to map the input features
into a higher-dimensional space where linear separation is easier. The kernel
trick allows LS-SVM to handle non-linear relationships by computing the inner
products in the higher-dimensional space without explicitly mapping the
data. The architecture consists of two main parts: the feature transformation
(via the kernel) and the model learning phase. In the model learning phase,
LS-SVM seeks to minimize a loss function that combines both the squared
error and a regularization term for margin maximization. The regularization
term ensures that the solution does not overfit the data. The choice of kernel
(e.g., linear, polynomial, Gaussian) significantly affects the model’s ability to
generalize to different types of data.

_




1. INPUT
(_

%o

[>Physical data [>Chemical data [>Biological data [>Environmental [>Household survey data

data b

A

[Evaluation of Water, Sanitation and Defecation Practices]

2

[Classification of indicators: Water index, Sanitation index, Hygiene index]

~

2. ARCHITECTURE
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real-world use cases, and educational materials.

. J

M




SDG#7 CONTROLLING &
SCHEDULING ENERGY WITH
DEEP REINFORCEMENT
LEARNING

Almost 800 million people globally Source (Retrieved on
have no electricity, and about March 25th, 2025):
. . , ps://www.un.org/
2.6 Dbillion, a third of the world’s en/climatechange/
population, have no access to damilola-ogunbiyi-

i ending-energy-
clean cooking fuels. The lack of poverty

clean energy not only harms the
environment but also kills 1.6 million
people in the world every vyear
from fumes from burning fuels like
charcoal to cook food.

Developing Al tools for energy
control and scheduling enables
smarter, real-time management
of energy resources, improving
efficiency and reducing costs.
These tools can help balance supply
and demand, integrate renewable
energy, and optimize usage across
grids, buildings, and devices.
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SDG#7 CONTROLLING & SCHEDULING ENERGY
WITH DEEP REINFOREMENT LEARNING

DRL can be unstable,
sensitive to hyperparameter
settings, and requires
significant computational
resources and training data.

DRL ensures efficient
decision-making, adapts to
dynamic environments, with

continuous improvement.

CONS

Deep Reinforcement Learning (DRL) can optimize energy management
by learning to make decisions that maximize efficiency and reduce costs,
adapting to dynamic environments like power systems, and improving over
time with continuous feedback and adjustments. DRL algorithms typically rely
on exploration and exploitation strategies, like epsilon-greedy (which balances
random actions and learned actions) or entropy maximization.

DRL involves training agents using neural networks to optimize decisions
from collected observations of an environment. The agent learns from
interactions by receiving rewards for each of its actions, aiming to maximize
the reward signal over time. The agent takes actions in the environment,
observes the resulting states, and receives feedback in the form of a reward.
The agent’s goal is to learn a policy that maps states to actions to maximize
its cumulative reward. Deep learning models, particularly deep neural
networks, are used to approximate the value function or policy due to the
high-dimensionality of state spaces. The value function, typically denoted
as V(s), estimates the expected future reward from a given state s, while the
policy n(s) defines the action to take at each state. Deep Q-Network (DQN)
uses a neural network to approximate the Q-value function, Q(s,a), where Q
represents the expected future reward for state s and action a. DQN uses
discrete action spaces and is based on a value function. It estimates the
maximum possible reward attainable from a given state using a Q-value
function updated via the Bellman equation. DDPG (Deep Deterministic
Policy Gradient), suitable for continuous action spaces, operates on a policy
gradient method where it directly learns the optimal policy that maximizes
reward, unlike DQN, which selects actions based on Q-values. DDPG utilizes
actor-critic architecture to stabilize learning in such environments.
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Scan the QR code to access state-of-the-art
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real-world use cases, and educational materials.
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SDG#8 PREDICTION OF
GHG EMISSIONS WITH
TABULAR BACKBONES

The ‘average’ person produces 6.28 Source (Retrieved

[P on June 18th,
tonnes. of GHG emissions gnnually. 2025): https-/iwww.
But this number varies widely by wri.org/insights/
country and income level. Wealthier, cliinate-impact:
higher-consuming populations

may emit up to 110 tonnes of CO,
equivalent (CO,eq) per year. Among
lower-income groups, emissions can
be as low as 1.6 tonnes of CO,eq per
year.

Predicting GHG emissions with
Al can enable accurate, real-time
forecasting based on complex and
dynamic data from various sectors
to help policymakers and industries
monitor progress, design effective
mitigation strategies, and meet
climate targets more efficiently.

4




SDG#8 PREDICTION OF GHG EMISSIONS
WITH TABULAR BACKBONES

.

Tabular foundation
models require large-
scale pretraining datasets
and are computationally
expensive to fine-tune.

Tabular foundation models
support downstream tasks
with few labeled samples
using transferability.

CONS

Tabular foundation models (TFM) are trained on large tabular datasets to
capture generalized representations. They use attention or transformer-style
architectures tailored for table formats and they can learn representations
of column types, distributions, and cross-feature relations outperforming
XGBoost and traditional MLPs on structured data. They reduce the need for
manual feature engineering and domain-specific preprocessing.

/

METHOD

The TFM architecture typically includes an embedding layer to handle
categorical features by converting them into dense vector representations.
Continuous features (numeric variables) are often passed directly into the
model, possibly undergoing normalization or scaling. These embeddings
and numeric features are then concatenated to form a unified input vector
for the model. The model often uses feedforward neural networks (i.e., fully
connected layers) to process the data, with one or more hidden layers. Each
hidden layer applies linear transformations followed by non-linear activation
functions like ReLU (Rectified Linear Unit) to introduce complexity. Dropout or
batch normalization is typically applied between layers to reduce overfitting
and stabilize training. The final layer of the network produces a single scalar
value for regression tasks or a probability distribution for classification tasks.
To handle feature interactions effectively, more sophisticated techniques like
attention mechanisms or cross-product transformations are used. Unlike
traditional models (like decision trees or logistic regression), TFMs leverage
deep learning to automatically capture complex relationships between
features. The model is trained using backpropagation and gradient-based
optimization methods (e.g., Adam or SGD) to minimize a loss function.
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SDG#9 IOT ANOMALY
DETECTION WITH MLP

By 2025, there will be approximately
131 Dbillion connected devices,
and the number of installed loT
devices is projected to reach 42.62
billion. As loT adoption accelerates,
particularly in industrial settings, the
scale and complexity of connected
systems make them increasingly
vulnerable to faults, cyberattacks,
and system failures.

Al can detect anomalies and
threats in real time, helping to
prevent disruptions, data theft, and
cascading failures across connected
systems.

Source (Retrieved

on June 18th, 2025):
https://techjury.net/
industry-analysis/iot/




SDG#9 |IOT ANOMALY DETECTION WITH MLP

MLP is a simple architecture,
fast to train with basic
hardware. It doesn’t require
explicit feature engineering.

MLPs are sensitive to
hyperparameters tuning and
can be prone to overfitting.

CONS

~

MLPs are versatile models suitable for various tasks, including
classification, regression, and function approximation, due to their simple
yet powerful architecture. They can handle a variety of input types, including
tabular data, images (when pre-processed), and other structured data. They
can capture complex, non-linear relationships between inputs and outputs.

N\ J

/ METHOD \
A Multilayer Perceptron (MLP) consists of at least three types of layers: an
input layer, one or more hidden layers, and an output layer. The input layer
receives the raw data, such as features or images, and passes it to the next
layer. Each neuronin the input layer corresponds to a feature in the input data,
and these inputs are forwarded to the first hidden layer. The hidden layers
are fully connected layers, meaning every neuron in one layer is connected
to every neuron in the next layer. Each connection has an associated weight
that is learned during training, which helps in adjusting the strength of the
signal passed between neurons. The output of each neuron is computed as a
weighted sum of the inputs followed by a non-linear activation function, such
as RelU (Rectified Linear Unit) or sigmoid. The choice of activation function
introduces non-linearity, enabling the MLP to model complex relationships
between inputs and outputs. The MLP can have multiple hidden layers,
allowing it to learn hierarchical feature representations and increasing
its capacity to model intricate patterns. The output layer is responsible
for producing the final prediction, with the number of neurons typically
matching the number of output classes for classification or a single neuron
for regression tasks. During training, the MLP is optimized by minimizing a
loss function through backpropagation.
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[> Collection of loT telemetry data for intrusion detection and threat analysis
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B.D. Ananya, K.S. Mahalakshmi, and P. Joshi, « Advancing loT Security:
A Stacked Hybrid Al Approach for Anomaly Detection », 2024 IEEE
International Conference on Electronics, Computing and Communication
Technologies (CONECCT), Bangalore, India, 2024, pp. 1-6, 2024,
https://doi.org/10.1109/CONECCT62155.2024.10677130

R. Ahmad, I. Alsmadi, « Machine Learning Approaches to loT Security: A
Systematic Literature Review », Internet of Things, vol. 14, 2021.
https://doi.org/10.1016/j.i0t.2021.100365

G. Raman, N. Somu, and A.P. Mathur, « A Multilayer Perceptron Model for
Anomaly Detection in Water Treatment Plants », International Journal of
Critical Infrastructure Protection, vol. 31, 2020.
https://doi.org/10.1016/}.ijcip.2020.100393

S. Tsimenidis, T. Lagkas, and K. Rantos, « Deep Learning in loT Intrusion
Detection », J. Netw. Syst. Manage., vol. 30, no. 8, 2022.
https://doi.org/10.1007/s10922-021-09621-9

G. Sivapalan, K.K. Nundy, S. Dev, B. Cardiff, and D. John, « ANNet: A
Lightweight Neural Network for ECG Anomaly Detection in loT Edge
Sensors », in IEEE Transactions on Biomedical Circuits and Systems,
vol. 16, no. 1, pp. 24-35, Feb. 2022.
https://doi.org/10.1109/TBCAS.2021.3137646

L. Van Efferen and A.M.T. Ali-Eldin, « A Multi-Layer Perceptron Approach
for Flow-Based Anomaly Detection », In Proceedings of 2017 International
Symposium on Networks, Computers and Communications (ISNCC),
Marrakech, Morocco, pp. 1-6, 2017.
https://doi.org/10.1109/ISNCC.2017.8072036

Scan the QR code to access state-of-the-art
research papers, datasets, codes, benchmarks,
real-world use cases, and educational materials.
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SDG#10 COMBATING
HUMAN-TRAFFICKING WITH
SWIN TRANSFORMER

With nearly half of the world’s Source (Retrieved
P i on June 18th,
population living on less .than $6.85 2025): https-Hwww.
per person per day, or with at least unodc.org/unodc/
HIR H frontpage/2024/
t'hree .bllllon people  worldwide Way/B-facte-you-
living in areas severely affected need-to-know-about-

human-trafficking-in-

by climate change and non- the.21st.century.htmf

climatic environmental degradation,
millions of individuals have become
vulnerable to exploitation.

SDG #10

Al can combat human trafficking
by analyzing patterns in online ads
at scale, financial transactions, and
travel data to detect suspicious
activity and identify trafficking
networks. Itenables law enforcement
and NGOs to act faster and more
precisely, improving victim rescue
efforts and disrupting criminal
operations.




SDG#10 COMBATING HUMAN-TRAFFICKING
WITH SWIN TRANSFORMER

Swin transformers can Swin transformers require
efficiently model local and significant computational

global visual features in % resources and high memory
images with high scalability. 8 consumption during training.

\

Swin Transformer (Shifted Window Transformer) is a state-of-the-art
architecture designed to efficiently handle high-resolution images while
maintaining strong performance in computer vision tasks. Unlike traditional
transformer architectures which apply global attention over the entire image,
Swin Transformer uses local attention within non-overlapping windows to
reduce computational complexity.

- J

’ METHOD ~N

The key idea of Swin Transformer is the use of a shifted window approach,
where the windows used for attention are shifted between successive
layers, enabling the model to capture both local and global context across
different layers. The input image is first divided into patches, and each patch
is embedded into a fixed-size token vector using a patch embedding layer.
These tokenized patches are processed through several Swin Transformer
blocks, where each block consists of a series of multi-head self-attention
layers applied within the local windows. The attention mechanism operates
within these windows to capture local dependencies, but shifting the
windows at each layer helps the model learn global dependencies as well.
The attention computation is performed in linear time, more computationally
efficient compared to standard Transformers, which operate in quadratic
time. In addition to the window-based attention, Swin Transformers also
incorporate a shifted window partitioning strategy where the windows overlap
in successive layers, ensuring the model can learn from various spatial
configurations. Each Swin Transformer block consists of a window-based
multi-head self-attention layer and an MLP-based feedforward network,
followed by normalization layers (LN). The architecture is hierarchical, i.e.,
the resolution of the input representation progressively decreases through
the network, while the number of channels (features) increases.
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(FURTHER READING )

S.S. Esfahani, et al., « Context-specific Language Modeling for Human
Trafficking Detection from Online Advertisements », In Proceedings of the
57th Annual Meeting of the Association for Computational Linguistics (ACL),
pp. 1180-1184, Florence, Italy, 2019.

https:/aclanthology.org/P19-1114/

A. Hatamizadeh, et al., « Swin UNETR: Swin Transformers for Semantic
Segmentation of Brain Tumors in MRI Images », Lecture Notes in Computer
Science, vol. 12962, Springer, Cham, 2022.
https://doi.org/10.1007/978-3-031-08999-2 22

A.P. Joshi, et al., « HotelWatch: A Hotel Identification System to Combat
Human Trafficking, » 2024 |EEE International Conference on Big Data
(BigData), Washington, DC, USA, pp. 2801-2810, 2024.
https://doi.org/10.1109/BigData62323.2024.10825725

V.K. Saxena, et al., « MATCHED: Multimodal Authorship-Attribution
To Combat Human Trafficking in Escort-Advertisement Data »,
arXiv:2412.13794, 2024.

https://arxiv.org/abs/2412 13794

A. Stylianou, et al., « Hotels-50K: A Global Hotel Recognition Dataset », In
Proceedings of AAAI Conference on Artificial Intelligence, 2019.
https://doi.org/10.1609/aaai.v33i01.3301726

Y. Tang, et al., « Self-Supervised Pre-Training of Swin Transformers for 3D
Medical Image Analysis », In Proceedings of 2022 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA,
pp. 20698-20708, 2022.

https://doi.org/10.1109/CVPR52688.2022.02007

Scan the QR code to access state-of-the-art
research papers, datasets, codes, benchmarks,
real-world use cases, and educational materials.
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SDG#11 PREDICTING
SEA LEVEL CHANGE
USING LSTM

Chronic water scarcity affecting Source (Retrieved on
0 March 25th, 2025):
more t.han 40% pf the glqbal hitpswww.who.
population, hydrological uncertainty, int/health-topics/
and extreme weather events (floods floodshtab=tab_1
X ps://www.
and droughts) are perceived as worldbank.org/en/
R topic/waterresources
some of the biggest threats to global management

prosperity and stability. Water-
related disasters account for 70% of
all deaths related to natural disasters.
Flood damages are estimated at
around USD 120 billion per year
(only from property damage).

SDG #11

Accurately  predicting extreme
events and flood damages is critical
for warning the populations and
prioritizing disaster response.




SDG#11 PREDICTING SEA LEVEL CHANGE
USING LSTM

LSTMs can capture long- LSTMs require large
term dependencies and amounts of data for effective
patterns over longer but they are computationally
sequences compared expensive to train and may
to traditional RNNs. overfit on small datasets.

CONS

Long Short-Term Memory (LSTM) is a type of recurrent neural network (RNN)
designed to overcome the vanishing gradient problem and capture long-term
dependencies. LSTM cells have memory units that can store and retrieve
information over extended periods. LSTMs are suitable for modeling complex
patterns. They learn from past sea level variations to predict future changes,
aiding in understanding and mitigating the impacts of climate change.

LSTM (Long Short-Term Memory) is a type of Recurrent Neural Network
(RNN) designed to address the limitations of traditional RNNs, specifically the
vanishing and exploding gradient problems. LSTM models are particularly
effective for processing and predicting sequences of data, where temporal
dependencies are important. Unlike RNNs, LSTMs have specialized units
called memory cells that help retain information over long time periods.
LSTM consists of three primary gates: the input gate, the forget gate, and
the output gate. The input gate controls how much new information from
the current time step should be stored in the memory cell. The forget gate
decides what portion of the past information should be discarded from the
memory, allowing the model to « forget » irrelevant data. The output gate
determines what part of the memory cell should be output at the current time
step, which influences the hidden state passed to the next time step. The
cell state is a key feature of LSTM carrying information across time steps
with minimal changes. During training, the model learns how to update the
cell state and the gates, allowing it to capture long-term dependencies in
the data. LSTMs are typically trained using backpropagation through time,
where gradients are computed at each time step and propagated back
through the network to update the weights.
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(FURTHER READING )

N.A.A.B.S. Bahari, et al.,, « Predicting Sea Level Rise Using Artificial
Intelligence: A Review », Arch. Computat. Methods Eng. vol. 30, pp. 4045-
4062, 2023.

https://doi.org/10.1007/s11831-023-09934-9

A.L. Balogun and N. Adebisi, « Sea Level Prediction Using ARIMA, SVR
and LSTM Neural Network: Assessing the Impact of Ensemble Ocean-
Atmospheric Processes on Models’ Accuracy », Geomatics, Natural
Hazards and Risk, vol. 12, no. 1, pp. 653-674, 2021.
https://doi.org/10.1080/19475705.2021.1887372

K. Ishida, et al., « Hourly-Scale Coastal Sea Level Modeling in a Changing
Climate Using Long Short-Term Memory Neural Network », Science of The
Total Environment, vol. 720, 2020.
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W. Li, A. Kiaghadi, and C. Dawson. « High Temporal Resolution Rainfall—-
Runoff Modeling Using Long-Short-Term-Memory (LSTM) Networks »,
Neural Comput. Appl. 33, pp. 1261-1278, 2021.
https://doi.org/10.1007/s00521-020-05010-6

0O.M. Sorkhabi, B. Shadmanfar, M.M. Al-Amidi, « Deep Learning of Sea-Level
Variability and Flood for Coastal City Resilience », City and Environment
Interactions, vol. 17, 2023.

https://doi.org/10.1016/j.cacint.2022.100098

P. Van Katwyk, et al., « A Variational LSTM Emulator of Sea Level
Contribution from the Antarctic Ice Sheet », Journal of Advances in
Modeling Earth Systems, vol. 15, no. €2023MS003899, 2023.
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Scan the QR code to access state-of-the-art
research papers, datasets, codes, benchmarks,
real-world use cases, and educational materials.
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SDG#12 WASTE
CLASSIFICATION
WITH ZERO-SHOT
LEARNING WITH CLIP

(h’l 2022, 19% of global food was Source (Retrieved
wasted, totalling 1.05 billion tonnes, ggz";’)‘”;g::jf
with household waste accounting for sdgs.un.org/goals/
60%. This waste generates significant ggj_’;ﬁgmg’ess—

greenhouse gas emissions, costing
over $1 trillion annually, while 783
million people suffer from hunger.

Classifying waste using image
detection enables efficient and
accurate sorting, which improves
recycling rates. It helps automate
the process, reducing the need for
manual labor for more sustainable
waste management practices.

SDG #12
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SDG#12 WASTE CLASSIFICATION WITH
ZERO-SHOT LEARNING WITH CLIP

Zero-shot learning with CLIP’s performance relies
CLIP enables models to heavily on the alignment
generalize across a wide between language and

range of tasks without visual information in

task-specific training. the training data.

CONS

Zero-shot learning with CLIP (Contrastive Language-Image Pretraining)
allows models to perform tasks like image classification, object detection
without task-specific training by leveraging large-scale image-text pair
datasets. By aligning images and textual descriptions in a shared embedding
space, CLIP can generalize to a wide variety of tasks using natural language
prompts, making it versatile and efficient across many domains.

( METHOD \
Zero-shot learning with CLIP uses a unified architecture that bridges vision
and language by aligning images and text in a shared embedding space. The
architecture consists of two main components: an image encoder and a text
encoder. The image encoder can be a Vision Transformer (ViT) or a ResNet
network, which processes images and converts them into feature vectors.
The text encoder is a Transformer-based model (like GPT or BERT) that
processes textual descriptions and converts them into corresponding feature
vectors. Both encoders are trained simultaneously in a contrastive learning
framework, where the goal is to bring the feature vectors of matching image-
text pairs closer together in the shared embedding space. During training,
the model is fed with a large dataset of paired image-text data, learning to
understand. The model uses a contrastive loss function, such as InfoNCE
loss, to maximize the similarity of positive pairs (correct image-text pairs)
and minimize the similarity of negative pairs (incorrect image-text pairs).
This results in the image and text encoders learning to map both modalities
into a shared vector space, where similar images and descriptions are closer
together. During inference, the model can take a textual description as input
and retrieve the most relevant image by comparing the text’s feature vector
with the image feature vectors.

_
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(FURTHER READING )

F.S. Alrayes, et al., « Waste Classification Using Vision Transformer Based
on Multilayer Hybrid Convolution Neural Network », Urban Climate, vol. 49,
2023.

https://doi.org/10.1016/j.uclim.2023.101483

N. Islam, et al., « EWasteNet: A Two-Stream Data Efficient Image
Transformer Approach for E-Waste Classification », In Proceedings of 2023
IEEE International Conference On Software Engineering and Computer
Systems (ICSECS), Penang, Malaysia, pp. 435-440, 2023.
https://doi.org/10.1109/ICSECS58457.2023.10256321

K. Huang, et al., « Recycling Waste Classification Using Vision Transformer
on Portable Device ». Sustainability, vol. 13, issue 21, no. 11572, 2021.
https://doi.org/10.3390/su132111572

A. Kurz, et al., « WMC-VIiT: Waste Multi-class Classification Using a Modified
Vision Transformer », In Proceedings of 2022 |IEEE MetroCon, Hurst, TX,
USA, pp. 1-3, 2022.

https://doi.org/10.1109/MetroCon56047.2022.9971136

N.N.l. Prova, « Garbage Intelligence: Utilizing Vision Transformer for Smart
Waste Sorting », In Proceedings of 2024 Second International Conference
on Intelligent Cyber Physical Systems and Internet of Things (IColCl),
Coimbatore, India, pp. 1213-1219, 2024.
https://doi.org/10.1109/1ColC162503.2024.10696177

A. Radford, et al., « Learning transferable visual models from natural
language supervision », In Proceedings of International Conference on
Machine Learning (ICML), pp. 8748-8763, 2021.
https:/proceedings.mlr.press/v139/radford21a/radford21a.pdf

Scan the QR code to access state-of-the-art
research papers, datasets, codes, benchmarks,
real-world use cases, and educational materials.
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SDG#13 FLOOD AREA
SEGMENTATION FROM
IMAGES USING UNET

4 )
Between 2013 and 2022, disasters Source (Retrieved
worldwide claimed 42,553 mortalities ggz";’)"’;:’t 25th,
: https:/
each year. The number of persons sdgs.un.org/goals/
affected by disasters per 100,000 goall3hprogress._

population has increased by over
two-thirds, from 1,169 in 2005-2014 to

1,980 in 2013-2022.

Satellite image segmentation of
floods provides rapid, large-scale
identification of affected areas,
enablingtimelyandinformed disaster
response. It helps emergency teams
prioritize regions needing immediate
aid and plan evacuation or rescue
operations more effectively with
better coordination, resource
allocation, and mitigation of further
risks during and after the disaster.

SDG #13
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SDG#13 FLOOD AREA SEGMENTATION
FROM IMAGES USING UNET

UNet is highly accurate in UNet may struggle with
pixel-level segmentation complex, large-scale
with few labeled images 2 objects without additional

in the training set. 8 context modules.

The U-Net architecture is a deep learning model primarily used for image
segmentation tasks, where pixel-level classification is required. U-Net
can capture both global context and fine spatial details, making it highly
effective for medical imaging, satellite or drone imagery, and other pixel-
level classification tasks. Its output is a segmentation mask, with pixel-wise
predictions for each class in a multi-class or binary segmentation task.

- J

’ METHOD ~N

U-Net follows an encoder-decoder structure, designed to capture both local
and global features while preserving spatial information. It consists of two
main parts: a contracting path (encoder) and an expansive path (decoder).
The encoder is typically made up of convolutional layers, followed by max-
pooling operations, which progressively downsample the image to extract
high-level features. In the encoder, each block consists of two convolutional
layers with ReLU activations, followed by a max-pooling layer to reduce
spatial dimensions. The bottleneck layer connects the encoder and decoder,
where the feature map is at its smallest spatial resolution, capturing the most
abstract features of the image. The decoder path upsamples the feature map
using transposed convolutions (or deconvolutions), progressively increasing
the resolution of the feature map. At each upsampling step, the decoder
concatenates the corresponding feature maps from the encoder (via skip
connections), which helps retain fine-grained spatial details lost during
downsampling. These skip connections allow the model to combine low-
level features from the encoder with high-level features from the decoder,
enhancing the model’s ability to localize precise segmentation boundaries.
The final layer of the decoder typically uses a 1x1 convolution to map the
feature map to the desired output dimension (e.g., the number of classes for
segmentation).

_
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(FURTHER READING )

I. Chamatidis, D. Istrati, and N.D. Lagaros, « Vision Transformer for Flood
Detection Using Satellite Images from Sentinel-1 and Sentinel-2 », Water,
vol. 16, issue 12, no. 1670, 2024.
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B. Gaffinet, R. Hagensieker, L. Loi, and G. Schumann, « Supervised
Machine Learning for Flood Extent Detection with Optical Satellite Data », In
Proceedings of IGARSS 2023 |EEE International Geoscience and Remote
Sensing Symposium, Pasadena, CA, USA, pp. 2084-2087, 2023.
https://doi.org/10.1109/IGARSS52108.2023.10282274

B. Ghosh, et al., « Automatic Flood Detection from Sentinel-1 Data Using a
Nested UNet Model and a NASA Benchmark Dataset », PFG — Journal of
Photogrammetry, Remote Sensing and Geoinformation Science, vol. 92,
pp. 1-18, 2024.

https://doi.org/10.1007/s41064-024-00275-1

A. Kazadi, et al., « FloodGNN-GRU: A Spatio-Temporal Graph Neural
Network for Flood Prediction », Environmental Data Science, vol. 3, no. e21,
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O. Ronneberger, P. Fischer, and T. Brox, « U-Net: Convolutional Networks
for Biomedical Image Segmentation », Lecture Notes in Computer Science,
vol. 9351. Springer, Cham, 2015.

https://doi.org/10.1007/978-3-319-24574-4 28

Y. Tang, et al., « A Siamese Swin-Unet for Image Change Detection », Sci.
Rep., vol. 14, no. 4577, 2024.
https://doi.org/10.1038/s41598-024-54096-8
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SDG#14 CORAL REEF
AUTOMATED ANNOTATION
WITH TRANSFER LEARNING

About 25% of all marine species Source (Retrieved on
are found in, on, and around coral March 25th, 2025);

. . L. . ps://coast.noaa.
reefs, rivaling the biodiversity of gov/states/fast-facts/

tropical rainforests. In 2016, heat coral-reefs.html

stress encompassed 51 percent of
coral reefs globally. The most recent
global bleaching event lasted from
2014 to 2017, with more than 75%
mass bleaching-level heat stress
of global reefs and nearly 30%
mortality-level stress.

Automating coral reef monitoring
allows for continuous, large-scale
observation of reef health with
greater speed and consistency
than manual surveys. It enables
early detection of threats such as
bleaching, pollution, or overfishing,
allowing for timely conservation

actions. NATURE

SDG #14




SDG#14 CORAL REEF AUTOMATED
ANNOTATION WITH TRANSFER LEARNING

Transfer learning enables Transfer learning can lead
faster training, better to suboptimal performance
performance, and reduced if the pre-trained model’s
data requirements for new domain is too different
tasks, when data is scarce. from the target task.

CONS

~

Transfer learning leverages models pre-trained on large image datasets,
requiring fewer labeled coral images to fine-tune the model specific to
coral reefs. This approach significantly reduces the manual effort required
for coral reef monitoring and analysis, enabling more comprehensive and
frequent assessments of these critical ecosystems.

J

METHOD
\

Transfer learning relies on using a model pre-trained on a large dataset (e.g.,
ImageNet) and adapting it to a new, related task with a smaller dataset (e.g.,
underwater images). The process begins by selecting a pretrained CNN
model, such as VGG16, ResNet, or Inception, which has learned general
feature representations from alarge dataset of images. The initial layers of the
pretrained model, which detect basic visual features like edges and textures,
are kept fixed (frozen) to preserve their learned representations. The higher
layers (closer to the output) of the model are unfrozen and fine-tuned to the
new task-specific dataset, allowing the model to adapt to the new task. The
feature extraction process begins with passing the input images through the
frozen layers of the pretrained network, extracting relevant features from the
image. The output from the last layer is passed to a fully connected layer,
which is newly added to the architecture for task-specific classification. A
softmax activation function is typically applied to the output layer to convert
the model’s raw output into a probability distribution across different classes.
The model is then trained on the target dataset, using a cross-entropy loss
function to measure the difference between the predicted class probabilities
and the true labels. During fine-tuning, only the weights of the unfrozen layers
are updated, allowing the model to specialize in the new task while retaining
\ the general feature representations learned from the large dataset. )
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(FURTHER READING )

S. Andréfouét, et al., « Choosing the Appropriate Spatial Resolution for
Monitoring Coral Bleaching Events Using Remote sensing », Coral Reefs,
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Vision Workshops (ICCVW), Montreal, BC, Canada, pp. 3686-3695, 2021.
https://doi.org/10.1109/ICCYW54120.2021.00412

R.R. Gunti and A. Rorissa, « A Convolutional Neural Networks based Coral
Reef Annotation and Localization », In Proceedings of Conference and
Labs of the Evaluation Forum, 2021.
https://ceur-ws.org/Vol-2936/paper-100.pdf

J.P. Leidig, « Coral Reef Image Collections for Machine Learning, Mapping,
and Monitoring », In Proceedings of OCEANS 2022, Hampton Roads, VA,
USA, pp. 1-4, 2022.
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Scan the QR code to access state-of-the-art
research papers, datasets, codes, benchmarks,
real-world use cases, and educational materials.
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SDG#15 ACOUSTIC
BIODIVERSITY
ASSESSMENT WITH VAE

/
Around 1 million animal and plant Source (Retrieved on
species are now threatened with fharch 25th, 2025):

. . L ps://www.un.org/
extinction, many within decades, sustainabledevelopment/
more than ever before in human blogi2019/05/mature-

. ecline-unprecedented
history. The average abundance of -report/
native species in most major land-
based habitats has fallen by at least
20%, mostly since 1900.

Assessing biodiversity with Al
enables faster, more accurate
identification and monitoring of
species across large and complex
ecosystems. By automating analysis
from images, audio, or environmental
data, Al enhances conservation
efforts and informs data-driven
environmental policies.
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SDG#15 ACOUSTIC BIODIVERSITY
ASSESSMENT WITH VAE

VAEs can reduce signal
dimensionality, extract
robust features, and
enable data generation
for data augmentation.

CONS

VAEs require careful tuning,
making the training process
more complex and sensitive
to hyperparameter settings.

Variational Autoencoders (VAEs) can assess acoustic biodiversity by first
encoding audio spectrograms into a latent space that captures essential
acoustic features. By training on diverse species sounds, the VAE learns to
disentangle and represent unique acoustic signatures. During inference, the
model can classify unseen recordings based on their latent representations,
identifying different species or biodiversity indicators.

~
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METHOD

A VAE is a generative model designed to learn a probabilistic mapping from
input data to a latent space, enabling the generation of new data points
similar to the input distribution. It is based on an autoencoder architecture
but introduces probabilistic elements for better representation learning and
generation. It first compresses input signals into a lower-dimensional latent
space (Encoder), generating a mean and variance for the latent variables,
thus capturing the signal’s characteristics. It samples from the latent space
using the mean and variance, allowing gradients to back-propagate and
reconstructs the signal from the latent representation (Decoder). The model
is trained to minimize the reconstruction loss (e.g., binary cross-entropy
or mean squared error) between the original input and the reconstructed
data. The VAE also minimizes a KL divergence that measures the difference
between the learned latent distribution and a prior distribution (usually a
standard Gaussian). The latent representations are fed into a classifier (e.g.,
a neural network) to predict signal classes. During training, the model learns
both to reconstruct the input and to maintain a latent space that approximates
the prior distribution, which is typically a standard normal distribution.

One of the key benefits of the VAE is that it enables unsupervised learning,
as it does not require labeled data for training and can model complex data
distributions.
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H. Purohit, et al., « Hierarchical Conditional Variational Autoencoder Based
Acoustic Anomaly Detection », In Proceedings of 30th European Signal
Processing Conference (EUSIPCO), pp. 274-278, 2022.
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Quantitative Soundscape Analysis in Python », Methods in Ecology and
Evolution, 2021.
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Scan the QR code to access state-of-the-art
research papers, datasets, codes, benchmarks,
real-world use cases, and educational materials.
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SDG#15 DETECTING
DEFORESTATION
USING CNN

4 )
Forests play a key role in the Source (Retrieved on
H'Y H H March 25th, 2025):
mltlgapon of pllmate Cha.n'ge, https-/idatatopics.
removing an estimated 16 billion worldbank.
tons of carbon dioxide (CO,) from org/sdgatlas/
goal-15-life-on-land

the atmosphere annually. Globally,
between 2000 and 2020, forest area
declined by 2.4 percent or close to
100 million hectares. In 2020, forests
accounted for almost a third of
global land area.

Detecting deforestationwith Al allows
for real-time monitoring of forests
using satellite and aerial imagery,
enabling faster responses to illegal
logging and land degradation. This
timely and automated detection is
crucial for enforcing environmental
laws, protecting biodiversity, and
mitigating climate change.
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SDG#15 DETECTING DEFORESTATION
USING CNN

CNN can extract spatial features Due to limited contextual
from images with translation understanding, CNNs
invariance and learn spatial may miss subtle changes

hierarchies of features without in satellite images with
manual feature extraction. complex landscapes.

CONS

“ CNN-based approaches can extract features that are relevant for the
detection of deforestation, such as texture, shape, and spectral information,
enabling accurate and scalable segmentation of deforested areas from
satellite images. CNNs have revolutionized image classification, object
detection, segmentation, and video analysis, providing state-of-the-art
performance on many visual recognition tasks.

~

N\
/ METHOD \

A Convolutional Neural Network (CNN) is designed for processing grid-like
data, such as images. It is composed of several layers that work together to
automatically learn hierarchical feature representations from raw data. The
input layer typically consists of an image, which is represented as a 3D tensor
(height, width, and color channels, e.g., RGB). The convolutional layers are
the core building blocks, where small filters (kernels) slide over the image
and perform convolutions to extract local features like edges, textures, and
patterns. Each filter in the convolutional layer generates a feature map that
captures spatial hierarchies in the image, with deeper layers capturing
more complex patterns. After convolution, a non-linear activation function,
usually ReLU (Rectified Linear Unit) is applied to introduce non-linearity
and enable the network to learn more complex relationships. Pooling layers
(typically max pooling) follow convolutional layers to downsample the feature
maps, reducing their spatial dimensions while retaining the most important
information. Pooling reduces computational load, makes the network invariant
to small translations, and helps to prevent overfitting. Fully connected (FC)
layers are placed at the end of the network to perform high-level reasoning
and classification based on the extracted features. The output of the last fully
connected layer is often passed through a softmax activation function (for
multi-class classification) to output class probabilities.
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(FURTHER READING )

J.S. Almeida, et al., « EdgeFireSmoke: A Novel Lightweight CNN Model for
Real-Time Video Fire—Smoke Detection », IEEE Transactions on Industrial
Informatics, vol. 18, no. 11, pp. 7889-7898, Nov. 2022.
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Scan the QR code to access state-of-the-art
research papers, datasets, codes, benchmarks,
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SDG#16 PREDICTION
OF SOCIAL CONFLICTS
WITH GNN

Today, almost a billion people live Source (Retrieved

H H H on March 25th,

in fraglle and cqnf!uct—affected 2025): https./!
situations. In 2022, civilians across datatopics.worldbank.
the world faced more than 116,000 e ene.
violent events, a third of them in justice-and-strong-
U k ra i ne institutions?lang=en

Detecting social conflicts with Al
enables early identification of rising
tensions through the analysis of
news, social media, and other data
sources. Thisallows governments and
organizationstointervene proactively,
potentially preventing violence and
reducing harm. By providing real-
time insights into conflict dynamics,
Al supports informed decision-
making for peacebuilding and crisis

management.
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SDG#16 PREDICTION OF SOCIAL
CONFLICTS USING GNN

GNNs can capture complex GNNSs can be computationally
spatial relationships and intensive, require large, high-
temporal dependencies quality labeled datasets and
or intricacies and scale have limited expressivity.

robustly to large networks. for complex structures.

CONS

GNNs with spatial embeddings can effectively model non-Euclidean
spatial data, representing the complex geographical and social relationships
between regions or actors involved in social conflicts. Temporal embeddings
allow GNNs to capture time-dependent patterns and evolving trends. This
allows the prediction of conflict likelihood based on learned representations
of the evolving social dynamics and network structure.

- J

METHOD

4 N
A Graph Neural Network (GNN) is a type of deep learning model designed
to handle graph-structured data, where nodes represent entities, and edges
represent relationships between them. GNNs aim to learn node or graph-level
representations by propagating information through the graph’s structure.
The input to a GNN typically consists of a graph with nodes and edges,
where each node has a feature vector representing its properties. GNNs
operate by iteratively updating the node representations through message
passing between neighboring nodes based on the graph’s connectivity. In
each layer of the GNN, nodes aggregate information from their neighbors
and update their feature vector using a neighborhood aggregation function
(such as mean, sum, or max). The aggregation step combines the features of a
node’s neighbors to capture local graph structure, while the update function
refines each node’s feature vector. This process is repeated across multiple
layers, allowing nodes to incorporate information from progressively larger
neighborhoods in the graph. After several layers of message passing, the
final node representations are typically used for node-level tasks (e.g., node
classification) or aggregated for graph-level tasks (e.g., graph classification).
The GNN can also use a readout function to pool information across all nodes
in a graph, which is particularly useful for graph-level predictions.
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(FURTHER READING )

Z. Binbin, et al., « HDM-GNN: A Heterogeneous Dynamic Multi-view Graph
Neural Network for Crime Prediction », ACM Trans. Sen. Netw., May 2024.
https://doi.org/10.1145/3665141

F. Ettensperger, « Comparing Supervised Learning Algorithms and Artificial
Neural Networks for Conflict Prediction: Performance and Applicability of
Deep Learning in the Field », Qual. Quant., vol. 54, pp. 567-601, 2020.
https://doi.org/10.1007/s11135-019-00882-w

G. Jin, et al,, « Spatio-Temporal Graph Neural Networks for Predictive
Learning in Urban Computing: A Survey », IEEE Transactions on Knowledge
and Data Engineering, vol. 36, no. 10, pp. 5388-5408, Oct. 2024.
https://doi.org/10.1109/TKDE.2023.3333824

Z.A., Sahili, and M. Awad, « Spatio-Temporal Graph Neural Networks: A
Survey », arXiv:2301.10569, 2024.
https://arxiv.org/abs/2301.10569

L. Yuan, et al., « Prediction of Airport Surface Potential Conflict Based on
GNN-LSTM », IET Intell. Transp. Syst., vol. 19, no. e12611, 2025.
https://doi.org/10.1049/itr2.12611

K. Bluwstein, et al., « Credit Growth, the Yield Curve and Financial Crisis
Prediction: Evidence from a Machine Learning Approach », Bank of
England, Working Paper, no. 848, January 2020.
http://dx.doi.org/10.2139/ssrn.3520659

Scan the QR code to access state-of-the-art
research papers, datasets, codes, benchmarks,
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SDG#17 CLIMATE
AGREEMENT NEGOTIATION
WITH MARL

The surge in aid from 2019 to Source (Retrieved on
i ; March 25th, 2025):
2022 was driven by extraordinary hitps-//datatopice.
spending related to the COVID-19 worldbank.org/
pandemic and the war in Ukraine sdgatlas/goal-17-
. L partnerships-for-
with a record $211.3 billion. But the-goals?lang=en

during this period, less aid (-1.2%
Official Development Assistance)
has been allocated for activities not
related to the pandemic and the war
in Ukraine.

Al agents can simulate negotiation
scenarios, balance competing
interests, and explore win-win
outcomes among diverse
stakeholders. They can process
complex climate, economic, and
policy data to recommend fair and
effective solutions in real time.
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SDG#17 CLIMATE AGREEMENT
NEGOTIATION WITH MARL

.

MARL enables efficient MARL training can become

problem-solving through unstable due to non-

agent collaboration and stationary and changing

competition in dynamic environments, as other
environments. agents adapt and learn.

CONS

Multi-Agent Reinforcement Learning (MARL) enables agents to solve
complex, real-world problems by leveraging cooperation, competition, and
coordination, making it ideal for tasks involving multiple decision-makers
in dynamic environments. Communication protocols can be used in some
MARL setups, allowing agents to exchange information about their states
and actions to improve coordination in cooperative environments.

\

/

METHOD

MARL is a framework in which multiple agents learn to make decisions and
interact with each other in a shared environment, each aiming to maximize
its reward while considering the actions of other agents. It is an extension of
traditional reinforcement learning (RL) to multi-agent settings. In MARL, each
agent has its policy that dictates how it behaves based on its observations
of the environment and possibly other agents. State space in MARL refers to
the collective states of all agents and the environment, while action space is
the set of all possible actions each agent can take individually. Each agent
receives feedback in the form of rewards from the environment, and the goal is
to maximize the expected sum of rewards, often through value-based, policy-
based, or actor-critic methods. Agents must consider the behavior of other
agents when making decisions, which can lead to cooperative, competitive,
or mixed strategies, depending on the task. In cooperative MARL, all agents
share a common goal (e.g., maximizing a team’s total reward) and may share
information about their states and actions. In competitive MARL, agents work
against each other (e.g., in games like chess or poker), where the goal is to
maximize individual rewards at the expense of others. Centralized training
with decentralized execution is a common paradigm, where agents are
trained with global information but act based on local observations during
execution.
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(FURTHER READING )
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T. Gu, T. Zhi, X. Bao, and L. Chang, « Credible Negotiation for Multi-agent
Reinforcement Learning in Long-term Coordination », ACM Trans. Auton.
Adapt. Syst., vol. 20, issue 1, no. 1, March 2025.
https://doi.org/10.1145/3706110

T. Li, et al., « Applications of Multi-Agent Reinforcement Learning in Future
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C. Sun, S. Huang, and D. Pompili, « LLM-based Multi-Agent Reinforcement
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https://arxiv.org/abs/2405.11106

L. Yuan, et al., « A Survey of Progress on Cooperative Multi-agent
Reinforcement Learning in Open Environment », arXiv:2312.01058, 2023.
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Scan the QR code to access state-of-the-art
research papers, datasets, codes, benchmarks,
real-world use cases, and educational materials.
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(GLOSSARY |

Ablation Study: An  experimental
approach in machine learning where
specific components or features of a model
are systematically removed or altered to
assess their impact on performance.

Activation: Mathematical function applied
to a neuron's output that introduces non-
linearity into the model, enabling neural
networks to learn complex relationships
and patterns in data.

Non-Linear Activation:  Function
applied to a neuron’s output that
introduces non-linearity into the model,
allowing it to learn complex patterns
(e.g., ReLU, tanh).

ELU (Exponential Linear Unit):
Activation function that smooths the
negative part of the input using an
exponential curve, helping improve
learning by allowing small negative
outputs.

GELU (Gaussian Error Linear Unit):
Activation  function that weights
inputs by their value and probability
under a normal distribution, used in
Transformer models like BERT for
smoother learning.

Leaky ReLU: Variant of RelLU that
allows a small, non-zero gradient
for negative input values, helping to
mitigate the dying neuron problem.

Parametric ReLU (PReLU): Adaptive
version of Leaky ReLU where the slope
of the negative part is learned during
training, improving model flexibility.

ReLU (Rectified Linear Unit):
Activation function that outputs the
input if it is positive and zero otherwise,

(o

widely used for its simplicity and
effectiveness in deep networks.

SELU (Scaled Exponential Linear
Unit): Scaled version of ELU designed
to self-normalize the activations of
neurons, maintaining a mean and
variance close to zero and one,
respectively.

Sigmoid: Activation function that
maps any real-valued input to a value
between 0 and 1, commonly used in
binary classification tasks to produce
probabilities.

Softmax: Activation function that
transforms a vector of real numbers
into a probability distribution, used
in the output layer for multi-class
classification tasks.

Tanh: Activation function that maps
inputs to a range between -1 and 1,
offering zero-centered output which
can be beneficial for learning dynamics.

Adam: An optimization algorithm that
computes adaptive learning rates for each
parameter by considering both the first
and second moments of the gradients,
enhancing convergence speed and
stability.

Adversarial Training: A technique in
machine learning where models are
trained on adversarial examples—
inputs intentionally modified to mislead
the model—to improve robustness and
resistance to such attacks.

Backpropagation: A supervised learning
algorithm for training neural networks by
propagating the error backward through
the network, adjusting weights to minimize
the loss function.

Bagging: A machine learning ensemble
technique that trains multiple models
(usually of the same type) on different
subsets of the training data and combines



their predictions to improve accuracy and
reduce variance.

Balanced Dataset: A dataset where each
class or category is represented equally,
preventing the model from being biased
toward the majority class.

Batch Normalization: A technique to
normalize the inputs of each layer in a neural
network, improving training speed and
stability by reducing internal covariate shift.

Bias: A parameter in a neural network that
allows the model to make predictions even
when all input features are zero, enabling
the model to fit the data more flexibly.

Boosting: An ensemble learning method
that combines multiple weak learners to
create a strong learner, typically by focusing
on correcting the errors of previous models.

Cell State: Internal memory component of
the LSTM cell that can carry information
over long sequences. It is controlled by
gates to regulate what information should
be added or removed from it.

Complexity: In machine learning, it refers to
the capacity of a model to capture intricate
patterns in data; higher complexity can
lead to overfitting if not properly managed.

Contrastive Feature: A characteristic or
attribute in data that highlights differences
between classes, aiding in distinguishing
between them.

Contrastive Learning: A self-supervised
learning approach where models learn
by comparing similar and dissimilar pairs
of data, encouraging the model to learn
useful representations.

Convergence: The process where a
machine learning algorithm's performance
stabilizes, indicating that further training
will not significantly improve results.

Convolution: A mathematical operation
used in convolutional neural networks

(CNNs) to extract features from input data
by applying a filter or kernel over it.

Atrous Convolution: A convolution
operation that introduces gaps
between kernel elements, allowing the
network to capture multi-scale context
without increasing the number of
parameters.

Depthwise Convolution: A type of
convolution where each input channel
is convolved with its own set of filters,
reducing the number of parameters
and computation compared to
standard convolutions.

Pointwise Convolution: Type of
convolution that uses 1x1 kernels to
transform the number of channels
in the input without affecting spatial
dimensions.

Separable Convolution:  Efficient
form of convolution that splits the
process into depthwise and pointwise
convolutions to reduce computation

and parameters.

Cross-Entropy: A loss function commonly
used in classification tasks that measures
the difference between two probability
distributions, typically the true labels and
the predicted probabilities.

Cross-Product  Transformation: A
mathematical operation that combines two
vectors to produce a third, often used in
tasks like computing attention scores in
neural networks.

Decoder: A component in models like
sequence-to-sequence architectures
that generates output sequences from
encoded representations, such as in
machine translation.

Deconvolution: Also known as transposed
convolution, it's an operation used to
upsample data, often used in tasks like

o)



image segmentation to increase spatial
resolution.

Dense Layer: A fully connected layer in
a neural network where each neuron is
connected to every neuron in the previous
layer, enabling complex representations.

Discriminator: In Generative Adversarial
Networks  (GANs), a model that
distinguishes between real and generated
data, guiding the generator to produce
more realistic outputs.

Down-Sampling: The process of reducing
the spatial dimensions of data, typically to
decrease computational load and capture
broader context.

Dropout: A regularization technique
where randomly selected neurons are
ignored during training, preventing
overfitting by ensuring the model doesn't
rely on specific neurons.

Embedding: A technique to represent
discrete variables, like words, as
continuous vectors in a lower-dimensional
space, capturing semantic relationships.

Encoder: A component in models like
sequence-to-sequence architectures that
processes input sequences into a fixed-
size context vector, which is then used by
the decoder.

Ensemble: Amethod that combines multiple
models to improve overall performance,
often by reducing variance and bias.

Entropy Maximization: A strategy in
machine learning where the model is
encouraged to make predictions with high
uncertainty, often used in semi-supervised
learning to explore data distributions.

Epsilon-Greedy: A policy in reinforcement
learning where the agent mostly chooses
the best-known action but occasionally
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selects a random action to explore the
environment.

Error Analysis: The process of examining
the types and sources of errors in a
model's predictions to identify areas for
improvement.

Feature: An individual measurable
property or characteristic ofaphenomenon
being observed, used as input to machine
learning models.

Feedforward Layer: A layer in a neural
network where connections between the
nodes do not form cycles, allowing data to
flow in one direction from input to output.

Flattening: The process of converting
multi-dimensional data into a one-
dimensional vector, often used before
feeding data into fully connected layers.

Forget Gate: Group of mathematical
operations responsible for deciding which
information from the previous cell state
should be discarded or forgotten based
on the current input and the previous
hidden state.

Gating Mechanism: Group of
mathematical operations used in neural
network architectures such as LSTMs and
GRUs to control the flow of information,
deciding what should be passed on,
updated, or forgotten.

Generalization: Model's ability to
perform well on unseen data by capturing
the wunderlying patterns rather than
memorizing the training set.

Generator: Component of a Generative
Adversarial Network (GAN) responsible for
creating synthetic data samples intended
to resemble the real data.

Gradient: Vector of partial derivatives
indicating the direction and rate of fastest
increase of a function, used during



training to update model weights via
backpropagation.

Hidden State: Memory of a recurrent cell. It
stores temporal information from previous
time steps and is passed along the
sequence to influence future predictions.

Hyperparameter: Configuration variable
that is set before training a model (e.g.,
learning rate, number of layers) and
governs the training process and structure
of the model.

Inference: Phase in which a trained model
is used to make predictions on new, unseen
data without updating its parameters.

Input Gate: Group of mathematical
operations that determines which new
information from the current input and the
previous hidden state (h) should be added
to the cell state.

Interpolation: Process of estimating
intermediate values between two known
data points, often used in data augmentation
or image resizing.

Inverted CNN: Architecture where
convolutional layers are applied in reverse
to upsample feature maps, commonly used
in image generation and segmentation
tasks.

loT (Internet of Things): Network of
physical  objects—*“things”—that are
embedded with sensors, software, and
other technologies for the purpose of
connecting and exchanging data with
other devices and systems over the
internet.

Kernel Function: Mathematical function
used to compute similarity between data
points in high-dimensional space without
explicitly mapping them, enabling non-
linear classification.

KL (Kullback-Leibler) Divergence:
Statistical distance that measures how
much a model’s probability distribution

is different from a
distribution.

true probability

Kernel Trick: Technique in machine
learning that applies a kernel function
to compute inner products in a high-
dimensional space without explicitly
performing the transformation.

Label: Target output or class assigned
to a data point, used during supervised
learning to guide model predictions.

Latent Space: Abstract feature space
where high-dimensional datais represented
in a compressed and meaningful way, often
learned by autoencoders or GANs.

Layer: Building block of neural networks
consisting of a set of neurons that process
input data and pass output to the next
layer in the network.

Layer Normalization: Technique that
normalizes the inputs across the features
of a layer, stabilizing and speeding up
training of deep neural networks.

Logit: Raw output value of a model’s
final layer before applying an activation
function like softmax or sigmoid, typically
used in classification tasks.

Loss Function: Mathematical function
that quantifies the difference between
predicted outputs and true targets,
guiding the optimization of the model.

InfoNCE Loss: Loss function used in
contrastive learning that encourages
similar samples to have similar
representations while dissimilar samples
are pushed apart in the embedding
space.

Reconstruction Loss: Loss function
that measures the difference between
the original data and its reconstructed
version,commonly usedinautoencoders.

Memory Cell or Unit: Core component
of LSTM networks that retains long-term
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dependencies by selectively adding and
removing information  through  gating
mechanisms.

Meta-Learner: Higher-level model trained
to learn how to optimize other models or
learning tasks, commonly used in meta-
learning or few-shot learning.

Model Collapse: Failure mode in training
GANSs where the generator produces limited
or identical outputs, reducing diversity and
usefulness of generated data.

Model Performance Metrics: Quantitative
measures (e.g., accuracy, precision, recall)
used to evaluate the effectiveness of a
model on specific tasks or datasets.

MSE: Mean Squared Error. A regression loss
function that calculates the average of the
squares of differences between predicted
and true values.

Multi-Head Self-Attention: Mechanism that
allows a model to jointly attend to information
from different representation subspaces at
different positions in the sequence.

NLP: Natural Language Processing. A field
of Al focused on enabling computers to
understand, interpret, and generate human
language.

Output Gate: Group of mathematical
operations that regulates what information
from the updated cell state should be
included in the current hidden state (h),
which will be passed to the next time step
in the sequence.

Overfitting: Condition in which a model
learns noise and details from the training
data to the extent that it performs poorly
on new, unseen data.

Patch: Subsection or region of an input
image or data sample used for localized
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processing in tasks like vision transformers
or convolutions.

Pattern: Repeated or recognizable
structure in data that a model attempts to
learn and generalize during training.

Policy: Strategy used by an agent in
reinforcement learning to decide which
action to take based on the current state
of the environment.

Pooling (Max / Average): Operation used
in convolutional networks to reduce spatial
dimensions by summarizing local regions,

commonly through max or average
functions.
Pretrained Network: Neural network

model that has already been trained on
a large dataset and can be fine-tuned for
specific tasks to improve efficiency and
performance.

Prior Distribution: Assumed probability
distribution over model parameters or
latent variables before observing any data,
used in Bayesian methods.

Readout Function: Component in
neural networks that maps internal
representations to output predictions,
often used in graph neural networks or
recurrent architectures.

Regularization: Set of techniques (e.g.,
L1/L2 penalty, dropout) used to prevent
overfitting by penalizing complex models
or reducing reliance on specific features.

Residual Connection: Shortcut path in
deep networks that adds the input of
a layer directly to its output, enabling
the training of very deep architectures.

Reward: Signal received by an agent in
reinforcement learning indicating how
good an action was in a given state,
guiding future behavior.

Sampling: Process of selecting a subset
of data from a larger dataset or drawing



data points from a probability distribution
for training or generation.

Downsampling: Technique used to
decrease the number of data samples
by removing data from the majority
class, often used to correct imbalanced
datasets.

Upsampling: Technique used to increase
the resolution or number of data, often by
inserting values or interpolating between
existing data points.

Scalability: Model or system's ability
to efficiently handle increased data,
complexity, or computational load without
significant performance degradation.

Scaling: Transformation that adjusts the
size or range of data values, often used to
standardize features before training.

Self-Attention: Mechanism that allows
a model to focus on different parts of
a single sequence when computing
representations, crucial in transformer
architectures.

Masked Self-Attention or attention
Masking: A method used in attention
mechanisms to prevent certain
positions in the input sequence from
contributing to the output, often used
in tasks like language modeling to
maintain causality.

SGD: Stochastic Gradient Descent.
Optimization algorithm that updates model
parameters using a subset (mini-batch)
of the data at each iteration to speed up
learning.

Skip Connection: Shortcut pathway that
bypasses one or more layers in a network,
facilitating gradient flow and helping
mitigate vanishing gradient problems.

Sliding Window: Technique for processing
data in overlapping or non-overlapping

chunks, useful for sequence modeling and
object detection.

Stacking: Ensemble method thatcombines
the outputs of multiple models using a
meta-model, leveraging their strengths for
improved prediction.

Tensor: Multi-dimensional array  of
numerical values used to represent data
in machine learning models, supporting
operations across various dimensions.

Testing Set: Subset of data reserved for
evaluating a trained model’s performance on
unseen examples, ensuring generalization.

Token: Smallest unit of text (word, character,
or subword) that is processed by NLP
models during training and inference.

Training Set: Portion of the dataset used
to fit and train the model by minimizing the
loss function and adjusting parameters.

Tuning: Process of adjusting
hyperparameters to improve model
performance, often performed using

grid search, random search, or Bayesian
optimization.

Validation Set: Subset of the dataset used
during training to monitor performance and
tune hyperparameters without affecting the
final test evaluation.

Vanishing Gradient: Problem in deep
neural networks where gradients become
too small during backpropagation, leading
to extremely slow learning in earlier layers.

Variance: Measure of how much model
predictions fluctuate for different training
datasets; high variance indicates potential
overfitting.

Vector  Representation: Numerical
encoding of data (e.g., words, images) in a
fixed-length vector format that captures its
essential features for model input.

Weight: Trainable parameter in a neural
network that determines the strength of
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the connection between neurons, updated
during training to minimize loss.

XGBoost: Extreme Gradient Boosting: A
scalable, distributed gradient-boosted
decision tree (GBDT) open source
machine learning library.

Zero-Shot Learning: Learning paradigm
where a model is able to make predictions
on classes it has never seen before
by leveraging semantic or descriptive
information.
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