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Editorial

This volume presents a collection of lectures on the topic “Quantum Dynamics and
Spectroscopy of Functional Molecular Materials and Biological Photosystems” that
were held during the 2023 edition of a summer school accompanying a workshop on
the same theme. The event took place at the École de Physique at Les Houches,
France, in August/September 2023, as part of a biennial series of meetings.1 Within
this series, 2023 marks the first time that a combined school and workshop event was
organized, and it also marks the 10th anniversary of a workshop series that arose
from the spontaneous initiative of two of us.

To briefly sketch out the history of the event, Jeff Cina and Irene Burghardt met
at an ACS meeting in Denver in 2011 and raised the idea of submitting a proposal
for a Telluride Science and Research Center (TSRC) workshop on a theme that
would combine experimental and computational state-of-the-art methodology in the
study of elementary energy and charge transfer events in molecular materials and
biosystems. At that time, the exploration of molecular systems by ultrafast spec-
troscopies had extended to molecular aggregates and various nanoscale materials,
and diverse spectroscopic techniques were available, from multidimensional elec-
tronic and vibrational spectroscopies to emergent time-resolved X-ray techniques for
structural dynamics. In parallel, tangible progress was made in quantum dynamical
simulations for modeling ultrafast vibronic and transport phenomena. As two the-
orists, we were keen to establish an interaction platform between spectroscopists and
theorists in an informal, discussion-oriented environment.

A first workshop took place in summer 2013 at the TSRC and clearly exceeded
our expectations. A second TSRC workshop on the same theme followed in 2015,
and it turned out that a significant number of participants expressed interest in the
continuation of the event. At this point, Irene Burghardt suggested to explore the
possibility of an alternative venue in Europe and contacted the director of the École

1See the 2023 event website at https://www.theochem.uni-frankfurt.de/LesHouches2023/.

https://www.theochem.uni-frankfurt.de/LesHouches2023/


de Physique at Les Houches. Molecular science was not prominent within the Les
Houches program at that time, so we considered ourselves lucky to be offered a slot
for our workshop in 2017. Les Houches turned out as perfect a venue as Telluride,
which made us consider alternating between the two venues. To account for the
international flavor of our event, we expanded the co-organizer team from two to six
organizers from five countries. In 2019, we returned to the TSRC, and in 2021, we
offered an online version of the event due to the pandemic. Finally, 2023 saw our
return to Les Houches, this time with a combination of school and workshop events.
One of the new co-organizers (Jérémie Léonard) especially promoted the addition of
a school, in line with the tradition of the École de Physique. In 2025, this combi-
nation was continued, and it might well turn into the new paradigm of the biennial
event.

Against this background, the contributions of the present volume very much
reflect the general philosophy of the event, which combines spectroscopic, theoret-
ical, and computational perspectives. The first four chapters summarize contribu-
tions by the main lecturers of the 2023 summer school, followed by two chapters on
more specialized topics, and two final chapters accompanying the computational
exercises that were offered at the school.

In chapter 1, Giulio Cerullo and Cristian Manzoni address the basic concepts of
ultrafast optics, i.e., the generation and propagation of ultrafast light pulses. In
chapter 2, Elisa Palacino-González and David Picconi present a broad overview of
theoretical and computational methods for photoinduced molecular quantum
dynamics, from state-of-the-art tensor network methods to trajectory-based
approaches. Chapter 3 by Tobias Kramer focuses on open quantum system
dynamics, from Markovian to non-Markovian approaches, and the computation of
two-dimensional electronic spectroscopy (2DES) signals, notably within a
GPU-based implementation of the Hierarchical Equations of Motion (HEOM)
method. Chapter 4 by Pavel Malý presents an overview of the response function
formalism in a density matrix setting, focusing on the comparison between coherent
detection vs. fluorescence detection of ultrafast four-wave mixing and six-wave
mixing 2DES signals.

Next, chapters 5 and 6 address two application areas that are of central interest.
In chapter 5, Thomas Renger addresses light harvesting in photosynthesis, while
chapter 6 by Irene Burghardt focuses on excitonic processes in organic photo-
voltaics. Even though exciton transport and the formation of charge-separated
states are the unifying themes in both instances, significant differences arise from the
respective parameter regimes, raising intriguing questions on structure-function
relations.

Finally, chapters 7 and 8 presented jointly by Dominik Brey and James Green,
accompany computational exercises on quantum dynamical simulations and their
application to the computation of linear and nonlinear spectroscopic signals. Both
chapters combine theoretical background with detailed explanations relating to the
Python scripts that were employed in the computational exercises. The corre-
sponding Jupyter notebooks are made available together with these chapters.

From the very positive feedback that was received throughout the summer school,
we believe that the level of theory and of the computational exercises was adequate
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and motivating. While being far from comprehensive, the present lectures should
provide a combined experimental and theoretical spotlight on the molecular-level
investigation of light-induced processes in biological systems and nanostructured
materials. We hope that this collection will inspire future experiment-theory con-
nections at this frontier between molecular and nanoscale quantum phenomena.

We would like to express our sincere gratitude to the Lecturers for joining this
book project with the aspiration to present their work in a clear and pedagogical
style. Furthermore, we thank our co-organizers, i.e., Jessica Anna (University of
Pennsylvania, USA), Thomas Renger (University of Linz, Austria), and Young
Min Rhee (KAIST, South Korea), for their role in making the summer school
and workshop a success. Finally, we are grateful to the École de Physique des
Houches, the Université Franco-Allemande, the Institut de Physique et Chimie des
Matériaux de Strasbourg, and the Interdisciplinary Thematic Institute for Quantum
Science and nanoMaterials (QMat), Strasbourg University, for supporting the event,
and we thank the editorial teams at EDP Sciences and Presses Universitaires
de Strasbourg (PUS) for their invaluable assistance with publishing this volume.

Irene Burghardt, Goethe University Frankfurt, Germany
Jérémie Léonard, University of Strasbourg, France

Jeffrey Cina, University of Oregon, USA
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1.1 Introduction
Ultrafast optical spectroscopy is a very powerful technique for the investigation of
non-equilibrium time-dependent processes in molecules and solids. It is used by an
interdisciplinary group of physicists, chemists and biologists to study problems
ranging from charge carrier relaxation in semiconductors and their nanostructures
to photosynthetic light harvesting in plants to the making and breaking chemical
bonds during chemical reactions. This variety of experiments has been enabled by
spectacular developments in ultrafast laser technology in the last three decades.
Nowadays, it is possible to generate powerful femtosecond light pulses with high
stability and reliability using mature primary laser sources, such as Ti:sapphire and
Ytterbium lasers, working in the near-infrared range. Furthermore, it is possible to
tune the frequency of the ultrashort laser pulses almost continuously, from the
mid-infrared to the ultraviolet, using nonlinear optical frequency conversion
processes.

With respect to the early times of femtosecond laser technology, when the gene-
ration of the ultrashort pulses was an experiment in itself, in which the researchers
invested a lot of time and effort, nowadays, ultrafast laser systems have become
increasingly turnkey. On the one hand, this gives the researchers the opportunity to
perform sophisticated experiments and concentrate on the physicochemical pro-
cesses of interest. On the other hand, however, some of the knowledge on the
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properties of ultrashort pulses and their linear and nonlinear interaction with matter,
which was previously necessary in order to be able to generate the ultrashort light
pulses, may have been lost. This chapter aims to fill this gap by reviewing linear and
nonlinear propagation of ultrashort pulses in transparent media. Due to space limi-
tations, it does not cover all the essential topics of ultrafast optics, which include
techniques for the generation and the temporal characterization of ultrashort pulses.
It instead focuses on the linear propagation of femtosecond pulses, with the effects of
dispersion and the techniques for its compensation (section 1.2) and the propagation
in second-order nonlinear media, with an emphasis on the optical parametric
amplification process, which allows tuning the frequency of ultrashort pulses
(section 1.3). This chapter aims to present a self-consistent treatment, starting from
Maxwell’s wave propagation equations in the scalar and plane wave approximations.

1.2 Linear Propagation of Ultrashort Pulses: Dispersion
and its Compensation

The electric field of an ultrashort light pulse can be written as:

E0 tð Þ ¼ 1
2

A tð Þ exp i x0tþuð Þ½ � þ c:c:f g ¼ R A tð Þ exp i x0tþuð Þ½ �f g ð1Þ

where A(t) is the complex pulse envelope and exp i x0tþuð Þ½ � is the traveling optical
carrier, where ω0 is the carrier angular frequency and φ is the carrier-envelope phase.
In the following, whenever linear operators are involved, we will consider the
complex field:

E tð Þ ¼ A tð Þ exp i x0tþuð Þ½ � ð2Þ
and extract the real part only as a final step. The Fourier transform of the complex
field E tð Þ is

~E xð Þ ¼ ~A x� x0ð Þ ¼ ~A x� x0ð Þ�� �� exp i/ x� x0ð Þ½ � ð3Þ

where ~A xð Þ�� �� is the spectral amplitude and / xð Þ is the spectral phase of the Fourier
transform of the complex envelope A tð Þ, whereas the Fourier transform of the real

field is ~E0 xð Þ ¼ 1=2 ~A x� x0ð Þþ ~A
� �x� x0ð Þ

h i
. Both the spectral amplitude and

the spectral phase of ~A x� x0ð Þ are crucial for the generation of an ultrashort pulse.
According to the Fourier transform theorem, a short pulse in the time domain
corresponds to a broad spectrum in the frequency domain, so an ultrashort pulse
necessarily has a polychromatic spectrum, which contains different frequency
components. However, having a broadband spectrum is insufficient for having an
ultrashort pulse. One also needs to control the spectral phase, which determines the
relative arrival times of the different frequency components of the pulse. In the
following, we will describe the linear propagation of an ultrashort pulse in a
transparent medium, showing how it affects its duration and spectral phase.
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We start from Maxwell’s wave equation for an electromagnetic wave propagating
in a medium with a polarization P, which can be written for the electric field vector
E(x, y, z, t) as:

r2E ¼ l0e0
@2E
@t2

þ l0
@2P
@t2

ð4Þ

Equation (1) is a vector equation. We first make the scalar approximation by
assuming a linearly polarized pulse propagating in the z direction and considering
only one component E of the electric field vector E:

@2E
@z2

þr2
TE ¼ l0e0

@2E
@t2

þ l0
@2P
@t2

ð5Þ

where

r2
TE ¼ @2E

@x2
þ @2E

@y2
ð6Þ

is the so-called transverse Laplacian operator. We further make the plane wave
approximation by neglecting any transverse variation of the electric field and
assuming that:

E ¼ Eðz; tÞ ð7Þ
so that the propagation equation becomes:

@2E
@z2

� 1
c20

@2E
@t2

¼ l0
@2P
@t2

ð8Þ

where c0 ¼ 1=
ffiffiffiffiffiffiffiffiffi
e0l0

p
is the speed of light in vacuum. Equation (5) already allows a

first physical insight into the propagation of an electromagnetic (e.m.) wave into a
medium with polarization P. The polarization is on the right-hand side of the
equation and thus acts as a driving term for the electric field, modifying it during
propagation. Let us now consider a plane wave of the form:

E tð Þ ¼ A z; tð Þ exp i x0t � k0zð Þ½ � ¼ A z; tð Þj j exp i x0t � k0z þ/ðz; tÞ½ �f g ð9Þ
where A(z, t) is the complex field envelope, /ðz; tÞ is its temporal phase, x0 is the

carrier angular frequency and k0 ¼ x0
c x0ð Þ ¼ x0n x0ð Þ

c0
is the wave number.

The polarization is a function of the incident electric field and can be decom-
posed in the sum of a linear (PL) and a nonlinear (PNL) component:

P z; tð Þ ¼ PL z; tð ÞþPNL z; tð Þ ð10Þ
Similarly to equation (9), the polarization can be written as:

P z; tð Þ ¼ p z; tð Þ exp i x0t � kpz
� �� � ð11Þ

where the wavevector of the polarization is generically indicated as kp and can be
different from that of the electric field k0; in section 1.3, we will treat the nonlinear
case and calculate the exact value of kp.
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For the remainder of this section, instead, we will consider only the linear
component:

PL z; tð Þ ¼ e0vE z; tð Þ ¼ e0vA z; tð Þ exp i x0t � k0zð Þ½ � ¼ pLðz; tÞ exp i x0t � k0zð Þ½ �
ð12Þ

where v is the dielectric susceptibility; note that for the linear component kp is
exactly k0. In this case, equation (8) becomes:

@2E
@z2

� 1
c20

@2E
@t2

¼ l0
@2PL

@t2
ð13Þ

Equation (13) is more easily solved in the frequency domain by introducing the
Fourier transform:

~E z;xð Þ ¼ I E z; tð Þ½ � ¼
Zþ1

�1
E z; tð Þ exp�ixtð Þ dt ð14Þ

which can be expressed as:

~E z;xð Þ ¼ ~A z;x� x0ð Þ exp�ik0zð Þ ð15aÞ
Similarly, the Fourier transform of the polarization can be expressed as:

~PL z;xð Þ ¼ ~pL z;x� x0ð Þ exp�ik0zð Þ ð15bÞ
where ~A z;xð Þ ¼ I A z; tð Þ½ �. By taking the Fourier transform of (13) and recalling the
derivative rule for the Fourier transform:

I
dnF tð Þ
dtn

� 	
¼ ixð Þn ~F xð Þ ð16Þ

we obtain:

@2 ~E
@z2

þ x2

c20
~E ¼ �l0x

2 ~PL ð17Þ

We can express the derivatives with respect to the longitudinal propagation
coordinate z as follows:

@ ~E
@z

¼ @ ~A
@z

� ik0 ~A

 !
exp�ik0zð Þ ð18aÞ

@2 ~E
@z2

¼ @2 ~A
@z2

� 2ik0
@ ~A
@z

� k20 ~A

 !
exp�ik0zð Þ ð18bÞ
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By plugging (18b) into (17) we obtain:

@2 ~A
@z2

� 2ik0
@ ~A
@z

� k20 ~Aþ x2

c20
~A ¼ �l0x

2~pL ð19Þ

We now make the Slowly Varying Envelope Approximation (SVEA), which consists

of assuming that @2 ~A
@z2 \\k0 @ ~A

@z; this corresponds to neglecting variations of the
envelope over propagation lengths of the order of the wavelength and breaks down
only for extreme focusing conditions (down to the diffraction limit). With this
assumption, we obtain:

�2ik0
@ ~A
@z

� k20 ~Aþ x2

c20
~A ¼ �l0x

2~pL ð20Þ

For a monochromatic wave, the linear polarization can be expressed as:

~PL xð Þ ¼ e0v
ð1Þ xð ÞE xð Þ ð21Þ

where vð1Þ xð Þ is the linear (first-order) dielectric susceptibility. By recalling the
definition of linear complex refractive index nL xð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ vð1Þ xð Þ

p
, we obtain:

~pL xð Þ ¼ e0 n2
L xð Þ � 1

� �
~A xð Þ ð22Þ

We finally obtain:

�2ik0
@ ~A
@z

� k20 ~Aþ x2

c20
~A ¼ �x2

c20
n2
L xð Þ � 1

� �
~A ð23Þ

which simplifies to:

2ik0
@ ~A
@z

¼ k2 xð Þ � k20
� �

~A ð24Þ

with k xð Þ ¼ x
c0
n xð Þ. In a dispersive medium, the refractive index is a function of

frequency, and the wavevector thus becomes a nonlinear function of ω. We can write:

k2 xð Þ � k20 ¼ k xð Þ � k0½ � k xð Þþ k0½ � ffi 2k0 k xð Þ � k0½ � ð25Þ
where the approximation holds for a small bandwidth around ω0. By a Taylor
expansion of k(ω) around ω0:

k xð Þ ¼ k0 þ dk
dx


 �
x0

x� x0ð Þþ 1
2

d2k
dx2


 �
x0

x� x0ð Þ2 þ 1
6

d3k
dx3


 �
x0

x� x0ð Þ3 þ :::

ð26Þ
Usually, an expansion up to the third order (or to the second order for moderate
pulse bandwidths) is sufficient. By substituting (25) and (26) into (24), we obtain:
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i
@ ~A x� x0ð Þ

@z
ffi k 00 x� x0ð Þ~Aþ 1

2
k 000 x� x0ð Þ2 ~Aþ 1

6
k 0000 x� x0ð Þ3 ~A ð27Þ

In particular, it can be shown that k 00 ¼ dk
dx

� �
x0
¼ 1

vg0
, where vg0 is the group velocity at

the carrier angular frequency; similarly k 000 ¼ d2k
dx2

� 

x0

¼ GVD is known as Group

Velocity Dispersion (GVD) and k 0000 ¼ d3k
dx3

� 

x0

is the third-order dispersion. We can

now transform (24) back to the time domain. Recalling the rule:

I�1 xn ~F xð Þ� � ¼ ð�iÞn d
nF tð Þ
dtn

ð28Þ

we obtain:

@A z; tð Þ
@z

þ 1
vg0

@A
@t

� i
2
k 000

@2A
@t2

þ 1
6
k 0000

@3A
@t3

¼ 0 ð29Þ

Equation (29) can be simplified by changing to a temporal frame of reference
that moves with the group velocity of the carrier wave: z 0 ¼ z; s ¼ t � z

vg0
. We

obtain:

@

@t
¼ @

@s
;
@n

@tn
¼ @n

@sn
;
@

@z
¼ @

@z 0
� 1
vg0

@

@s
ð30Þ

In this new frame of reference, equation (29) becomes:

@A
@z 0

� i
2
k 000

@2A
@s2

þ 1
6
k 0000

@3A
@s3

¼ 0 ð31Þ

In this case, often satisfied in practice for moderate pulse bandwidths, in which one
assumes k 0000 ffi 0, equation (31) further simplifies to:

@A
@z

� i
2
k 000

@2A
@s2

¼ 0 ð32Þ

Equation (32), also known as the parabolic equation, captures the main physics of
linear propagation of ultrashort pulses in dispersive media.

Let us study the propagation of a pulse with a known envelope at z = 0,
A 0; tð Þ ¼ A0 tð Þ. We start with the simplified case of a non-dispersive medium, in
which the refractive index is constant with frequency: n xð Þ ¼ n x0ð Þ ¼ const: In this
case, k xð Þ ¼ x

c0
n x0ð Þ is a linear function of frequency and k 000 ¼ 0. We then have:

@A z;sð Þ
@z ¼ 0 which gives A L; sð Þ ¼ const. ¼ A0 sð Þ ¼ A0 t � L

vg0

� 

: We thus have a pulse

that moves with the group velocity of the carrier frequency (so that its peak position
shifts linearly with time) but maintains its shape unaltered. Note that, strictly
speaking, only the vacuum is a non-dispersive medium. According to the properties
of the Fourier transform operator, the spectrum of the time-shifted pulse after
propagation acquires a linear phase:
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~A L;xð Þ ¼ ~A 0;xð Þ exp �i
L
vg0

x


 �
¼ ~A 0;xð Þ exp �isg0x

� � ð33Þ

where sg0 ¼ L
vg0

is called the group delay at the carrier frequency and is the delay of

the pulse envelope upon propagation in a non-dispersive medium.
We now turn to a dispersive medium; equation (32) can be solved by taking a

Fourier transform with respect to time:

@ ~A z;xð Þ
@z

þ i
2
x2zk 000 ~A ¼ 0 ð34Þ

Note that now we are working in the so-called baseband, i.e., with envelope A, which
is a slowly varying function of time. Equation (34) can be easily solved by separation
of variables:

~A L;xð Þ ¼ ~A 0;xð Þ exp � i
2
D2x

2

 �

ð35Þ

where we have defined D2 ¼ k 000L as the second-order dispersion or Group Delay
Dispersion (GDD). It should be noted that, since the phase shift induced by
propagation through a length L can be expressed as u xð Þ ¼ k xð ÞL, one can write

D2 ¼ d2/
dx2

� 

x0

. We can now go back to the time domain and obtain:

A L; tð Þ ¼ 1
2p

Zþ1

�1

~A 0;xð Þ exp � i
2
D2x

2

 �

expðixtÞ dx ð36Þ

Equation (36) can be numerically solved for any input pulse; we can see that the
effect of propagation in a dispersive medium is to add to the spectrum a quadratic
phase. An analytical solution of (36) is possible only in the special case of a Gaussian
pulse shape:

A0 sð Þ ¼ A0 exp � s2

2s2p

 !
ð37Þ

This pulse shape, although it may not necessarily represent the realistic shape of an
ultrashort laser pulse, is amenable to analytical calculation because the Fourier
transform of a Gaussian function is also Gaussian. The parameter τp defines the
pulse duration; for an ultrashort pulse, in particular, one usually specifies the
duration as the Full Width at Half Maximum (FWHM) of intensity, which is given
by sFWHM ¼ ffiffiffiffiffiffiffiffiffiffiffi

2log2
p

sp. Recalling that:

I exp �at2
� �� � ¼ ffiffiffi

p
a

r
exp �x2

4a


 �
ð38Þ
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And putting a ¼ 1=2s2p, we obtain:

~A0 xð Þ ¼
ffiffiffiffiffiffi
2p

p
spA0 exp � s2px

2

2

 !
ð39Þ

and, after propagation:

~A L;xð Þ ¼
ffiffiffiffiffiffi
2p

p
spA0 exp � s2p

2
x2 1þ i

D2

s2p

 !" #
ð40Þ

Transforming back to the time domain, we obtain:

A L; tð Þ ¼ A0spffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2p þ jD2

q exp � s2

2 s2p þ iD2

� 

2
4

3
5

¼ A0spffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2p þ jD2

q exp � s2

2s2out


 �
exp i/ sð Þ½ �

ð41Þ

where:

s2out ¼ s2p þ
D2

2

s2p
¼ s2p 1þ D2

s2p

 !2
2
4

3
5 ð42aÞ

and:

/ sð Þ ¼ D2s2

2 s4p þD2
2

� 
 ð42bÞ

By recalling that D2 ¼ k 000L and defining a “dispersion length” LD ¼ s2p
k 000
¼ s2p

GVD,

equation (42a) can be rewritten as:

sout ¼ sp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ L

LD


 �2
s

ð43Þ

Equation (43) provides a physical insight into the mechanism of dispersive pulse
broadening. For short propagation lengths, L << LD, the pulse width remains
basically unchanged upon propagation, while for long propagation, L >> LD, we get
a linear broadening with distance, sout ¼ sp

LD
L. It is important to notice that the

dispersion length is inversely proportional to the GVD of the medium and directly
proportional to the square of the pulse duration. Therefore, shorter pulses start to
broaden for a much shorter propagation length, i.e., they are intrinsically more
fragile. We will better understand the physical reasons for this in the following
section.

In passing, we note that the temporal spreading of the Gaussian pulse due to
dispersion has the same expression as the spatial spreading of a Gaussian beam due
to diffraction:
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w zð Þ ¼ w0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z

zR


 �2
s

ð44Þ

where the Rayleigh range, defined as zR ¼ npw2
0

k , plays a similar role to the dispersion
length LD.

Let us now consider the time-dependent temporal phase. By recalling that the
ultrashort pulse is written as

E sð Þ ¼ A z; sð Þj j exp i x0s� k0z þ/ðz; sÞ½ �f g ð45Þ
The instantaneous pulse angular frequency becomes:

xi sð Þ ¼ x0 þ d/
ds

¼ x0 þ 2D2s

2 s4p þD2
2

� 
 ð46Þ

Therefore, in the most general case, its frequency is not constant but displays a
linear temporal variation, or “chirp”. In particular, for D2 > 0, the frequency
increases with time, i.e., the leading edge of the pulse is composed of low-frequency
components (“positive chirp” or “up-chirp”); on the contrary, for D2 < 0, the fre-
quency decreases with time, hence the leading edge of the pulse is composed of
high-frequency components (“negative chirp” or “down-chirp”).

To understand this behavior, let us recall that D2 ¼ d
dx

dk
dx ¼ d

dx
1

vg xð Þ
� 


so that

D2 > 0 means that vg decreases with frequency (and vice versa for D2 < 0). For
D2 > 0, therefore, the higher frequencies (blue components of the spectrum) move at
a lower speed with respect to the lower frequencies (red components of the spectrum)
and become delayed.When the pulse propagates in a dispersive mediumwithD2 > 0,
the pulse thus acquires a further up-chirp. The opposite holds for the case of a
down-chirp. Figure 1.1 shows examples of pulses with a positive and a negative chirp.

We can, therefore, conclude that linear propagation of an ultrashort pulse in a
dispersive medium has two effects: i) it broadens its temporal profile; ii) it introduces
a frequency chirp, i.e., a time-dependent carrier frequency. The two effects are
strictly related since the temporal broadening is due precisely to the different
propagation velocities of the spectral components of the ultrashort pulse. This also
explains why shorter pulses are more fragile: since, due to the Fourier theorem, they
have broader bandwidths, their frequency components will be more separated and
will, therefore, experience more relative delay upon propagation. To illustrate this

FIG. 1.1 – Temporal profiles of pulses with a positive (a) and with a negative frequency chirp
(b). Both the time and propagation axes are given.
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effect, figure 1.2 shows the calculated output pulse duration upon propagation of a
femtosecond pulse through 1 mm of fused silica (FS) and ZnSe glass (a situation
quite common in an ultrafast spectroscopy experiment) as a function of the input
pulse duration ΔT, calculated as FWHM of the pulse intensity. One can see that, for
input pulse durations longer than 100 fs, in both glasses, there is hardly any effect of
dispersive propagation. On the other hand, for input pulses shorter than 50 fs in
ZnSe, the effect becomes dramatic and for a pulse duration of 10 fs, the output pulse
is lengthened to more than 200 fs.

To further understand dispersive pulse broadening, let us express the laser pulse
like an inverse Fourier transform (or Fourier integral):

E tð Þ ¼ 1
2p

Zþ1

�1

~E xð Þ�� �� exp �i/ xð Þ½ � exp ixt½ � dx ð47Þ

Let us now slice from the pulse spectrum a narrow interval of frequencies around a
given angular frequency x:

Ex tð Þ ¼ 1
2p

ZxþDx

x�Dx

~E xð Þ�� �� exp �i/ xð Þ½ � exp ixt½ � dx ð48Þ

By expanding ϕ(ω) in a Taylor series around x, we obtain:

FIG. 1.2 – Output pulse duration as a function of input pulse duration upon propagation in a
1-mm-thick plate of fused silica (FS) and zinc selenide (ZnSe). The dispersion is evaluated at
carrier wavelength λ = 800 nm. The durations are calculated at FWHM of the pulse intensity.

Ex tð Þ ¼ 1
2p

exp ixt½ �
ZxþDx

x�Dx

~E xð Þ�� �� exp �i/ xð Þ � i
d/
dx


 �
x

x� xð Þ
� 	

exp i x� xð Þt½ � dx

¼ 1
2p

exp i xt � / xð Þð Þ½ �
ZxþDx

x�Dx

~E xð Þ�� �� exp i x� xð Þ t � d/
dx


 �
x


 �� 	
dx ð49Þ
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One can easily see that the right-hand side of the equation is maximum when the
argument of the exponential is zero, i.e. when:

t ¼ sg xð Þ ¼ d/
dx


 �
x

ð50Þ

The derivative of the spectral phase with respect to frequency, or group delay τg, is
thus the relative arrival time of a given frequency wavepacket within the pulse. By a
Taylor expansion of the spectral phase:

/ xð Þ ¼ / x0ð Þþ d/
dx


 �
x0

x� x0ð Þþ 1
2

d2/
dx2


 �
x0

x� x0ð Þ2 þ 1
6

d3/
dx3


 �
x0

x� x0ð Þ3 þ :::

¼ / x0ð Þþ sg0 x� x0ð Þþ 1
2
D2 x� x0ð Þ2 þ 1

6
D3 x� x0ð Þ3 þ ::: ð51Þ

where D3 ¼ d3/
dx3

� 

x0

is called third-order dispersion (TOD). One can thus write:

sg xð Þ ¼ d/ xð Þ
dx

¼ sg0 þD2 x� x0ð Þþ 1
2
D3 x� x0ð Þ2 þ ::: ð52Þ

Equation (52) shows that for D2 = D3 = 0, all the frequency components of the
pulse arrive simultaneously so that it is called Transform-Limited (TL), while in all
other cases, the different frequency components arrive at different times, and the
pulse becomes chirped. In particular, if the D2 term is dominant (quadratic chirp)
then the group delay varies linearly with frequency, meaning that the instantaneous
frequency is swept within the pulse envelope (from red to blue for positive chirp and
from blue to red for negative chirp, see figure 1.1).

When an ultrashort pulse propagates in a dispersive optical medium (which is
any medium except vacuum), its refractive index depends on the wavelength, n = n
(ω), giving rise to dispersion. Propagation through a block of material with thick-
ness L changes the spectral phase according to the expression:

/outðxÞ ¼ /inðxÞþLnðxÞx=c ð53Þ
and introduces the following GDD:

D2 ¼ k3=ð2pc2Þd2n=dk2L ð54Þ
where we have used the expression of the refractive index as a function of
wavelength, n = n(λ), also known as Sellmeier’s equation.

Nearly all materials in the visible and near-infrared range have d2n/dλ2 > 0 so
they introduce a positive GDD, which corresponds to an up-chirp. In an ultrafast
spectroscopy experiment, therefore, the optical elements on the beam path (lenses,
polarizers, birefringent plates, cryostat windows,…) introduce a positive dispersion
which lengthens the pulses and degrades the temporal resolution. To reverse this
effect and retrieve a TL pulse duration, one needs an optical system that introduces
negative dispersion, known in ultrafast optics as a pulse compressor. To understand

Linear and Nonlinear Propagation of Ultrashort Light Pulses 11



the effect of a pulse compressor on the spectral phase, let us consider an input pulse
with a spectrum:

~E in xð Þ ¼ ~E in xð Þ�� �� exp iuin xð Þ½ � ð55Þ
and a lossless linear optical system, the pulse compressor, which only introduces a
spectral phase with a transmission function:

T xð Þ ¼ exp iucomp xð Þ� � ð56Þ
The transmitted field can then be written as:

~Eout xð Þ ¼ ~E in xð ÞT xð Þ ¼ ~E in xð Þ�� ��exp i uin xð Þþucomp xð Þ� �� � ð57Þ
so that the GDD and the TOD of the output pulse can be expressed as:

D2out ¼ D2in þD2comp ð58Þ

D3out ¼ D3in þD3comp ð59Þ

where D2comp ¼ d2ucomp xð Þ
dx2

h i
x0

and D3comp ¼ d3ucomp xð Þ
dx3

h i
x0

. An ideal pulse compressor

should, therefore, introduce a GDD and a TOD, which precisely cancel those of the
input pulse. Figure 1.3 summarizes the most common pulse compressors used in
ultrafast optics.

Figure 1.3a shows the grating compressor, which consists of a pair of parallel and
identical gratings [1]. For a wavelength λ incident at an angle θi on the grating, the
reflected beam direction is given by the grating equation: sinhr ¼ sinhi þm k

d, where
d is the grating period, and m is the diffraction order. Form = −1, the red frequencies
travel a longer path with respect to the blue ones and are, therefore, more delayed,
resulting in negative dispersion. The GDD can be expressed as

D2 ¼ � k3Lg

p2c2d2

1

1� sinhi � k=dð Þ2
h i3=2 ð60Þ

FIG. 1.3 – Pulse compressors most commonly used in ultrafast optics. (a) Grating com-
pressor. (b) Prism compressor. (c) Chirped mirrors, with a detail on the reflection of
long-wavelength (red) and low-wavelength (blue) waves.
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where Lg is the distance between the gratings. A single pass in the grating pair
produces a spatial separation of the different frequency components of the pulse,
which is known as spatial chirp. This effect can, however, be removed by a double
pass on the gratings pair after reflection from a folding mirror. The negative GDD
introduced by the grating pair depends on the design (grating period d, incidence
angle θi) and on the distance Lg between the gratings. One should note that the
grating pair compressor introduces a positive TOD (D3 > 0), which, therefore, adds
up to the one introduced by the dispersive medium. It is, therefore, not possible,
using only a grating pair, to completely cancel the positive dispersion introduced by
propagation in a medium.

Figure 1.3b shows the prism compressor, which consists of a pair of prisms at
distance L, aligned in such a way as to be at minimum deviation for the incident
beam [2, 3]. The angular dispersion of the first prism creates a longer path through
the second prism material for the red wavelengths with respect to the blue ones, thus
providing negative dispersion. To achieve a negative GDD, the prism distance
L must be sufficiently large to compensate for the positive dispersion induced by
propagation in the prism material itself. The GDD of the prism pair can be coarsely
adjusted by setting the prisms distance L, and finely tuned by translating one of the
prisms along a direction perpendicular to its base, thus varying its insertion and the
positive material dispersion. Similarly to the grating pair, also the prism pair
introduces a spatial chirp on the transmitted beam, which is removed by reflecting it
on a folding mirror and passing it again through the prism sequence. With respect to
the grating pair, the prism pair has the advantage of higher transmission: if the
prisms have an apex angle cut such that at minimum deviation, the angle of inci-
dence is Brewster’s angle, there is virtually no reflection for the correct linear
polarization (TM or p polarization) and the system is essentially loss-free. On the
other hand, this compressor introduces not only a negative GDD but also a large
negative TOD, which cannot be independently controlled; if the prism pair GDD is
set to compensate for that of the material, then the overall dispersion of the system
is dominated by the large negative TOD introduced by the prism pair. Since both
GDD and TOD are proportional to the prism separation L, the ratio TOD/GDD
depends on the prisms material and the wavelength and can be minimized by
choosing materials with low dispersion (such as fused silica, MgF2, or CaF2). In this
case, however, the prism distance required to achieve a given value of D2 increases.
In summary, the prism pair is a very simple compressor but cannot be used with very
short pulses (with a duration shorter than 15–20 fs in the visible) due to the residual
TOD. In principle, a prism pair/grating pair combination with suitably chosen
distances Lgrating/Lprism provides enough degrees of freedom to control both the
GDD and the TOD of the output pulses [4], according to the equations:

D2out ¼ D2in þD2grating Lgrating
� �þD2prism Lprism

� � ¼ 0 ð61aÞ

D3out ¼ D3in þD3grating Lgrating
� �þD3prism Lprism

� � ¼ 0 ð61bÞ
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A finer control on both GDD and TOD can be achieved by using the so-called
chirped mirrors [5], shown in figure 1.3c. These mirrors are inspired by the multi-
layer Bragg dielectric mirrors, commonly used to achieve high reflectivity. Such
mirrors consist of a large number (≈50) of thin films of alternating high (nH) and low
(nL) refractive index materials with thickness d = λ/4nH/L, which provide con-
structive interference between multiple reflections and thus high reflectivity at the
wavelength λ. Chirped mirrors are designed in such a way that the layer thickness
increases from the surface going towards the substrate. In this way, the
high-frequency (short wavelength) components of the laser spectrum are reflected
first, while the low frequency (long wavelength) components penetrate more deeply
into the multilayer, thus acquiring an additional group delay. Suitable computer
optimisation allows to avoid spurious resonances and design a custom-tailored
frequency-dependent negative GDD/TOD, which compensates for the GDD/TOD
introduced by propagation in one or more optical materials. Often, the obtained
frequency-dependent GDD from a chirped mirror presents rather large oscillations
around the design values; this problem can be overcome by using matched chirped
mirror pairs in which the oscillations introduced by the two coupled mirrors cancel
out [6]. When used with a specific optical system introducing a dispersion which is
well characterized and stable in time, chirped mirrors can, therefore, compensate for
both GDD and TOD and retrieve a TL pulse duration even for broadband pulses.

Chirped mirrors have several advantages: the dispersion can be arbitrarily
controlled over very broad bandwidths (exceeding one octave), they have very high
energy throughput, and they are particularly insensitive to misalignment, facili-
tating day-to-day operation. On the other hand, their fabrication is not trivial, since
very high precision on the layer thickness is required, achievable only by sophisti-
cated techniques such as ion beam sputtering. In addition, the negative GDD
obtainable from a single bounce is typically rather small (≈ −50 fs2), so many
bounces are generally required. Finally, using chirped mirrors, the GDD can only be
varied in discrete steps by adding or removing a bounce pair; to achieve better
control, one can add a pair of SiO2 glass wedges, which allow one to finely vary the
material dispersion by their controlled insertion.

In conclusion, after discussing the linear propagation of ultrashort pulses, a few
general considerations can be drawn:

i) Ultrashort pulses propagating in any medium (except vacuum) undergo dis-
persion, which results in a lengthening of their duration and in a frequency
chirp, with the instantaneous carrier frequency varying with time; the effects of
dispersion become more severe for very short pulses, due to their broad
bandwidths.

ii) When designing an ultrafast spectroscopy experiment, one should try to
minimize dispersion by using only the strictly necessary amount of material.
For example, it is better to use curved mirrors instead of lenses to collimate
and focus the beams, and when glass windows are unavoidable (such as, for
example, in the entrance windows of cryostats) one should try to minimize
their thickness. In this way, one relaxes the requirements on the compressor
and allows overall better dispersion compensation.
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iii) To compensate for the unavoidable dispersion, one should use pulse com-
pressors which introduce a negative dispersion to minimize the pulse duration
at the plane of the sample. Whenever possible, one should use chirped mirrors,
or else prism pairs made of materials with low TOD/GDD ratio.

1.3 Nonlinear Propagation of Ultrashort Pulses: Optical
Parametric Amplifiers

Now we go back to the propagation of an ultrashort pulse in a nonlinear medium.
We start with the equation:

@2E
@z2

� 1
c20

@2E
@t2

¼ l0
@2PL

@t2
þ l0

@2PNL

@t2
ð62Þ

where the polarization has been split into a linear and a nonlinear term (see
equation (11)). In this case, the nonlinear polarization can be expressed as:

~PNL xð Þ ¼ e0v
2ð Þ xð Þ ~E2

xð Þþ e0v
3ð Þ xð Þ ~E3

xð Þþ . . . ð63aÞ
where v nð Þ is the n-th order nonlinear susceptibility. ~PNL becomes comparable to
linear polarization when the intensity of the light field is higher than 109 W/cm2.
Similarly to the approach used for equation (12) for the linear term, also the
nonlinear polarization can be expressed as:

PNL z; tð Þ ¼ pNL z; tð Þ exp i x0t � kpz
� �� � ð63bÞ

As will be shown later, we emphasize that the wavenumber kp of the nonlinear
polarization at angular frequency ω0 is different from that of the linear polarization
and of the electric field, k0. The second derivative of the nonlinear polarization can
be expressed as:

@2PNL

@t2
¼ @2pNL

@t2
þ 2ix0

@pNL
@t

� x2
0pNL


 �
exp i x0t � kpz

� �� � ð64Þ

We now make the approximation that the envelope pNL varies slowly over the
timescale of an optical cycle, so that

@2pNL
@t2

;x0
@pNL
@t

\\x2
0pNL ð65Þ

Equation (64) then becomes:

@2PNL

@t2
ffi �x2

0pNL exp i x0t � kpz
� �� � ð66Þ

By plugging (66) into equation (62) and using the SVEA made in section 1.2 to
derive equation (20), we obtain:
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�2ik0
@A
@z

� 2
ik0
vg0

@A
@t

� k0k 000
@2A
@t2

¼ �l0x
2
0pNL exp �iDkz½ � ð67Þ

where Δk = kp − k0 is the so-called “wave-vector mismatch” between the nonlinear
polarization and the field. Equation (67), recalling that x0=k0 ¼ c=n0, can be
rewritten as:

@A
@z

þ 1
vg0

@A
@t

� i
2
k 000

@2A
@t2

¼ �i
l0x0c
2n0

pNL exp �iDkz½ � ð68Þ

We will now discuss the propagation of light pulses in a second-order nonlinear
medium, with a non-zero second-order susceptibility, vð2Þ 6¼ 0. Let us consider
the superposition of three monochromatic and collinear waves, at frequencies ω1, ω2

and ω3:

E z; tð Þ ¼ 1
2

A1 z; tð Þ exp i x1t � k1zð Þ½ � þA2 z; tð Þ exp i x2t � k2zð Þ½ �f

þA3 z; tð Þ exp i x3t � k3zð Þ½ � þ c:c:g ð69Þ

satisfying the condition ω1 + ω2 = ω3. Note that in this case, we are using the real
notation introduced in equation (1): this is mandatory since we are considering a
nonlinear interaction in a medium with a second-order response:

PNL z; tð Þ ¼ e0v
2ð ÞE2 z; tð Þ ð70Þ

in which the interaction depends on the square of the electric field.
This situation is known as three-wave mixing or nonlinear second-order para-

metric interaction and corresponds to an exchange of energy between the three fields
by means of second-order nonlinearity. By inserting equation (69) into equation (70),
we can calculate the nonlinear polarization. This will result in the linear combina-
tion of functions oscillating at frequencies 2x1, 2x2, 2x3, x1 � x2j j, x1 � x3j j,
and x2 � x3j j which are the source of a variety of nonlinear optical phenomena,
such as second-harmonic generation (SHG), sum-frequency generation (SFG),
difference-frequency generation (DFG) and optical parametric amplification (OPA).

Let’s now assume that only the interaction which mixes the fields at frequencies
ω1, ω2 and ω3 is efficient, due to the phase-matching condition, which will be defined
and explained later. We will hence only keep the components of the nonlinear
polarization at frequencies ω1, ω2 and ω3, which are:

P1NL z; tð Þ ¼ e0vð2Þ

2
A�

2A3 exp i x3 � x2ð Þt � k3 � k2ð Þz½ � þ c.c.f g ð71aÞ

P2NL z; tð Þ ¼ e0vð2Þ

2
A�

1A3 exp i x3 � x1ð Þt � k3 � k1ð Þz½ � þ c.c.f g ð71bÞ

P3NL z; tð Þ ¼ e0vð2Þ

2
A1A2 exp i x1 þx2ð Þt � k1 þ k2ð Þz½ � þ c.c.f g ð71cÞ
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Inserting these expressions into equation (68), we derive the following three equa-
tions for the fields at ω1, ω2 and ω3:

@A1

@z
þ 1

vg1

@A1

@t
� i
2
k 001

@2A1

@t2
¼ �i

l0e0cx1

4n1
vð2ÞA�

2 A3 exp �i k3 � k2 � k1ð Þz½ � ð72aÞ

@A2

@z
þ 1

vg2

@A2

@t
� i
2
k 002

@2A2

@t2
¼ �i

l0e0cx2

4n2
vð2ÞA�

1 A3 exp �i k3 � k1 � k2ð Þz½ � ð72bÞ

@A3

@z
þ 1

vg3

@A3

@t
� i
2
k 003

@2A3

@t2
¼ �i

l0e0cx3

4n3
vð2ÞA1 A2 exp �i k1 þ k2 � k3ð Þz½ � ð72cÞ

In the following, we will define the “wave-vector mismatch” as: Dk ¼ k3 � k1 � k2.
The configuration when Dk ¼ 0 is called phase matching. The three equations are
coupled nonlinear partial differential equations, are, in general, not amenable to an
analytic solution and must be treated numerically. A first simplification, that cap-
tures the main physics of parametric interaction, consists of neglecting the GVD
terms, i.e. putting k 00i ¼ 0. This is justified by considering that the three interacting
pulses are propagating at very different group velocities vgi. The effects of this group
velocity difference (intra-pulse GVD) are much more relevant than those of group
velocity dispersion between the different frequency components of a single pulse
(inter-pulse GVD). The coupled equations then become:

@A1

@z
þ 1

vg1

@A1

@t
¼ �ij1A�

2 A3 exp �iDkz½ � ð73aÞ

@A2

@z
þ 1

vg2

@A2

@t
¼ �ij2A�

1 A3 exp �iDkz½ � ð73bÞ

@A3

@z
þ 1

vg3

@A3

@t
¼ �ij3A1 A2 exp iDkz½ � ð73cÞ

with the nonlinear coupling constants defined as: ji ¼ xivð2Þ
4cni

. They can be simplified
by moving to a frame of reference translating with the group velocity of the field at
ω3: t0 ¼ t � z

vg3
. The equations then become:

@A1

@z
þ d13

@A1

@t
¼ �ij1A�

2 A3 exp �iDkz½ � ð74aÞ

@A2

@z
þ d23

@A2

@t
¼ �ij2A�

1 A3 exp �iDkz½ � ð74bÞ
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@A3

@z
¼ �ij3A1 A2 exp iDkz½ � ð74cÞ

where di3 ¼ 1
vgi

� 1
vg3

with i ¼ 1; 2 is the Group Velocity Mismatch (GVM) between

the waves at ω1/ω2 and ω3. These are nonlinear coupled partial differential
equations that can be solved numerically. To get some physical insight, we can make
the approximation of quasi-monochromatic waves, i.e. @Ai

@t ¼ 0. The coupled
equations in this case become:

dA1

dz
¼ �ij1A3A

�
2 exp �iDkz½ � ð75aÞ

dA2

dz
¼ �ij2A3A

�
1 exp �iDkz½ � ð75bÞ

dA3

dz
¼ �ij3A1A2 exp þ iDkz½ � ð75cÞ

Note that, according to the initial boundary conditions A1(0), A2(0) and A3(0),
these coupled equations describe all second-order nonlinear optical phenomena, such
as SHG (A1(0) = A2(0); A3(0) = 0), SFG (A3(0) = 0), DFG and OPA (A1(0) = 0).
In the remainder of this chapter, we will focus on the OPA process, which is
important since it allows us to generate frequency tunable ultrashort light pulses. In
an OPA, an intense light beam at angular frequency ω3 (the pump beam) impinges
on the nonlinear crystal together with a weak beam at frequency ω2 (the signal
beam). The OPA process can be also described as an interaction among photons
occurring through virtual states, as depicted in figure 1.4: each pump photon is
annihilated bringing the system to the highest virtual state; simultaneously, a signal
photon stimulates a decay towards a lower state generating a signal photon together
with a photon at the difference frequency ω1 = ω3 − ω2, known as the idler fre-
quency. The OPA thus amplifies the signal beam at the expense of the pump beam,
using virtual states to mediate the process and thus without depositing any energy
into the gain medium.

FIG. 1.4 – Scheme of the nonlinear interaction taking place in an OPA.
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To discuss the OPA process, we first make the no-pump-depletion approxima-
tion, i.e. we assume that the conversion efficiencies are so low that
A3 ffi A30 ¼ const:, i.e. the pump is not depleted, where A30 is the amplitude of the
pump at the beginning of the interaction. We also initially make the approximation
of perfect phase matching (Δk = 0), simplifying the equations to:

dA1

dz
¼ �ij1A30A�

2 ð76aÞ

dA2

dz
¼ �ij2A30A�

1 ð76bÞ

By taking the derivative of (76b) with respect to z:

d2A2

dz2
¼ �ij2A30

dA�
1

dz
¼ j1j2 A30j j2A2 ð77Þ

By defining: C2 ¼ j1j2 A30j j2 ¼ x1x2v 2ð Þ2
16c2n1n2

A30j j2 ¼ x1x2v 2ð Þ2
16e0c3n1n2

I 30 we can write the
equation:

d2A2

dz2
� C2A2 ¼ 0 ð78Þ

which has the solution:

A2ðzÞ ¼ C1 exp Czð ÞþC2 exp �Czð Þ ð79Þ
By using the boundary conditions A2(0) = A20, A1(0) = 0, which corresponds to
injecting in the nonlinear crystal a pulse at the signal frequency (the so-called “seed”
pulse) but no pulse at the idler frequency, we obtain:

A2 zð Þ ¼ A20 cosh Czð Þ ð80Þ
which, for large values of Γz, becomes:

A2 zð Þ ffi A20

2
exp Czð Þ ð81Þ

At the output of a crystal with length L, the amplified signal intensity therefore
becomes:

I2 Lð Þ ¼ I20
4

exp 2CLð Þ ð82Þ

The weak seed beam is therefore amplified in the nonlinear crystal, with a para-
metric gain which is defined as:

G ¼ I2 Lð Þ
I20

¼ 1
4
exp 2CLð Þ ð83Þ
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The parametric gain G thus depends exponentially on the propagation length
L and on the coefficient Γ, which in turn depends on the nonlinear susceptibility χ(2)

and on the square root of the pump intensity. Using realistic values achievable with
femtosecond light pulses, one can obtain parametric gains of the order of 103 ÷ 104

for propagations of just a few mm in the nonlinear medium.
The idler beam amplitude can be easily obtained by integrating equation (76a) as:

A1 zð Þ ¼ �ij1A30A�
20
sinh Czð Þ

C
ð84Þ

which, in the large gain limit, becomes:

A1 zð Þ ¼ �ij1A30A�
20
exp Czð Þ

2C
ð85Þ

The idler intensity is then written as:

I1 Lð Þ ¼ j1
j2

n1
n2

I2 Lð Þ ¼ x1

x2
I2 Lð Þ ð86Þ

Equation (86) lends itself to a simple physical interpretation: for each signal photon
generated in the OPA process there must be an idler photon, so that in the large gain
limit, neglecting the initial number of signal photons, the number of signal and idler
photons is equal, i.e. I 1

�hx1
¼ I 2

�hx2
.

Let us now evaluate how to get the collinear phase matching condition,
i.e. k1 + k2 = k3, which is equivalent to writing: ω1n1 + ω2n2 = ω3n3. It is easy to
show that this condition cannot be satisfied in an isotropic bulk medium, for
which dn/dω > 0. One can, however, use birefringent crystals, which are also
non-centrosymmetric and thus with χ(2) ≠ 0. We will consider the following uniaxial
birefringent crystals, which are the simplest to describe and also widely used in
nonlinear optics. In such a crystal one can define an axis, known as the optical axis,
such that, for a propagation direction forming an angle θ with the optical axis, the
two orthogonal polarizations see different refractive indexes: the ordinary index no,
and the extraordinary index, ne, which depends on the angle θ according to the
expression:

1
n2
e hð Þ ¼

cos2 hð Þ
n2
o

þ sin2 hð Þ
n2
e

ð87Þ

According to the value of θ, therefore, ne(θ) varies between no and ne. Let us consider
a negative uniaxial crystal, for which ne < no. In this case, the phase match-
ing condition can be achieved by polarizing ω3 along the extraordinary direction and
ω1, ω2 along the ordinary direction (Type I phase matching). In this case, one can
write:

ne x3; hmð Þ ¼ no x1ð Þx1

x3
þ no x2ð Þx2

x3
ð88Þ
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from which, with the help of equation (87), one obtains:

hm ¼ asin
ne x3ð Þ

ne x3; hmð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2
o x3ð Þ � n2

e x3; hmð Þ
n2
o x3ð Þ � n2

e x3ð Þ

s" #
ð89Þ

Another type of phase-matching configuration, called Type II, is possible, in which
either the signal or the idler beams have extraordinary polarizations. The discussion
of the merits and drawbacks of different phase-matching configurations goes beyond
the scope of this chapter [7].

So far, we have considered the case of parametric amplification in the case of
perfect phase matching, which can be achieved only for a set of pump, signal and
idler frequencies. If we generalize to the case of non-vanishing phase mismatch Δk,
while still retaining the no pump depletion approximation, by taking the derivative
of (75b) with respect to z we obtain:

d2A2

dz2
¼ �ij2A30

dA�
1

dz
� iDkA�

1


 �
exp�iDkzð Þ ð90Þ

which, with the help of (75a) and its complex conjugate, can be rewritten as:

d2A2

dz2
þ iDk

dA2

dz
� C2A2 ¼ 0 ð91Þ

Equation (91) is a second-order linear differential equation which has solution of the
kind: A2 zð Þ ¼ exp czð Þ, where γ are the solutions of the corresponding characteristic
equation:

c2 þ iDkc� C2 ¼ 0 c ¼ � iDk
2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 � Dk

2


 �2
s

¼ � iDk
2

� g ð92aÞ

with

g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 � Dk

2


 �2
s

: ð92bÞ

We can thus write a generic solution as:

A2 zð Þ ¼ exp �i
Dkz
2


 �
C1 exp gzð ÞþC2 exp �gzð Þ½ � ð93Þ

which, with the usual boundary conditions A2(0) = A20, A1(0) = 0, becomes:

A2 zð Þ ¼ A20 exp �i
Dkz
2


 �
cosh gzð Þþ iDk

2g
sinh gzð Þ

� 	
ð94Þ

The amplified signal intensity can now be written as:

I2 zð Þ ¼ I20 cosh2 gzð Þþ Dk2

4g2
sinh2 gzð Þ

� 	
ð95Þ
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which, after some manipulation, becomes:

I2 zð Þ ¼ I20 1þ C2

g2
sinh2 gzð Þ

� 	
ð96Þ

so that the parametric gain can be written as:

G Dkð Þ ¼ 1þ C2

g2
sinh2 gzð Þ ð97Þ

or, in the large gain case (gz >> 1):

G Dkð Þ ¼ C2

4g2
exp 2gLð Þ ð98Þ

Since g decreases with increasing Δk, so will also the parametric gain. We now
calculate the wave-vector mismatch that reduces the parametric gain to half. From
equation (83) we get:

G Dkð Þ ¼ G 0ð Þ
2

¼ 1
2
1
4
exp 2CLð Þ ð99Þ

which corresponds to:

C2

4g2
exp 2gLð Þ ¼ 1

2
1
4
exp 2CLð Þ ð100Þ

By assuming that Dk � 2C, from equation (92b) we obtain that C2

g2 ffi 1 and equa-

tion (100) results in:

2gL ffi 2CL� ln 2 ð101Þ
The expression of g in equation (92b) g can be expanded to the first order as:
g ¼ C� Dk2

8C , resulting in:

Dk ffi 2 ln 2ð Þ1=2 C
L


 �1=2

ð102Þ

In order to calculate the phase-matching bandwidth for the OPA process, let us now
link the wave-vector mismatch to the frequency variation of the signal pulse. Let us
assume that the phase-matching condition is rigorously satisfied for a set of fre-
quencies x1;x2;x3, with x1 þx2 ¼ x3, so that:

k ~x1ð Þþ k ~x2ð Þ ¼ k ~x3ð Þ ð103Þ
We now keep ω3 fixed and vary the signal frequency: x2 ¼ ~x2 þDx. The idler fre-
quency will consequently vary as: x1 ¼ ~x1 � Dx. The wave-vector mismatch will be:
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Dk ¼ k x3ð Þ � k x2ð Þþ @k
@x


 �
x2

Dxþ 1
2

@2k
@x2


 �
x2

Dx2 þ :::

" #

� k x1ð Þþ @k
@x


 �
x1

�Dxð Þþ 1
2

@2k
@x2


 �
x1

�Dxð Þ2 þ :::

" # ð104Þ

In (104) we have stopped the wave-vector expansion to the second order. Taking into
account equation (103), equation (104) can be rewritten as:

Dk ffi � 1
vg2

� 1
vg1


 �
Dx� 1

2
k 001 þ k 002
� �

Dx2 ð105Þ

This shows that, to the first order, the wave-vector mismatch is proportional to the
GVM between signal and idler pulses: d12 ¼ 1

vg2
� 1

vg1
, Dk ffi �d12Dx. The FWHM

gain bandwidth, using equation (102), can then be written as:

DmFWHM ffi 2 ln 2ð Þ1=2
p

C
L


 �1=2 1
d12j j ð106Þ

Equation (106) shows that to achieve a broad phase-matching bandwidth, the group
velocities of signal and idler frequencies should be matched (group-velocity matched
OPA). In the case of δ12 = 0, the wavevector mismatch must be expanded to the
second order in Δω, giving:

DmFWHM ffi
ffiffiffi
2

p
ln 2ð Þ1=4
p

C
L


 �1=4 1

k 001 þ k 002
�� ��1=2 ð107Þ

and is thus inversely proportional to the sum of the GVDs of signal and idler pulses.
In both cases, we see that the gain bandwidth increases with increasing nonlinearity
Γ and decreases for increasing crystal length L, but the dependence is quite weak.
To achieve broadband phase matching, it is therefore necessary to have δ12 = 0,
i.e. to achieve group velocity matching between signal and idler pulses.

One possibility is to work with type I phase matching and around the degeneracy
condition, for which ω1 = ω2 = ω3/2. In this case, signal and idler have the same
frequency and polarization, so their group velocities are equal and δ12 = 0. This is
called a degenerate OPA (DOPA). If, however, one works outside the degeneracy
condition, in general one has vg1 6¼ vg2; in this case, to achieve group velocity
matching, one has to exploit a non-collinear interaction geometry. Let us consider
the geometry depicted in figure 1.5, in which the propagation direction of the signal
beam forms an angle α with that of the pump beam. In this case, to satisfy the
vectorial phase matching equation k3 = k1 + k2 the idler wave vector must join the
tips of the pump and signal wave vectors. We call Ω the angle formed between signal
and idler wave vectors. By projecting this equation along two axes parallel and
perpendicular to the signal wave vector, we obtain:

k ~x1ð ÞcosXþ k ~x2ð Þ ¼ k ~x3ð Þcosa ð108aÞ
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k ~x1ð ÞsinX ¼ k ~x3ð Þsina ð108bÞ
If we now change the signal angular frequency by Δω (and correspondingly the idler
frequency by −Δω) we can calculate the wave vector mismatches in a direction
parallel and perpendicular to the signal and impose that they both vanish:

Dkpar ¼ � dk
dx


 �
x2

Dxþ dk
dx


 �
x1

DxcosX� k ~x1ð ÞsinX dX
dx

Dx ¼ 0 ð109aÞ

Dkper ¼ dk
dx


 �
x1

DxsinXþ k ~x1ð ÞcosX dX
dx

Dx ¼ 0 ð109bÞ

Multiplying equation (109a) by cosΩ and (109b) by sinΩ and adding them, we
obtain

vg2 ¼ vg1cosX ð110Þ
Equation (110) lends itself to a very simple interpretation: in a non-collinear
interaction geometry, broadband phase matching can be obtained when the group
velocity of the signal matches the projection of the group velocity of the idler along
the signal direction. This so-called non-collinear OPA (NOPA) is a very powerful
tool for the generation of very short visible pulses.

In conclusion, we can draw the following general remarks on the nonlinear
interactions of ultrashort pulses:

1) The nonlinear processes arise from the higher-order terms in the expansion
of the polarization vector; such terms become relevant when the intensity of
the light is higher than 109 W/cm2. The second-order processes arise in a
medium with a non-zero second-order susceptibility, vð2Þ 6¼ 0. In his case,
the nonlinear interaction may give rise to sum and difference frequency
generation; one particular case of difference frequency generation is para-
metric amplification, inwhich the energy of a strong pulse is transferred to a
weak beam, the signal. OPAs are used to generate, starting from, a fixed

FIG. 1.5 – (a) Scheme of a non-collinear interaction geometry in an OPA. (b) Interpretation
of the broadband amplification: the group velocity of the signal matches the group velocity of
the idler along the signal direction. (c) For comparison: the collinear configuration, with
no-matching velocities.

24 Quantum Dynamics and Spectroscopy of Functional Molecular Materials...



frequency pulse and frequency tunable femtosecond pulses and are,
therefore, powerful tools in ultrafast optical spectroscopy.

2) The second-order nonlinear processes occur efficiently only when the
so-called phase matching condition, which implies that the wave vector of
the nonlinear polarization at a certain frequency matches that of the light
beam, is fulfilled. This condition can be satisfied in birefringent crystals,
which are also non-centrosymmetric and thus exhibit second-order non-
linearity. In such crystals, the refractive index depends on the polarization
of light; the extraordinary one also depends on the direction of the
propagation of light, which enables it to fulfil the phase-matching con-
dition by properly orienting the crystal.

3) When dealing with pulses, it is necessary to ensure that the nonlinear
interaction is occurring over a broad bandwidth. In the case of broadband
OPA, the broadband field is the signal beam. Also in this case, the main
parameter which influences the process efficiency is the phase mismatch:
broadband operation is obtained when the phase mismatch is null or
negligible over a broad bandwidth. In an OPA this condition is fulfilled
when the signal and idler propagate with the same group velocity; in a
non-collinear configuration, this means that the group velocity of the
signal must match the projection of the group velocity of the idler along
the signal direction. Non-collinear OPAs enable the amplification of
broadband pulses and the generation of ultrashort visible pulses.

Conclusions
This Chapter aimed to introduce key concepts of ultrafast optics, which deals with
the generation, propagation and characterization of ultrashort light pulses. Of
course, we cannot provide a comprehensive coverage of the topic, for which we refer
the reader to excellent books [8]. We focused on two key aspects of ultrashort pulses:
their linear propagation in dispersive media, which gives rise to pulse broadening
and frequency chirp, and the methods adopted for dispersion compensation; their
nonlinear propagation in non-centrosymmetric crystals, which gives rise to
three-wave-mixing phenomena such as optical parametric amplification, used to
generate frequency tunable pulses for ultrafast spectroscopy. We believe that it is
important for the multi-disciplinary experimentalist approaching ultrafast spec-
troscopy with scientific questions in physics, chemistry, or biology to fully master
these concepts, which are essential to properly perform the experiments.
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2.1 Introduction
Many light-induced chemical and physical processes in molecular systems, such as
photochemical reactions, charge transfer, and excitation energy transfer, take place
on ultrafast timescales, often ranging from femtoseconds to picoseconds. Gaining a
detailed understanding of these mechanisms is key to the rational design of novel
functional molecular materials. This pursuit has led to the development of powerful
time-resolved nonlinear spectroscopic techniques.

In ultrafast spectroscopy, a typical experiment begins with a short ultraviolet-
visible (UV-vis) laser pulse that initiates a photophysical or photochemical process.
The ensuing molecular dynamics is then monitored using one or more delayed
probe pulses, possibly from different spectral domains (infrared, UV-vis, X-ray).
Depending on the detection scheme, the interaction between the laser pulses
and the molecular system gives rise to various observables – for instance, transmitted
fields, photoelectron spectra, or fluorescence signals. These measured signals can
potentially be very informative about the evolution of the system following
photoexcitation.

However, decoding such experimental data to reconstruct the underlying mole-
cular dynamics is far from straightforward. It requires a solid grasp of theoretical
principles, including molecular quantum mechanics, quantum dynamics, and the

DOI: 10.1051/978-2-7598-3760-1.c002
� The author 5s, 202



fundamentals of light–matter interaction. Without this foundation, the rich infor-
mation encoded in ultrafast spectroscopic measurements remains largely inaccessible.

The goal of this chapter is to present the essential theoretical tools needed to
understand and analyze light-induced processes in molecules and molecular mate-
rials. In addition, an overview is given on the various families of computational
methods used to model molecular photodynamics, with a particular focus on how
electronic transitions are coupled to nuclear motion, an aspect central to the pho-
tophysics and photochemistry of complex systems.

In particular, section 2.2 introduces the formalism commonly used to describe
photoinduced molecular motion quantum mechanically in most applications.
Section 2.3 illustrates the connection between molecular dynamics and linear
absorption spectroscopy. Sections 2.4 and 2.5 focus on quantum mechanical or
quantum-classical numerical approaches to simulate the coupled electronic-nuclear
molecular dynamics induced by light.

2.2 Molecular Quantum Dynamics
This section introduces the quantum mechanical formalism to describe the coupled
electronic and nuclear dynamics of an isolated molecular system, also referred to as a
“molecule” for simplicity. The word isolated implies the absence of interactions
between the system and the surrounding environment, so that the molecular energy
is conserved. While this assumption is strictly valid only for molecules in vacuo, it
can also be applied to processes faster than the energy exchange between the
molecule and its environment. Quantum systems whose energy is not conserved
during their dynamical evolution are called open, and their theoretical description is
given in chapter 3.

The starting point for the quantum mechanical description of an isolated
molecule is the molecular Hamiltonian in the non-relativistic approximation [1],

Ĥ ¼ T̂ þĤ el; ð2:1Þ
where T̂ is the kinetic energy operator for the atomic nuclei and Ĥ el is the electronic
Hamiltonian, which accounts for the kinetic energy of the electrons, as well as the
Coulomb interactions between the constituent particles. Using Cartesian coordi-
nates Rj ¼ Rjx ;Rjy;Rjz

� �
and ri ¼ rix ; riy; riz

� �
to define the positions of nuclei and

electrons, respectively, the operators T̂ and Ĥ el take the form

T̂ ¼
XN
j¼1
� �h2

2M j

@2

@R2
jx

þ @2

@R2
jy

þ @2

@R2
jz

 !
ð2:2Þ

and

Ĥ el ¼
XN el

i¼1
� �h2

2me

@2

@r2ix
þ @2

@r2iy
þ @2

@r2iz

 !

þ �h2

mea0
�
XN
j¼1

XN el

i¼1

Zj

Rj � rij j þ
XN el

i 6¼j

1
ri � rj
�� �� þX

N

j 6¼l

ZjZl

Rj � Rl

�� ��
 !

;

ð2:3Þ
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where N and N el are the number of nuclei and electrons, respectively. Mj are the
atomic masses, Zj are the atomic numbers and �h, me and a0 are fundamental
constants (Planck’s constant, the electron mass, and Bohr radius, all equal to one in
atomic units).

The explicit form of the electronic Hamiltonian, reported for completeness in
equation (2.3), is not necessary for the derivations of this chapter. However, it is
worth emphasizing that Ĥ el is an operator acting in the Hilbert space of the elec-
tronic states, but also depends on the nuclear geometry through the coordinates Rj.
It follows that the eigenstates and eigenvalues of Ĥ el – the so-called adiabatic states
and potential energy surfaces, introduced in section 2.2.1, are also formally depen-
dent on the geometry.

The choice of Cartesian coordinates to describe molecular geometry is not the
only option. Depending on the problem, internal coordinates (e.g., bond distances,
angles, torsions) or vibrational normal modes may be more appropriate. However, in
the case of internal coordinates, the nuclear kinetic energy operator,T̂ can take on a
rather complicated form [2]. In the following, nuclear coordinates will be generically
denoted as q and the dependence of Ĥ el on molecular geometry as Ĥ elðqÞ.

2.2.1 Electronic States and Time-Dependent Schrödinger
Equation

In quantum mechanics, the coupled dynamics of electrons and nuclei is described by
a time-dependent wavefunction Wðr; q; tÞ, which evolves according to the
time-dependent Schrödinger equation,

@Wðr; q; tÞ
@t

¼ � i
�h
ĤWðr; q; tÞ; ð2:4Þ

that has to be solved for a given initial condition fixed at time t ¼ t0, i.e.
Wðr; q; t0Þ ¼ W0ðr; qÞ. Here, the vector r ¼ r1s1; r2s2; :::ð Þ collects all electronic
coordinates and spin variables si. In the context of photochemistry and spec-
troscopy, typical problems involve a relatively short interaction between the
molecule and an electromagnetic field, which prepares the molecule in some initial
state W0. This state is out of equilibrium and evolves in time according to
equation (2.4).

The exact solution of this equation in the framework of a many-body
electronic-nuclear problem is a formidable computational task that can be carried
out only for systems with a very small number of electrons. Therefore, the most
common approaches in photochemistry rely on some form of separation between the
electronic and nuclear problems.

The first step to achieve such a separation is to assume that, at each time, the
wavefunction can be expanded in a truncated basis ofN S electronic states that do not
depend on time. This is known as the group Born–Oppenheimer approximation [3],
and its validity is briefly discussed in section 2.2.2. Using Dirac’s notation to indicate
the electronic states – generally geometry-dependent – the group Born–Oppenheimer

Photoinduced Molecular Quantum Dynamics 29



approximation is formally obtained using the projection operator P̂elðqÞ ¼PN S
a¼1jaðqÞihaðqÞj as

Wðr; q; tÞ ’ P̂elðqÞWðr; q; tÞ ¼
XN S

a¼1
jaðqÞivaðq; tÞ; ð2:5Þ

where vaðq; tÞ are nuclear wavefunctions associated with each electronic state.
Formally, they are defined as the integral vaðq; tÞ ¼ haðqÞ Wðr; q; tÞij r performed over
the electronic coordinates r.

The definition of the electronic basis jaðqÞif g used in the expansion of equa-
tion (2.5) is not unique and needs to be chosen in numerical calculations. Indeed, it
is easy to verify that the total molecular wavefunction is invariant under unitary
transformations

jaðqÞi �! a0ðqÞij ¼
XN S

b¼1
jbðqÞiU baðqÞ;

vaðq; tÞ �! v0aðq; tÞ ¼
XN S

b¼1
vbðq; tÞU �baðqÞ;

ð2:6Þ

where the geometry-dependent matrix UðqÞ ¼ U baðqÞ
� �

is unitary, i.e.UyðqÞUðqÞ ¼
UðqÞUyðqÞ ¼ 1.

For the moment we proceed without giving a precise choice for the electronic
states. Replacing equation (2.5) into equation (2.4) and using the definition Ĥ ¼
T̂ þĤ elðqÞ gives
XN S

a¼1
jaðqÞi @vaðq; tÞ

@t
¼ � i

�h

XN S

a¼1
T̂ jaðqÞivaðq; tÞþĤ elðqÞjaðqÞivaðq; tÞ
� �

¼ � i
�h

XN S

a¼1
T̂ ; jaðqÞi� �

vaðq; tÞþ jaðqÞiT̂vaðq; tÞþĤ eljaðqÞivaðq; tÞ
� �

;

ð2:7Þ
where we introduced the commutator T̂ ; jaðqÞi� � ¼ T̂ jaðqÞi � jaðqÞiT̂ . In this way,

we have got a term T̂va, that contains the action of the nuclear kinetic energy
operator on the nuclear wavefunctions. Assuming the group Born–Oppenheimer
approximation, we can apply the operator P̂el to both sides of equation (2.7). Using
the orthonormality condition haðqÞjbðqÞi ¼ dab, we derive a general form of the
evolutionary equations for the nuclear wavefunctions,

@vaðq; tÞ
@t

¼ � i
�h
T̂vaðq; tÞ �

i
�h

XN S

b¼1
V abðqÞvbðq; tÞþ K̂abðqÞvbðq; tÞ
	 


; ð2:8Þ

where we have introduced two operator matrices. One of them,

V abðqÞ ¼ haðqÞ Ĥ elðqÞ
�� ��bðqÞi; ð2:9Þ
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is purely multiplicative, i.e., it contains diagonal potential energy surfaces and
off-diagonal potential electronic couplings. The other matrix,

K̂abðqÞ ¼ aðqÞh j T̂ ; bðqÞj i� �
; ð2:10Þ

contains operators that also have a differential component. In particular, the
off-diagonal terms, which couple the equations of motion of different nuclear
wavefunctions, are formally kinematic couplings, i.e., they arise from the coordinate
dependence of the electronic states, which prevents them from commuting with the
nuclear kinetic energy operator.

From the physical viewpoint, the terms with a 6¼ b in equations (2.9) and (2.10)
account for radiationless transitions between different electronic states of the same
spin multiplicity, i.e., the phenomenon of internal conversion. It is clear from the
discussion so far that nonradiative changes in the electronic structure are inherently
quantum mechanical phenomena, mediated by molecular vibrational motions.

In addition, the phenomenon of intersystem crossing, involving transitions
between states of different spin multiplicity, can also be accounted for within the
present formalism. To this end, a relativistic spin-orbit coupling operatorĤ SOCðqÞ is
added to the electronic Hamiltonian Ĥ elðqÞ in equation (2.9). Nevertheless, for
simplicity, the theory of this chapter focuses only on the internal conversion process,
and readers interested in the theoretical description of intersystem crossing are
directed to Ref. [4].

To give a mathematical shape to the kinematic couplings of equation (2.10), we
need an explicit expression for the kinetic energy operator. We adopt the generic form

T̂ ¼
Xf
j¼1

p̂2j
2Mj

; ð2:11Þ

where p̂j ¼ �i�h@=@qj is the momentum operator associated with the coordinate qj.
Note that here f is the total number of coordinates used to describe the nuclear
motion, rather than the number of atoms. Equation (2.11) is valid when Cartesian
coordinates are used as well as for normal modes; in this case, since normal modes
are linear combinations of mass-weighted Cartesian coordinates, the masses Mi are
set to one in equation (2.11).

Replacing equation (2.11) into equation (2.10), we obtain the following
expression for the kinematic couplings1,

K̂abðqÞ ¼ �
XN
j¼1

i�h
Mj

�
aðqÞ @

@qj

����
����bðqÞ

�
p̂jþ

�h2

2Mj

�
aðqÞ @2

@q2j

����
����bðqÞ

�
 �

�
XN
j¼1

iDj;abðqÞp̂jþFj;abðqÞ
� �

:

ð2:12Þ

1This expression can be derived by evaluating the commutator p̂2j; jaðqÞi
� �

using the relation

p̂j; f ðqÞ½ � ¼ �i�h@f =@qj and the operator identity ÂB̂; Ĉ
h i

¼ Â B̂; Ĉ
h i

þ Â; Ĉ
h i

B̂.
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The terms Dj;abðqÞ are combined with the nuclear momenta, which are differential
operators, therefore they are called derivative couplings; note that the differentia-
tion of the orthonormality relation haðqÞjbðqÞi ¼ dab leads to the property
Dj;ab ¼ �D�j;ba, i.e., the matrices Di, defined for each coordinate j, are
anti-Hermitian (or simply anti-symmetric for real electronic states, which is the
most common case). The terms Fj;abðqÞ, denoted scalar couplings, are instead purely
multiplicative and can be added to the potential energy surfaces and couplings of
equation (2.9). The kinematic couplings are weighted by the inverse of the nuclear
mass, therefore, in the summation of equation (2.12), the terms associated with light
atoms are likely the most important.

At this stage we have, in principle, all the formal ingredients for the quantum
mechanical description of photochemical phenomena, governed by the system of
Schrödinger equations given in equation (2.8). The only step which is still left, in
order to compute the potential and/or the kinematic couplings, is to choose a precise
definition for the electronic states jaðqÞi. Two different choices are presented in the
following sections.

2.2.2 The Adiabatic Representation

The simplest way to simplify equation (2.8) is to choose the electronic basis such
that the matrix V is diagonal, i.e. V abðqÞ ¼ V aðqÞdab. According to equation (2.9),
this is achieved by defining the electronic states as eigenstates of the electronic
Hamiltonian for each geometry q:

Ĥ elðqÞjaðqÞi ¼ V aðqÞjaðqÞi: ð2:13Þ
In this case, the electronic states are called adiabatic states, and the functions V aðqÞ,
which depend on the nuclear coordinates, are denoted as adiabatic potential energy
surfaces (PESs). The dynamics of the nuclear wavefunctions associated to the
adiabatic states is given by the coupled time-dependent Schrödinger equations

@vaðq; tÞ
@t

¼ � i
�h

T̂ þV aðqÞ
� �

vaðq; tÞ �
i
�h

XN S

b¼1
K̂abvbðq; tÞ; ð2:14Þ

where the kinematic coupling terms K̂ab are denoted as nonadiabatic couplings.
Among these terms, the derivative couplings iDj;abðqÞp̂j

� �
are typically the ones

with the largest magnitude.
The (approximate) calculation of the adiabatic states, i.e., the solution of the

electronic Schrödinger equation (2.13), is carried out with the methodologies of
electronic structure theory, or quantum chemistry, which are implemented in
dedicated codes. We will not address the question of how one can choose the most
appropriate electronic structure method (time-dependent density functional theory,
coupled-cluster methods, algebraic diagrammatic connection, multi-configurational
approaches, etc.) and set up these calculations (see Ref. [5] for an overview of
different methods).
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Instead, we assume that such a choice has been properly made, and we have at
our disposal the code we need to compute the adiabatic electronic states, the
PES, the nonadiabatic couplings, etc. With this assumption, in principle, one
obtains a precise strategy to simulate a photo-initiated molecular process quan-
tum mechanically:

1. The set of electronic states included in the group Born–Oppenheimer
approximation is identified. For example, if the process under study is ini-
tiated by a laser pulse, one can include the states whose energies lie within
the optical bandwidth of the pulse (see chapter 1).

2. The adiabatic potential energy surfaces V a and the nonadiabatic couplings
are computed using quantum chemistry codes.

3. The system of time-dependent Schrödinger equations (2.14) is solved to
evaluate the coupled electronic-nuclear dynamics (see section 2.4), for the
initial conditions specific for the process of interest. Spectroscopic observables
are finally computed using quantum mechanical expressions (see section 2.3).

However, there are several difficulties with this approach. The main one is the
need to compute the adiabatic PESs along all the nuclear coordinates that might be
relevant for the dynamical process one wants to describe. Although a few modes are
sometimes sufficient to describe the ultrafast (\100 fs) time scale, a multi-mode
description becomes necessary to account for decoherence, intramolecular vibra-
tional redistribution, and dissipation to an environment in polyatomic molecules or
aggregates. This implies that high-dimensional adiabatic PESs need to be computed
to solve the dynamical problem, and these functions might be rather complicated to
fit to an analytic form (see section 2.2.5).

It is worth noting at this stage that this complication arises from the quantum
mechanical description of nuclear motion, based on the nuclear wavefunctions
vaðq; tÞ. In contrast, in classical mechanics, a molecule is described as a set of point
masses in a well-defined configuration, and the simulation of its motion requires only
the force computed at the specific molecular geometry, therefore, the construction of
the entire PESs is not needed. This is one of the reasons why the description of
nonadiabatic dynamics in terms of adiabatic states is more common in
quantum-classical methods (section 2.5), where only the electronic states are
quantized, while the nuclear coordinates follow Hamiltonian trajectories.

For the moment being, we continue with the rigorous quantum mechanical
description of the coupled nuclear-electronic dynamics, according to equa-
tion (2.14). Another main difficulty of using the adiabatic states as the electronic
basis is that the nonadiabatic couplings diverge when the PESs of the coupled states
approach each other. To understand why, we differentiate equation (2.13) and
multiply both sides from the left by hbðqÞj, obtaining*

bðqÞ @Ĥ el

@qj

�����
�����aðqÞ

+
þ
D
bðqÞ Ĥ el

��|fflfflfflfflfflffl{zfflfflfflfflfflffl}
hbðqÞjV bðqÞ

@

@qj
aðqÞ

E��� ¼ @V aðqÞ
@qj

D
bðqÞ aðqÞ

E���|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
dba

þV aðqÞ
D
bðqÞ @

@qj

����
����aðqÞE|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

MiDj;baðqÞ=�h

;

ð2:15Þ
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where the derivative couplings Dj;baðqÞ appear. Rearranging the terms, we obtain
that, for two electronic states a and b, with a 6¼ b,

Dj;baðqÞ ¼ � �h
M j

D
bðqÞ @Ĥ el

@qj

��� ���aðqÞE
V bðqÞ � V aðqÞ : ð2:16Þ

which shows the divergence at the geometries where V aðqÞ � V bðqÞ.
The fact that the nonadiabatic couplings become large near the intersections

between PESs makes the solution of the time-dependent Schrödinger equation
numerically unstable. Indeed, quantum mechanical simulations in the adiabatic
representation are usually performed only on reduced-dimensionality models for the
nuclear motion, including 2–3 nuclear modes at most [6]. For high-dimensional
problems, the experience shows that a different representation, denoted diabatic and
discussed in section 2.2.3, is more convenient.

Equation (2.16) formalizes the intuitive notion that the group Born–Oppen-
heimer approximation is more valid the more separated the “group of states” is from
the other electronic states. The simplest situation is when the light excitation brings
the molecule to an electronic state a, which is energetically well separated from all
other states. In this case, the denominator of equation (2.16) is large, implying that
non-radiative transitions are so slow or unlikely that they can be reasonably
neglected. This is the setup of the well-known Born–Oppenheimer approximation,
whereby the dynamics are described by a nuclear wavefunction evolving on an iso-
lated PES,

@vaðq; tÞ
@t

¼ � i
�h
T̂ þV aðqÞ
� �

vaðq; tÞ ðBorn�Oppenheimer approx:Þ: ð2:17Þ

2.2.3 The Diabatic Representation

In high-dimensional multi-state quantum molecular dynamics, the use of the adia-
batic representation makes the numerical treatment unstable. One main source of
instability is the divergence of the derivative couplings Dj;ab – the dominant elec-
tronic coupling terms – in the regions of near degeneracy between potential energy
surfaces.

This suggests that a possible solution to avoid the divergence problem is to adopt
a representation that minimizes, or ideally eliminates, the derivative couplings. Such
representation must be obtained by mixing the adiabatic electronic states (i.e., the
eigenstates of the electronic Hamiltonian) via a unitary transformation to get a new
set of electronic states j~ai denoted diabatic states,

j~aðqÞi ¼
XN S

b¼1
jbðqÞiU baðqÞ; ð2:18Þ

where UðqÞ ¼ U baðqÞ
� �

is a N S � N S unitary (or, if the states are real,
orthogonal) matrix that needs to be defined at each molecular geometry q.
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Ideally, we would like to fix the U matrix so that the derivative couplings in the
diabatic basis vanish, i.e.,

eDi;abðqÞ ¼
�
~aðqÞ @

@qi

����
����~bðqÞ

�
� 0: ð2:19Þ

An obvious way to impose this condition is to define the diabatic states to be
independent of the molecular geometry. For example, we could make them coincide
with the adiabatic states at one specific reference geometry qref, i.e., j~ai ¼ jaðqrefÞi.
However, this choice, denoted crude diabatic representation, does not have much
practical utility. The reason is that its rigorous application would require a complete
(infinite!) electronic basis to re-expand the geometry-dependent states jaðqÞi in
terms of the reference adiabatic states jaðqrefÞi.

In contrast, we would like to keep working in the group Born–Oppenheimer
approximation, and construct the diabatic states by mixing only a small set of
adiabatic states that we obtain from quantum chemistry codes. To this end, defining

the matrices eDiðqÞ ¼ eDi;abðqÞ
n o

and DjðqÞ ¼ Dj;abðqÞ
� �

, and replacing equa-

tion (2.18) into equation (2.19), the following relation is obtained,

eDj ¼ UyDjUþUy
@U
@qj
� 0: ð2:20Þ

In general, it can be proved that equation (2.20) cannot be solved exactly for U,
hence the symbol “�” [7]. Indeed, to be precise, a correct denomination for the
resulting electronic states would be quasi-diabatic, however, the improper use of the
simpler adjective diabatic has become common practice.

Several techniques exist to mix the adiabatic states according to equation (2.18)
and obtain a set of states that minimally depend on geometrical changes,
@j~ai=@qj � 0, so that equation (2.20) is satisfied to a good approximation and the
residual derivative couplings are negligible. Such techniques include property-based
methods [8–10], global fits [11, 12], or overlap-based methods [13, 14].

The use of diabatic states allows us to neglect the kinematic couplings in the
solution of the evolution equations (2.8). On the other hand, these states are not
eigenstates of the electronic Hamiltonian, therefore, the potential coupling terms are
present, and the diabatic equations of motion take the form

@vaðq; tÞ
@t

¼ � i
�h
T̂vaðq; tÞ �

i
�h

XN S

b¼1
W abðqÞvbðq; tÞ; ð2:21Þ

where the va’s are the nuclear wavefunctions associated with the different diabatic
states and W abðqÞ ¼ h~a Ĥ el

�� ��~bi. The main disadvantage of the diabatic representa-
tion is that the surfaces W abðqÞ cannot be obtained directly as an output of
electronic structure calculations, but need to be constructed, on a case-by-case basis,
using one of the strategies mentioned above.

On the other hand, given that each diabatic state describes the same “type” of
electronic configuration, independently of the molecular geometry, the diabatic
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potentials and couplings W abðqÞ are typically smooth functions of the nuclear
coordinates. This smoothness facilitates fitting the potentials to analytic functions,
and greatly improves the numerical stability of quantum dynamical simulations,
which are therefore preferably performed in the diabatic representation.

2.2.4 Examples of Diabatic States

Diabatic electronic states are a useful concept both for the theoretical description
and the interpretation of spectroscopic experiments, because they are associated
with a well-defined electronic character: different types of diabatic states differ in
their optical properties, strength of interaction with polar solvents or the local
environment, photochemical reactivity, etc.

Examples of coupled electronic states that can be regarded as diabatic are:

� pp� and np� states in organic molecules. Molecules containing lone pair elec-
trons for heteroatoms in conjugated chains or aromatic rings can have elec-
tronic states of pp� character, which are energetically close to np� state.
Examples are carbonyl or thionyl groups conjugated to benzene rings. The
interplay between pp� and np� states are particularly important when the
conjugated p the region is not too extended, so that pp� are not too stable as
compared to np� states.

In biological systems, a typical example of pp�=np� interaction is that of
canonical nucleobases and their thionated analogues [16, 17]. As an example,
figure 2.1 depicts the orbitals involved in np� and pp� excitations in the thy-
mine molecule, as well as computed diabatic potential energy surfaces [15]. In
prebiotic chemistry, given that the pp� excitation can lead to mutagenic
cycloaddition reactions, the ultrafast internal conversion to the neighboring
np� state was a key natural selection mechanism for these biomolecules. At the
mechanistic level, since the coupled diabatic states have different symmetry
with respect to the molecular plane, the coupling between different diabatic
states is induced by out-of-plane vibrational modes [18, 19].
The diabatic np� states in nucleobases and thio-nucleobases are associated
with an electron hole localized at the O or S heteroatom. Therefore, they give
specific signatures in time-resolved pump-probe experiments based on X-ray
probes, which induce excitation or ionization from core orbitals. This has
allowed proving that the pp� �! np� internal conversion is a primary
mechanism for the photostability of nucleobases [15, 20].

� Localized Frenkel excitons in supramolecular multi-chromophoric aggregates.
The character of these diabatic states is that of molecular excitations involving
orbitals localized on specific chromophores of the aggregate (“site” excita-
tions). Local excitations are coupled with each other via the Coulomb inter-
action, and the resulting adiabatic states are delocalized “excitons” which
involve multiple sites of the aggregate [21–23].
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The geometry of the aggregate determines which adiabatic excitonic states are
“bright” or “dark”. Depending on the nature of the chromophores and their
relative stacking structure, the linear absorption spectrum can be red-shifted,
blue-shifted, or split with respect to the monomeric absorption band [24].
Excitonic states for a molecular dimer and their optical properties are
described in more detail in chapter 4.

� Localized vs. charge transfer transitions in donor-acceptor systems. Site exci-
tations can interact not only with each other, but also with charge-transfer
states. Ideal diabatic charge-transfer states are formed by a one-electron
transition from an orbital localized on one site of an aggregate (donor) to a
virtual orbital localized on one acceptor site. The formation and the lifetime of
charge-transfer states are critical in photocatalysis because they modify the
redox potential of the donor/acceptor pair and can activate specific chemical
reactions.

An illustration of diabatic potential energy surfaces of localized and charge
transfer states is given in figure 2.2 for a donor-acceptor-donor triad [10, 25].
Note that the surfaces cross smoothly, and each of them is associated with a
specific electronic configuration.

FIG. 2.1 – Diabatic np� and pp� potential energy surfaces of thymine, involved in the
transient X-ray absorption of thymine, presented in Ref. [15]. The electronic configuration of
the two states is dominated by single excitation to the final p� orbital. The fact that the np�

state is associated with a “hole” in a lone pair n orbital gives a characteristic excited state
absorption band [15].
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2.2.5 Vibronic Coupling Models for Diabatic PESs

One of the advantages of the diabatic representation is that the potential energy
surfaces and couplings entering equation (2.21) can be described by smooth analytic
functions of the coordinates. Specific choices for these functions define different
vibronic coupling models [5].

For semi-rigid molecules, where nuclear motions are limited to small oscillations,
a popular choice is the so-called linear vibronic coupling model, whereby the diabatic
potentials are approximated as

W abðqÞ ¼W ðabÞ
0 þ

XF
j¼1

W ðabÞ
1;j qjþ dab

XF
j¼1

M jX
2
j

2
q2j: ð2:22Þ

The parameters can be determined by electronic structure calculations using different
strategies. This step is facilitated in the cases where the equilibrium structure of the
molecule has some symmetry element, and the diabatic states a and b transform
according to different irreducible representations Ca 6¼ Cb of the point symmetry

group. In this case W ðabÞ
0 ¼ 0 by symmetry, and the only coupling modes for which

W ðabÞ
1;j 6¼ 0 are those associated with an irreducible representation Cj 	 Ca � Cb.

FIG. 2.2 – Calculated diabatic potential energy surfaces of the locally excited (LE) and
charge-transfer (CT) states of a donor-acceptor-donor triad [10, 25]. The (CT) states,
involving transitions from orbitals localized on two possible donors, are stabilized by
symmetry-breaking vibrational distortions. The LE state is formed by a transition between
orbitals localized in the central chromophore and is stabilized only by symmetry-conserving
modes.
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In contrast, in the case of multi-chromophoric aggregates, such as natural
light-harvesting systems, each diabatic state can be associated with an electronic
excitation localized on a single chromophore. In this case, the coupling between

different sites is reasonably independent of the vibrations, i.e. W ðabÞ
1;j ¼ 0 [22, 26, 27],

and the couplings W ðabÞ
0 can be determined as the electrostatic interaction between

the transition dipole moments of chromophores a and b, or – more rigorously –

evaluating the Coulomb coupling between the electronic transition densities for the
localized excitations [28]. The limiting case of a system with two electronic states is
known in the literature as the spin-boson model, since it describes a two-level system
(the spin) embedded into a vibrational (boson) bath.

The linear vibronic coupling model is one of the simplest Hamiltonian
models, which is nevertheless capable of capturing the essential aspects of the
physics of nonadiabatic transitions. In particular, it allows modelling the strong
electronic-vibrational correlation at conical intersections, described in section 2.2.6.

However, the model neglects “intra-state” mode correlations, meaning that if the
molecular system is in a specific diabatic state, then the different modes evolve
independently of each other. Moreover, the normal modes are assumed to be the
same for all diabatic states. This approximation might easily break down when the
electronic structure changes significantly between different diabatic states. This is
the case, for example, for transitions between localized excitons and charge-transfer
states, whereby an initially neutral donor (acceptor) becomes cationic (anionic) and
the reorganization energy is large. Such changes in the electronic charge distribution
can lead to relatively large geometrical rearrangements as well as different vibra-
tional frequencies [29]. Even pp� excitations strongly localized on a C=C bond might
lead to large changes in the bond stretching frequency.

Within the harmonic approximation, the most general way to account for such
vibronic changes is to adopt the so-called quadratic vibronic coupling model, where
the diabatic surfaces take the general quadratic form

W abðqÞ ¼W ðabÞ
0 þ

XF
j¼1

W ðabÞ
1;j qjþ

1
2

XF
j;l¼1

W ðabÞ
2;jlqjql; ð2:23Þ

which accounts for changes in the normal modes between the different electronic
states (the so-called Duschinsky rotation). The parametrization of these models
from first principles is more involved, since it requires frequency calculations for the
excited states [10, 19].

For systems where large amplitude motions need to be accounted for, the
vibronic coupling models need to be extended beyond the harmonic approximation.
Such anharmonic models are needed, for example, to describe the torsional
dynamics in polymeric chains of chromophores [22, 30] or to model cis-trans pho-
toisomerization [12]. As an example, figure 2.3 shows a Hamiltonian for the exci-
tonic states of a polymeric chain with N methyl-thiophene units, where the diabatic
potentials and couplings are parametrized using anharmonic functions of the
inter-monomeric torsional angles, computed from electronic structure data [22].

Photoinduced Molecular Quantum Dynamics 39



To conclude this section, there are cases where only a few coordinates qanh are
involved in large amplitude anharmonic motions. In this situation, a possible
strategy is to construct a so-called reaction path Hamiltonian, making the
parameters of equation (2.23) dependent on the anharmonic modes, i.e.

W abðqanh; qÞ ¼W ðabÞ
0 ðqanhÞþ

XF
j¼1

W ðabÞ
1;j ðqanhÞqjþ

1
2

XF
j;l¼1

W ðabÞ
2;jlðqanhÞqjql: ð2:24Þ

As possible examples, this type of model can be used to describe photodisso-
ciation [11, 31], photoisomerization [12], or excited-state proton transfer [32] in
small/medium-sized molecules.

2.2.6 Conical Intersections

Equation (2.16) for the derivative couplings shows that the transitions between
different adiabatic states are most likely for molecular geometries where two
adiabatic potentials are energetically close or, in the limiting case, degenerate. For a
system with two electronic state, this implies the condition V 1ðqÞ ¼ V 2ðqÞ.
Considering, in this case, the diabatic representation, the electronic Hamiltonian
matrix, containing the diabatic potentials and couplings, is given as

Hel ¼ W 11ðqÞ W 12ðqÞ
W 12ðqÞ W 22ðqÞ


 �
; ð2:25Þ

FIG. 2.3 – Excitonic Hamiltonian for a polymeric chain of chromophores with
nearest-neighbor interactions, modulated by torsional angles h, taken from Ref. [22] Panels
(c–e) show the adiabatic energies for the ground (E0) and the lowest two excited states (E1

and E2) of the dimer shown in panel (a), as a function of the h. Panel (b) depicts the
inter-monomer excitonic coupling obtained upon diabatization.
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and we are assuming real electronic wavefunctions and potential energy surfaces.
The adiabatic potential energy surfaces are the eigenvalues of the matrix of

equation (2.25) and can be evaluated analytically as

V 1;2ðqÞ ¼W 11ðqÞþW 22ðqÞ
2



ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W 11ðqÞ �W 22ðqÞ

2


 �2

þW 2
12ðqÞ

s
: ð2:26Þ

Given the sum of two squares under the square root sign, the degeneracy condition
V 1ðqÞ ¼ V 2ðqÞ requires that the two equations

W 11ðqÞ ¼W 22ðqÞ
W 12ðqÞ ¼ 0

�
ð2:27Þ

are simultaneously valid.
For one-dimensional models, which are exact for diatomic molecules, it is gen-

erally impossible to find one value of the nuclear coordinate (typically a bond dis-
tance) for which the equation (2.27) are both valid, therefore, the degeneracy can be
approached but is never found. This is called the non-crossing rule and its most
well-known manifestation is perhaps in the potential energy curves of alkyl halides
[33, 34]. Its only exception is the so-called symmetry-allowed intersections, which are
found when the two electronic states have different symmetry (e.g., g and u states of
a homonuclear diatomic molecule) and thus W 12ðqÞ vanishes identically.

For high-dimensional models, which describe polyatomic molecules or aggre-
gates, it is generally possible to encounter solutions of equation (2.27). The space of
solutions (crossing seam) can be very large: for a system with F degrees of freedom,
imposing two constraints leaves out F � 2 coordinates for the seam space. Given a
point of intersection q0, the change in energy gap dðV 2 � V 1Þ is generally linear as a
function of the displacement dqj along a coordinate qj,

d V 2 �V 1ð Þ � dqjj j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@ W 11 �W 22ð Þ

@qj


 �2

q¼q0
þ 4

@W 12

@qj


 �2

q¼q0

s
: ð2:28Þ

Equation (2.28) describes a double-cone topography centered around the intersec-
tion point q0. Molecular geometries exhibiting this kind of topography are referred
to as conical intersections [35]. Due to the divergence of nonadiabatic couplings at
these points, conical intersections are often described as “molecular funnels” that
efficiently channel the photochemical process from one adiabatic surface to another,
provided that they occur at an accessible energy.

However, it should be pointed out that such a pictorial view of molecules that
“jump” to another surface after reaching conical intersection geometries is reason-
ably valid only within the adiabatic representation, therefore – in general – it does
correlate with any specific change in the electronic character of the molecule, and
should not be overinterpreted. Furthermore, for polyatomic molecules, conical
intersections are not just special geometries, but large regions of the configuration
space. In contrast, in the diabatic representation, the nuclear wave packets evolve on
smooth potential energy surfaces that do not display double cone topographies.
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Diabatic quantum transitions are therefore more correctly described as delocalized
over a broad range of geometries.

A special role in radiationless transitions between adiabatic states is played by
the gradients of the functions W 11ðqÞ �W 22ðqÞ and W 12ðqÞ, which, according to
equation (2.28), are the only coordinates that can lift the degeneracy at the conical
intersection. These molecular motions are responsible for driving the molecule
towards the intersection, so that the internal conversion is likely to happen, and then
bring it away towards further vibrational relaxation.

2.3 Connection Between Quantum Dynamics and Linear
Absorption Spectroscopy

The development of methods to simulate and investigate the dynamics of molecular
quantum wave packets, governed by the time-dependent Schrödinger equa-
tions (2.14) or (2.21), is instrumental to the interpretation of any form of optical
spectroscopy. To illustrate this concept, the simple case of linear absorption is briefly
presented in this chapter.

In a standard linear absorption setup, sketched in figure 2.4, the decrease
of intensity of a weak monochromatic field passing through a molecular sample is
measured, and related to the absorption cross section rðxÞ by the Lambert–Beer
law,

I ðzÞ
I ð0Þ ¼

E
!ðz; tÞ
��� ���2
E
!ð0; tÞ
��� ���2 ¼ e�rðxÞ.0z ; ð2:29Þ

where .0 is the number density of molecules and z is the length of the optical path.
This equation can be derived from classical electrodynamical wave equations,
assuming that the induced electric dipole of the molecular sample (i.e., the
polarization) is a linear function of the applied external field [36]. The absorption

FIG. 2.4 – Linear spectroscopy experiment where an electric field radiating along the z
direction crosses a molecular sample. The absorption of the sample leads to a decay of the field
intensity.
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cross section is related to the imaginary part of the linear susceptibility vð1ÞðxÞwhich,
in turn, is the half-Fourier transform of the linear response function S ð1ÞðtÞ2,

rðxÞ ¼ 4px
.0c

Imvð1ÞðxÞ

¼ 4px
.0c

Im
Z 1
0

S ð1ÞðtÞeixtdt:
ð2:30Þ

The response function is an intrinsic property of the molecular system (i.e., it does
not depend on the applied field), and its time dependence can be formally connected
to the molecular quantum dynamics induced by an ideal ultrashort light pulse. This
connection can be established using time-dependent perturbation theory [37].
In particular, assuming that, before the interaction with light, the system is in a pure
state jW0i, and adopting the so-called rotating wave approximation (see chapter 4),
it is found that the absorption spectrum can be computed as

rðxÞ ¼ 4px
�hc

Re
Z 1
0

C ðtÞei E0
�h þxð Þtdt; ð2:31Þ

where

C ðtÞ ¼ W0 l̂e�
i
�hĤ 0t l̂

��� ���W0

D E
: ð2:32Þ

This expression has an interesting physical interpretation, first pointed out by
Heller [38]. The state jUð0Þi ¼ l̂jW0i can be viewed as a state created at time t ¼ 0
by an instantaneous electric dipole interaction with the electric field. This state is
called the doorway state, and is not an eigenstate of the molecular Hamiltonian,
therefore, it evolves in time and its time evolution is represented by the
time-evolution operator, i.e.

jUð0Þi ¼ l̂jW0i
jUðtÞi ¼ e�

i
�hĤ 0t jUð0Þi

�
: ð2:33Þ

The function C ðtÞ ¼ hUð0ÞjUðtÞi is called the autocorrelation function of the
doorway state (or the dipole-dipole autocorrelation function). It contains the
overlap between the time-dependent wave packet created by the light excitation and
itself at the initial time.

The oscillations in the autocorrelation function are converted, by Fourier trans-
formation, into a progression of peaks in the absorption spectrum. An illustration of
this process is given in figure 2.5 for the motion of a wave packet on a two-dimensional
Morse potential. The autocorrelation function is displayed in the bottom-left panel:
the maxima correspond to the recurrence times, when the wave packets go partially

2This equation assumes that the refraction index of the sample nðxÞ is 1. If not, the absorption
cross section should be rescaled by nðxÞ:
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back to their initial position. The Fourier analysis of these recurrences gives the
vibrationally resolved absorption spectrum, shown in the bottom-right panel.

2.3.1 Sum-Over-States Expression for the Linear
Absorption Spectrum

Equation (2.31) expresses the time-dependent formalism for the linear absorption
spectrum, which is useful in different aspects. First, it is a good starting point to
interpret multi-photon nonlinear processes, especially those involved in
time-resolved spectroscopy. Second, from the computational viewpoint, it allows a
simulation and interpretation of the absorption spectrum without the need of
determining the energy levels of the molecule, which is a complex task in many cases,
such as for highly flexible molecules (where the harmonic approximation cannot be
used), photodissociation processes (where the relevant levels form a continuum) or
in the presence of nonadiabatic effects (where the Born–Oppenheimer approxima-
tion is not valid). In contrast, very efficient quantum dynamical methods, described
in section 2.4, are available to simulate high-dimensional multi-state wave packets.

The alternative approach to defining the linear absorption spectrum is the
time-independent formalism, which is explicitly based on the energy levels of the

FIG. 2.5 – Motion of a quantum wave packet on a two-dimensional Morse potential, taken
from Ref. [39]. The recurrences in the autocorrelation function (bottom-left panel) give rise to
the vibrational structure in the linear absorption band (bottom-right panel).
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molecule. The equivalence between the time-dependent and the time-independent
formalism is based on the eigenstate decomposition of the time-evolution operator,

e�
i
�hĤ 0t ¼

X1
n¼0
jWnie� i

�hEnthWnj; ð2:34Þ

which can be replaced into equation (2.32) to obtain

C ðtÞ ¼
X1
n¼0
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n¼0

ln0j j2e� i
�hEnt ;

ð2:35Þ

where the integral ln0 ¼ hWnjl̂jW0i is the transition dipole moment between the
eigenstates jW0i and jWni. Equation (2.35) implies that only the excited states that
have a nonzero transition dipole moment with the ground state contribute to the
absorption spectrum. Replacing equation (2.35) into equation (2.31) gives
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where the Dirac d-function has been introduced to express the result of the time
integral. The absorption spectrum has, in principle, the shape of a series of “sticks”,
each placed at a specific transition frequency; the intensity of each stick is proportional
to the product between the squared transition dipole moment and the transition
frequency (because of thex prefactor). The states forwhich hW0jl̂jWni ¼ 0 are “dark”,
i.e., they do not contribute any intensity to the linear absorption spectrum.

More realistic lineshapes are obtained by assuming that the final states decay by
non-radiative dissipative mechanisms, due to the surroundings. In the
time-dependent formalism, this process is associated with the damping of the
autocorrelation function, which, in the simplest case, can be described by an
exponential factor e�Ct , the same for all energy levels. This leads to the Lorentzian
lineshape function,

L x� En � E0

�h


 �
¼ 1

p
Re
Z 1
0

e
i
�h
ð�hx� En þE0Þt

e�Ctdt

¼ C

x� En � E0

�h


 �2þC2;

ð2:37Þ

which, as a function of x, is a bell-shaped function with a maximum at ðEn � E0Þ=�h.
The value 2C coincides with the full-width at half maximum of the absorption line.
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2.4 Numerical Methods: Quantum Wave Packets
This section discusses computational techniques of molecular quantum dynamics
applied to photochemical and photophysical problems. These methodologies address
the problem of solving the time-dependent Schrödinger equation

@jW; ti
@t

¼ � i
�h
Ĥ jW; ti; ð2:38Þ

for a generic wave packet expressed in the group Born–Oppenheimer approxi-
mation as

jW; ti ¼
XN S

a¼1
jaivaðq; tÞ: ð2:39Þ

In this section, we adopt the diabatic representation, which is the most common
choice for quantum dynamics due to the smoothness of the potential energy surfaces.
Moreover, we consider, for simplicity, a time-independent Hamiltonian

Ĥ ¼ T̂ þ
X
a;b

jaiW abðqÞhbj: ð2:40Þ

The extension of the presented techniques to time-dependent Hamiltonians or to the
adiabatic representation is generally straightforward, except for a few numerical
caveats.

In the diabatic representation, the nuclear wavefunctions vaðq; tÞ evolve exactly
according to equation (2.21). Their norms give the diabatic state populations,

paðtÞ ¼ hvaðtÞ vaðtÞij ; ð2:41Þ
whereas the diabatic electronic coherences are given by the wave packet overlaps,

qabðtÞ ¼ hvaðtÞ vbðtÞi
�� : ð2:42Þ

2.4.1 The Time-Dependent Variational Principle

A number of methods for the numerical solution of equation (2.38) can be formu-
lated via a variational approach. This strategy involves, as a first step, the formu-
lation of a physically reasonable ansatz for the time-dependent wavefunction. This
ansatz has a well-defined functional form, and it is made time-dependent by intro-
ducing numerical parameters kðtÞ ¼ k1ðtÞ; k2ðtÞ; :::ð Þ in its definition,

jW; ti � jW; kðtÞi: ð2:43Þ
In the following, we consider the common case of complex-valued parameters krðtÞ,
and a parametrization defined such that jW; ti is a holomorphic function of the
parameters, i.e., does not explicitly depend on their complex conjugates,

@jW; ki
@k�r

¼ 0: ð2:44Þ
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The introduction of numerical parameters transforms the original partial differential
equation into a system of ordinary differential equations for the parameters. To
derive such equations, we notice that, in general, the ansatz introduces an
approximation in the time evolution of the wavefunction. This is because the
approximate time derivative evaluated using the chain rule,

_Wi�� approx ¼
X
r

@jWi
@kr

_kr

�
X
r

@W
@kr

����� _kr ;
ð2:45Þ

generally differs from the exact time derivative given by the time-dependent
Schrödinger equation,

_Wi�� exact ¼ �
i
�h
Ĥ jWi: ð2:46Þ

This suggests that an optimal strategy to compute the evolution of the parameters is
to minimize the difference between the approximate and the exact time derivatives,

_k; _k
�n o
¼ arg minh _Wapprox � _Wexact

_Wapprox � _Wexacti
�� : ð2:47Þ

This recipe defines the time-dependent variational principle (TDVP). Although its
application might be complicated for complex wavefunction ansätze, it is a pretty
robust strategy, independent of the specific problem, and can also be used in the case
of a time-dependent Hamiltonian, i.e., when the electromagnetic field is explicitly
included.

To use the TDVP, the right-hand side of equation (2.47) must be differentiated
with respect to the individual parameter derivatives _kr , and the result is set to zero.
Due to the analyticity condition of equation (2.44), the resulting equations of
motion take the general form

@W
@kr

���� _Wapprox � _Wexact

�
¼ 0:

�
ð2:48Þ

Replacing equations (2.45) and (2.46) into equation (2.48) gives, for each parameter
index r , X

s

�
@W
@kr

@W
@ks

����
�
_ks ¼ � i

�h

�
@W
@kr

����Ĥ
����W
�

¼) _kr ¼ � i
�h

X
s

M�1
� �

rs

�
@W
@kr

����Ĥ
����W
�
;

ð2:49Þ

where M is the overlap matrix between the allowed variations of the wavefunction
ansatz, Mrs ¼ h@W=@kr @W=@ksij , which needs to be formally inverted to solve the
equations. Notice that in the case of linearly dependent variations, the M matrix
becomes singular, and the equations of motion need to be regularized by introducing
additional constraints between the parameters that eliminate the linear dependence.
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Examples of ansätze with linearly dependent variations will be presented in the
following sections.

An equivalent way to formulate the TDVP is based on the tangent space pro-
jector, which, for linearly independent variations, takes the form

P̂var ¼
X
rs

@W
@kr

E���� M�1
� �

rs

D@W
@ks

����: ð2:50Þ

Applied to a generic wavefunction, this operator yields a linear combination of the
variations, exactly as in equation (2.45). Therefore, we can derive the equations of
motion for the parameters by projecting the exact time derivative onto the tangent
space,

_Wi�� approx ¼ �
i
�h
P̂varĤ jWi: ð2:51Þ

This formulation allows us to derive two formal, highly desirable properties for the
methods derived from the TDVP. The first one is that if the wavefunction itself is
contained in the space of variations, i.e.P̂varjWi ¼ jWi, then the equations of motion
conserve the norm,

d
dt
hWjWi ¼ h _W��Wiþ hW _Wi��

¼ i
�h
hW ĤP̂var
�� ��Wi � i

�h
hW P̂varĤ
�� ��Wi

¼ i
�h
hW Ĥ
�� ��Wi � i

�h
hW Ĥ
�� ��Wi

¼ 0:

ð2:52Þ

The second property is that if the Hamiltonian does not explicitly depend on time,
then the energy is also conserved:

d
dt
hW Ĥ
�� ��Wi ¼ h _W Ĥ

�� ��Wiþ hW Ĥ
�� ��Wi

¼ i
�h
hW ĤP̂varĤ
�� ��Wi � i

�h
hW ĤP̂varĤ
�� ��Wi

¼ 0:

ð2:53Þ

In the following sections, different methods derived from the TDVP will be
presented.

2.4.2 Expansion in a Finite Time-Independent Basis

In a numerical simulation, the simplest way to represent the wave packets va from
equation (2.39) is via an expansion over a finite, time-independent basis. To
understand the main features and limitations of this approach, we start from a
one-dimensional wave packet, expanded as

vaðq; tÞ ¼
XN
m¼1

AðaÞm ðtÞwmðqÞ; ð2:54Þ
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where AðaÞm ðtÞ are the complex-valued expansion coefficients, and wm are the basis
functions, assumed to be orthonormal hwmjwni ¼ dmn.

The application of the TDVP for a generic diabatic Hamiltonian in the form of
equation (2.40) gives the equations of motion

_A
ðaÞ
m ðtÞ ¼ �

i
�h

XN
n¼1
hwm T̂

�� ��wniAðaÞn ðtÞ �
i
�h

XN S

b¼1

XN
n¼1
hwm W abðqÞ

�� ��wniAðbÞn ðtÞ: ð2:55Þ

The equations are linear in the parameters and therefore can be solved efficiently
with great accuracy, using specific iterative algorithms, such as the Lanczos or
Chebyshev methods [40, 41]. It is easy to prove that the norm and energy of the
wavefunction are conserved (provided that the Hamiltonian is time-independent), as
expected from the results of section 2.4.1.

The choice of basis functions wmðqÞ typically depends on the type of motion one
needs to describe (small amplitude vibrations, dissociation, angular or torsional
motions, etc.). For computational efficiency, one should choose functions for which
the matrix elements hwm T̂

�� ��wni and hwm W abðqÞ
�� ��wni can be evaluated analytically.

For the integrals involving the kinetic energy operator, which has a standard
expression, this is not a problem, because analytic expressions are available,
e.g., between eigenfunctions of the harmonic oscillator, as well as for many other
quantum models. The same is true for the evaluation of matrix elements of
harmonic potentials W abðqÞ.

For arbitrary, anharmonic potentials, a more convenient choice is to choose an
orthonormal basis set made of functions which are strongly localized at specific
values of the coordinate qm, so that the potential matrices can be approximated as
diagonal, hwm W abðqÞ

�� ��wni �W abðqmÞdmn, and can be readily evaluated. This type
of basis defines a so-called discrete variable representation (DVR), whereby the
nuclear wavefunction is represented on a grid of points, and can be obtained by an
orthogonal transformation between the delocalized basis functions. For example, the
so-called harmonic oscillator DVR is formed by diagonalizing the operator q in the
basis of the harmonic oscillator eigenstates [42]; the same transformation is applied
to the matrix of the kinetic energy operator. Equidistant grids, which define the
exponential DVR or sine DVR, can be obtained in a similar way starting from
particle-in-a-box eigenfunctions [42, 43].

As mentioned above, the equations of motion in the form of equation (2.55) are
perfectly valid even when the diabatic potentials W ab are time-dependent. This can
be used to model the interaction with an electromagnetic field explicitly [44–46] or
to incorporate the time-dependent variations of the electronic Hamiltonian due to
the fluctuations of a surrounding environment [22].

The curse of dimensionality
The linear parameterization of equation (2.54) is easy to implement, but is limited
to low-dimensional problems, due to an exponential scaling with respect to the
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number of coordinates. Indeed, for a multi-dimensional quantum dynamical problem
with f coordinates, equation (2.54) takes the form

vaðq1; q2; :::; qf ; tÞ ¼
XN 1

m1¼1

XN 2

m2¼1
� � �
XNf

mf¼1
AðaÞm1m2:::mf

ðtÞwð1Þm1
ðq1Þwð2Þm2

ðq2Þ � � �wðf Þmf
ðqf Þ

¼
X
m

AðaÞm ðtÞwmðqÞ; ð2:56Þ

where the multi-index m ¼ ðm1; :::;mf Þ has been introduced. The coefficients for
each electronic state are now stored in a tensor with f indices, i.e., the total number
of coefficients is N S �N 1N 2 � � �Nf , which is also the formal number of rows and
columns of the Hamiltonian matrix. Hereafter, we refer to the use of the ansatz of
equation (2.56) as the “standard method”.

This exponential scaling is an example of the curse of dimensionality, typical of
methods for quantum dynamics, that limits the use of the standard method presented
here to low-dimensional problems. Consider, as an example, a quantum dynamical
problemwith 8 degrees of freedomand 2 electronic states; using a grid ofN ¼ 20 points
for each degree of freedom make 2 � 208 complex coefficients per time step: the storage
of the coefficient vector in double precision would take about 760 GB of memory.

This example illustrates why the standard parametrization of equation (2.56) is
practically used only for relatively low-dimensional systems. However, the efficient
numerical implementation of this approach often relies on techniques of tensor
operations, which are also used in more sophisticated methods.

Basics of tensor algebra
Let us consider a lower-dimensional quantum dynamical problem, say 6 degrees of
freedom for two electronic states, as previously. The same conditions as before are
used: 20 points for each of the two electronic states. However, this time, the number
of degrees of freedom is reduced to 6 instead of 8. Storing the coefficient vector would
take less than 2 GB, which is quite a large value, but certainly fits in the memory of
modern computers.

On the other hand, one has to consider the storage of the Hamiltonian matrix,

which in this example contains formally 2 � 206� �2
matrix elements. Assuming a real

Hamiltonian, the storage of the whole matrix would take something of the order of
105 TB of memory, which is prohibitive. However, in most cases, it is not necessary
to form and store the full Hamiltonian matrix. In particular, this is true when the
Hamiltonian has a sum-of-products (SOP) form:

Ĥ ab ¼ T̂ þW abðqÞ
¼
X
r

K ðabÞr ĥ
ðabÞ
r;1 ðq1Þĥ

ðabÞ
r;2 ðq2Þ � � � ĥ

ðabÞ
r ;f ðqf Þ; ð2:57Þ

where the operators ĥ
ðabÞ
r;j ðqjÞ are one-dimensional.

Note that the kinetic energy operator already has the form of equation (2.57). In
the cases where the harmonic approximation is used, the potential also has the
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desired form, and the same is true for generic anharmonic polynomial potentials and
many more cases.

For the SOP form, the Hamiltonian matrix elements are given as

H ðabÞmn ¼
D
wm Ĥ ab

�� ��wn

E
¼
X
r

K ðabÞr

D
wm1

ĥ
ðabÞ
r;1

��� ���wn1

E
� � �
D
wmf

ĥ
ðabÞ
r;f

��� ���wnf

E
¼
X
r

K ðabÞr H ðabÞr ;1;m1;n1
� � �H ðabÞr;f ;mf ;nf

;

ð2:58Þ

i.e., in matrix form, the Hamiltonian becomes a sum of Kronecker products,

HðabÞ ¼
X
r

K ðabÞr HðabÞr;1 � � � � �HðabÞr ;f : ð2:59Þ

This has a computational advantage. For a Hamiltonian in the SOP form, one does
not need to store the full HðabÞ matrices, but only the small N � N HðabÞr ;j matrices.
In our example, each of these matrices takes only � 3 kB of memory, therefore, it is
affordable to store even thousands of them. Moreover, if the DVR basis is used, the
matrices related to potential terms are diagonal, so that only their diagonals need to
be stored.

In summary, in quantum dynamical simulations where the wave packet is
represented on high-dimensional direct-product coordinate grids, the construction
of model PES in the sum-of-products form is critical for computational
efficiency.

It is useful to understand what this implies in the numerical wave packet
propagation. The coefficient vectors for each electronic state AðaÞm1m2:::mf

are mathe-

matically rank-f tensor, which contains N f elements; we can think of them as
“N � N �N � � � �” matrices. Solving the equations of motion of the type of equa-

tion (2.55) involves computing products like HðabÞvec AðbÞ
	 


to evaluate the

derivative _A
ðaÞ
. Here, vec AðbÞ

	 

is the vectorization of the tensor A, i.e., a reshaping

of the tensor in the form of a column vector with N f entries. Typically, this is
achieved by ordering the elements of the tensor in a well-defined way, called the
colexicographic order.

Using equation (2.59), the computation of H � vecðAÞ (electronic superscripts are
omitted for simplicity) involves summing the results of the multiplication
of Kronecker products of “small matrices” by the coefficient tensor. To this end, one
useful operation that can be straightforwardly implemented in computer codes
is the matricisation along the j-th mode MatjðAÞ, which converts the tensor into a
N � Nf�1 matrix, where each row is associated with a different value of mj

and the columns are ordered colexicographically. The inverse operation to
the matricisation Mat�1j , called tensorization, reconstructs the rank-f tensor,
i.e. A ¼Mat�1j MatjðAÞð Þ.
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Using the matricisation, the products H � vecðAÞ ¼ Hr;1 � � � � �Hr;f � vecðAÞ
are readily evaluated. It is sufficient to make a loop over the different modes and,
at each step, overwrite the A tensor with the tensor obtained by multiplying the
small matrix Hr ;j by the j-mode matricisation of A, and transform back via
tensorization,

A �!Mat�11 Hr;1Mat1ðAÞ
� � �!Mat�12 Hr ;2Mat2ðAÞ

� �
�! � � � �!Mat�1f Hr ;fMatf ðAÞ

� �
¼ Hr ;1 �Hr ;2 � � � � �Hr ;fA:

ð2:60Þ

This is computationally very efficient. The cost for the direct H � vecðAÞ multipli-
cation (provided that we have enough memory to store the H matrix) scales as
O N 2f
� �

. Conversely, the evaluation performed using equation (2.60) scales as

O fN f þ 1
� �

, which for large f and N is a huge speedup.

2.4.3 Mitigating the Curse of Dimensionality:
The Multi-Configurational Time-Dependent
Hartree Method

In equation (2.56), the shape of the wavefunction along the mode qj is expressed
using a static basis set made of the functions wðjÞmj

ðqjÞ. In the DVR, these
functions are associated with grid points, and large grids are needed to be able
to describe complex and large amplitude motions that the wave packet might
undergo during its time evolution. This leads to the computationally undesirable
N f dependence.

In 1990, Meyer, Manthe, and Cederbaum introduced a way to significantly
mitigate the curse of dimensionality by showing that, at a given time, the wave
packet can be expanded over an effective smaller basis set in such a way that the
dimensionality of the coefficient tensor is significantly reduced [47]. The effective
basis set is time-dependent and needs to be constructed on the fly. This scheme gives
rise to the multi-configurational time-dependent Hartree (MCTDH) approach [42],
where the nuclear wavefunctions are given by the ansatz

vaðq1; :::; qf ; tÞ ¼
XnðaÞ1

j1¼1
� � �
XnðaÞf

j f¼1
BðaÞj1:::jf

ðtÞuða;1Þj1
ðq1; tÞ � � �uða;f Þjf

ðqf ; tÞ

¼
X
j

BðaÞj ðtÞUðaÞj ðq; tÞ;
ð2:61Þ

where j ¼ j1; :::; jf
� �

is a multi-index. This expression is similar to that of the
standard method of equation (2.56), with the important difference that here both

the coefficients BðaÞj ðtÞ and the configurations UðaÞj ðq; tÞ are time-dependent. Each
configuration is a Hartree product of the so-called single-particle functions (SPFs),
which are the effective basis functions that describe the dynamics of individual
degrees of freedom.
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Note that, according to equation (2.61), different sets of SPFs are used for the
different electronic states jai. This is called “multi-set” formalism in the MCTDH
literature [48]. Alternatively, one can use the same SPFs for the different electronic
states (“single-set” formalism). The SPFs are, in turn, expanded in the primitive
basis used in equation (2.56),

uða;jÞjj
ðqj; tÞ ¼

XN j

mj¼1
C ða;jÞjjmj

ðtÞwðjÞmj
ðqjÞ: ð2:62Þ

The number of SPFs for a given mode and electronic state nðaÞj is typically fixed in
advance and is a convergence parameter for the calculation.

The central idea and the power of the MCTDH method is the following
approximate tensor decomposition of the original coefficient tensor:

AðaÞm1:::mf
ðtÞ �

Xn
j1¼1
� � �
Xn
jf¼1

BðaÞj1:::jf
ðtÞC ða;1Þj1m1

ðtÞ � � �C ða;f Þjf mf
ðtÞ; ð2:63Þ

where, for simplicity, the same number of SPFs n is used for the different modes. The
decomposition is sketched diagrammatically in figure 2.6b. The total number of
parameters needed to describe the total wavefunction is N S � n f þ f � nN

� �
. For a

large number of modes (high f ) and n 
 N the number of parameters drops
significantly. To follow up with the example in section 2.4.2, consider a system with
2 electronic states, 8 modes, and 20 primitive basis functions per mode; this makes
2� 208 ¼ 5:12 � 1010 complex parameters to define the full wavefunction (� 760 GB
in double precision), making the calculation prohibitive. With MCTDH, it is not
uncommon to use, on average, 4–5 SPFs per mode, taking n ¼ 5, we would have
2� 58þ 8� 5� 20

� � ¼ 7:83 � 105 parameters, which take about 11 MB of memory:
the calculation becomes doable on a laptop!

Due to the exponential scaling with respect to f , it is clear from this example that
the lower the ratio n=N the higher the computational gain. This is why in practice,
the number of SPFs is carefully tuned for each mode and electronic state, so to keep

the value of nðaÞj the smallest as possible. On the other hand, using too few SPFs
makes the approximation of equation (2.63) less accurate, therefore, a balance
between accuracy and computational feasibility needs to be found. Fortunately, as
explained below, there are ways to understand whether one is doing a too severe

approximation, and therefore nðaÞj should be increased.
One remark still needs to be made, before describing how the MCTDH param-

eters evolve in time. The decomposition of equation (2.63) is invariant under unitary
transformations of the form

eC ða;jÞjjmj
¼
Xn
l¼1

UjjlC
ða;jÞ
lmj

;

eB ðaÞ:::jj�1jjjjþ 1:::
¼
Xn
l¼1

U �jjlB
ðaÞ
:::jj�1ljjþ 1:::

;

ð2:64Þ
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where U is a unitary matrix, i.e. UyU ¼ UU ¼ 1. This implies that some
redundancies exist between the B and C parameters. To eliminate such redundan-
cies, the C coefficients are propagated in such a way as to satisfy the following
condition for each mode:*

uðajÞj
@uðajÞl

@t

+����� ¼ i
�h

�
uðajÞj Ĝ

ðaÞ
j

��� ���uða;jÞl

�
; ð2:65Þ

FIG. 2.6 – Different tensor representations for a 6-dimensional nuclear wavefunction. The
squares represent primitive one-dimensional basis functions, such as DVR grid points. The
circles represent tensors of time-dependent coefficients, for which the number of dimensions is
given by the number of legs, and the size of each dimension is reported near the leg. For each
type of representation, the total number of parameters N par is reported. This value can be
simply calculated by summing the product of the dimensions of each circle. In these examples,
the number of parameters is calculated by taking n ¼ 5 and N ¼ 15.
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where Ĝ
ðaÞ
j is a Hermitian gauge operator with energy units, which can be chosen

arbitrarily. The most common choice is to setĜ
ðaÞ
j ¼ 0 for all modes. It is immediate

to verify that the gauge condition of equation (2.65) guarantees that the

orthonormality condition huða;jÞj uða;jÞl i
��� ¼ djl is conserved over time.

Equations of motion
In order to solve the time-dependent Schrödinger equation using the ansatz of
equation (2.61), we need to find the equations of motion for the coefficient tensor B
and the SPFs uðjÞj ðqj; tÞ (or, equivalently, the coefficients C ða;jÞjm ðtÞ). The best con-
vergence towards the exact result is obtained by using the time-dependent varia-
tional principle, introduced in section 2.4.1.

In order to apply equation (2.48), we need to identify the partial derivatives of
the wavefunction ansatz with respect to the variational parameters. The derivatives

with respect to the BðaÞj coefficients give trivially the respective configurations,

@jW; ti
@BðaÞj

¼ jaiUjðq; tÞ: ð2:66Þ

The partial functional derivative with respect to a SPF of a given mode gives the
single-hole functions,

djW; ti
duða;jÞl

¼ jaieUða;jÞl ðq1; :::; qj�1; qjþ 1; :::; qf ; tÞ: ð2:67Þ

The comparison with equation (2.61) shows that the single particle functions are
defined as

eUða;jÞl ðq1; :::; qj�1; qjþ 1; :::; qf ; tÞ

¼
XnðaÞ1

j1¼1
� � �

XnðaÞj�1

jj�1¼1

XnðaÞjþ 1

jjþ 1¼1
� � �
XnðaÞf

j f¼1
BðaÞj1:::jj�1ljjþ 1::jf

ðtÞ

�uða;1Þj1
ðq1; tÞ � � �uða;j�1Þjj�1

ðqj�1; tÞuða;jþ 1Þ
jjþ 1

ðqjþ 1; tÞ � � �uða;f Þjf
ðqf ; tÞ:

ð2:68Þ

Note that, as the name says, they are functions of f � 1 coordinates.
At this stage, the TDVP gives a clear strategy to find the equations of motion:

evaluate the formal (approximate) time derivative of the MCTDH ansatz as,

_Wi�� approx ¼
XN S

a¼1
jai _vaðq; tÞ; ð2:69Þ

with

_vaðq; tÞ ¼
X
j

_B
ðaÞ
j UðaÞj þ

Xf
j¼1

XnðaÞj

j¼1
_uða;jÞj ðqj; tÞeUða;jÞl ðq1; :::; qj�1; qjþ 1; :::; qf ; tÞ; ð2:70Þ
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set up equation (2.48) as *
UðaÞj _vaþ

i
�h

X
b

Ĥ abvbðtÞ
+����� ; ð2:71aÞ

*eUða;jÞj _vaþ
i
�h

X
b

Ĥ abvbðtÞ
+����� ; ð2:71bÞ

and carry out all the algebra. The full derivation can be found in the Ref. [42].
Below, we simply report the final equations of motion for the multi-set formalism

and the commonly used gauge condition
D
uða;jÞj _uða;jÞl

E��� ¼ 0.

Replacing equation (2.70) into equation (2.71a) yields the differential equation
for the B tensor,

_B
ðaÞ
j ¼ �

i
�h

XN S

b¼1

X
l

D
UðaÞj Ĥ ab

�� ��UðbÞl

E
BðbÞl : ð2:72Þ

The equations of motion for the SPFs are found by replacing equations (2.70) and
(2.72) into equation (2.71b). A somewhat tedious derivation [42] yields

_uða;jÞj ¼ � i
�h

1�P̂ða;jÞ
	 
XN S

b¼1

XnðbÞj

l¼1
qða;jÞ
	 
�1

Ĥ
ðab;jÞ

� �
jl
uðb;jÞl ; ð2:73Þ

where

P̂
ða;jÞ ¼

XnðaÞj

j¼1
uða;jÞj

�����
�
uða;jÞj

���� ð2:74Þ

is the projector onto the space of the SPFs; the operator 1�P̂ða;jÞ constrains the
time variations of the SPFs to the space orthogonal to the current effective basis set.

qða;jÞ is the reduced density matrix for the mode j and the electronic state a in
the basis of the SPFs, and its matrix elements are formally given as overlaps between
single-hole functions3

qða;jÞjl ¼
DeUða;jÞj

eUða;jÞl

E��� : ð2:75Þ

Finally Ĥ
ðab;jÞ

is the matrix of the mean fields,

Ĥ
ðab;jÞ
jl ¼

�eUða;jÞj Ĥ
ðabÞ��� ��� eUða;jÞl

�
: ð2:76Þ

3Note that, due to the orthogonality between the single particle functions the reduced

density matrix can be numerically evaluated as qða;jÞjl ¼PnðaÞ1
j1¼1 � � �

Pn að Þ
j�1

jj�1¼1
Pn að Þ

jþ 1
jjþ 1¼1 � � �Pn að Þ

f

j f¼1B
a;jð Þ�
j1 ...jj�1jjjþ 1 ...jf

B a;jð Þ
j1 ...jj�1 ljjþ 1 ...jf

¼ Matj B að Þ� �
Matyj B að Þ� �� �

lj :
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Note that the integration is performed over f � 1 degrees of freedom, therefore the
mean fields are operators in the space of the j-th mode.

In summary, equations (2.72) and (2.73) define the MCTDH algorithm. Some
interesting features of this approach are worth noting:

� Both the evaluation of the mean fields and the Hamiltonian matrixD
UðaÞj Ĥ

ðabÞ��� ���UðbÞl

E
from equation (2.72) requires multi-dimensional integra-

tions. For problems with a large number of modes, such integrations would be
impossible without the use of a SOP form for the Hamiltonian, as for the
standard method. This is one of the limitations of the MCTDH method, in
addition to the general problem that the whole potential energy surfaces need to
be known before performing the quantum dynamical simulation4. On the other
hand, for Hamiltonians in SOP form, the integrations can be conveniently
carried out using a sequence of matricisation-multiplication-tensorisation akin
to that of equation (2.60). The difference is that the “small” H matrices are
built in the basis of the SPFs and not in the primitive basis.

� The general theory of the time-dependent variational principle (section 2.4.1)
involves the inversion of a matrix M, which has the same size as the number of
variational parameters, which can be huge for the MCTDH ansatz. However,
the special form of the wavefunction allows us to perform such matrix inversion
partially analytically. The only numerical inversion left over in equation (2.71b)

is that of the density matrices qða;jÞ, which are however small nðaÞj � nðaÞj

	 

,

Hermitian and positive-defined, therefore relatively easy to invert.
� One of the advantages of MCTDH is that the equations of motion for the B
coefficients and the SPFs are relatively weakly coupled. Indeed, it turns out
that it is convenient for each time step to propagate the different sets of
parameters separately, each time keeping the non-propagated parameters
fixed. This is the idea behind the so-called constant mean field algorithm [49],
which allows relatively large step sizes at a negligible loss of accuracy. For

example, in equation (2.71a), the quantities
D
UðaÞj Ĥ

ðabÞ��� ���UðbÞl

E
can be kept

constant (only for a given step size!) while the B parameters are propagated;
this makes the problem linear and allows the use of fast integrators such as the
Lanczos scheme.
� One problem related to the inversion of qða;jÞ is that some of its eigenvalues
tend to vanish when some of B coefficients are small (this is typically the case

at the beginning of the simulation), and the inverse qða;jÞ
� ��1

becomes singular
and makes the equations of motion numerically ill-conditioned. The work-
around is to replace the density matrix with a regularised version. From time to
time, different regularisation schemes are proposed in the literature [50],

4A workaround to avoid the need of a sum-of-product form for the potential is the correlated DVR
scheme [U. Manthe, J. Chem. Phys. 105, 6989 (1996)], which is however limited to maximum 15–20
degrees of freedom.
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the most common approach being to replace the density matrix as
qða;jÞ �! qða;jÞ þ e exp �qða;jÞ=e� �

, where e is a small constant. This type of
regularisation is generally useful in quantum dynamical approaches based on
the TDVP, which often leads to equations of motion where possibly singular
matrices need to be inverted.
� In its standard version, the MCTDH method is not “black-box”. For example,
the user needs to choose the primitive basis and the number of SPFs for each

mode. Whether nðaÞj is large enough can be understood by diagonalizing the
density matrices, which have unit trace. If the lowest of the eigenvalues of qða;jÞ

is smaller than a certain threshold (10�2 � 10�3 depending on the application)
then the dimension of the SPF basis is deemed sufficient; if not, it has to be
increased. To this end, it is worth mentioning that novel algorithms have been
recently proposed to automate the construction of the MCTDH wavefunction
on-the-fly [51].

Mode combination and multi-layer MCTDH
A powerful way to use the MCTDH machinery is to work in an intermediate rep-
resentation between MCTDH and the standard method. The idea is that SPFs do
not necessarily need to be one-dimensional. Instead, one can group the degrees of
freedom into combined modes q1 ¼ q1;1; q1;2; :::

� �
, q2 ¼ q2;1; q2;2; :::

� �
, etc., so that

each combined mode is associated with a set of SPFs,

vaðq1; :::; qf ; tÞ ¼
XnðaÞ1

j1¼1
� � �
XnðaÞf

j f¼1
BðaÞj1:::jf

ðtÞuða;1Þj1
ðq1; tÞ � � �uða;f Þjf

ðqf ; tÞ: ð2:77Þ

The SPFs, in turn, are expanded into a one- or multi-dimensional direct product
basis. This form of MCTDH potentially provides a more compact representation
compared to using one-dimensional functions directly. To see why, let us follow up
on the previous example: we have 2 electronic states and 8 physical modes and
primitive bases with 20 grid points. In the basic form of MCTDH, using 5 SPFs per
mode, we would get � 8 � 105 complex parameters (� 12 MB) to propagate in time.
Combining the eight modes into 4 effective particles, and using still 10 SPFs per
particle gives 2� 104þ 4� 10� 202

� � ¼ 52000 parameters (� 800 kB). It is clear
that mode combination can be extremely helpful, especially when the effective
particle combines modes that are strongly correlated between them (e.g., tuning and
coupling modes at a conical intersection), but are weakly correlated with the
remaining modes, allowing for a smaller number of SPFs to be used.

Note that the MCTDH equations of motion remain formally identical if com-
bined modes are used. In this sense, equation (2.77) is the most general ansatz for
the MCTDH wavefunction. A tensor tree illustrating the structure of an MCTDH
wavefunction with mode combination is shown in figure 2.6c.

The use of combined modes suggests a further way to make the wavefunction
more compact, reducing the number of variational parameters. Consider the SPFs of

a two-dimensional mode for the single-set formalism uðjÞj ðqj;1; qj;2; tÞ. It is possible to

58 Quantum Dynamics and Spectroscopy of Functional Molecular Materials...



apply the MCTDH strategy to treat each SPF. To do so, they must be expanded
into “level 2” SPFs,

uðjÞj ðqj;1; qj;2; tÞ ¼
Xnj;1

l1¼1

Xnj;2

l2¼1
eB ðjÞj;l1l2ðtÞeuðj;1Þl1

ðqj;1; tÞeuðj;2Þl2
ðqj;2; tÞ; ð2:78Þ

which are, in turn, represented on the primitive basis. The structure of the
wavefunction can be represented compactly using the tree diagram of figure 2.6d.
Such nested application of the MCTDH ansatz is denoted “2-layer MCTDH”, and
allows us to further decompose the B tensor in the same way we originally
decomposed the A tensor (see equation (2.63)). This leads to a further reduction of
the number of variational parameters and gives us the possibility to treat systems
with higher dimensionality.

Indeed, for systems with dozens or even hundreds of modes, we can expand the
MCTDH tree with further layers. This is the idea of multi-layer MCTDH
(ML-MCTDH), a methodology that, together with few other approaches, represents
the state-of-the-art for high-dimensional quantum wave packet simulations, and has
allowed simulating quantum systems with 100–1000 modes. As an example,
figure 2.7 shows a calculation performed on a stack of five tetrathiophene chains,
which includes 13 electronics and 78 modes [52]. The equations of motion for
ML-MCTDH were originally derived by Wang and Thoss [53] using the TDVP and,
layer-by-layer, have the same form of the MCTDH equations (2.71a) and (2.71b).

The difficulty of using ML-MCTDH is that the user is left with the choice of
the number of SPFs in each layer, which is more tedious than in standard MCTDH.
Moreover, for high-dimensional systems, different structures of the tensor tree can lead
to substantially different computational costs. Intense investigation is being carried
out to find optimal and automated ways to construct ML-MCTDH trees [54].

FIG. 2.7 – Multilayer MCTDH simulation of the coherent interplay between excitonic
(XT) and charge-transfer (CT) states in an aggregate of polythiophene, taken from Ref. [51].
The calculation is performed using a linear vibronic coupling model that includes 13 electronic
states (5 XTand 8 CT states) and 78 vibrational modes. The tensor tree used to construct the
wavefunction is shown in the right panel. The simulated populations of the XT and CT states
are shown in the lower left panel.
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2.4.4 An Alternative Tensor Decomposition: Tensor
Trains

Let us suppose that we want to study the dynamics of a polymeric chain of
chromophores, with nearest-neighbor interaction, accounting for one quantum
coordinate for each chromophore. A physically and computationally reasonable
way is to order the modes in a chain-like fashion and correlate the neighboring
modes explicitly. A wavefunction ansatz that corresponds to this structure is

vaðq1; :::; qf ; tÞ ¼
XnðaÞ1

j1¼1
� � �

XnðaÞf�1

jf�1¼1
uða;1Þj1

ðq1; tÞuða;2Þj1j2
ðq2; tÞuða;3Þj2j3

ðq3; tÞ

� � �uða;f�1Þjf�2j f�1
ðqf�1; tÞuða;f Þjf�1

ðqf�1; tÞ;
ð2:79Þ

where the single-particle functions are represented in the primitive basis,

uða;jÞjj 0 ðqj; tÞ ¼
XN j

m¼1
C ða;jÞjj 0m ðtÞwmðqjÞ: ð2:80Þ

The comparison with equation (2.56) shows that the ansatz of equation (2.79)
defines the following tensor decomposition

AðaÞm1:::mf
ðtÞ �

XnðaÞ1

j1¼1
� � �

XnðaÞf�1

jf�1¼1
C ða;1Þj1m1

ðtÞC ða;2Þj1j2m2
ðtÞC ða;3Þj2j3m3

ðtÞ � � �C ða;f Þj f�1mf
ðtÞ; ð2:81Þ

which is denoted as tensor train or matrix product states [55]. In theoretical physics,
tensor trains underlie the techniques introduced to renormalize the reduced density
matrix of a single site in a one-dimensional lattice [56]. Therefore, in the literature,
methods based on tensor trains are also referred to as density matrix renormaliza-
tion group (DMRG) techniques.

Despite having a structure closely related to a one-dimensional lattice, upon

increasing the value of the so-called bond order nðaÞj the tensor train decomposition
can be made exact. Indeed, this approach has been successfully applied to model the
excitonic dynamics in multichromophoric systems that do not have a chain struc-
ture [57, 58], converging to essentially the same results obtained using multilayer
MCTDH [58].

In terms of computational resources, it is easy to see that the tensor train ansatz
eliminates the exponential scaling. For a systemwithN S electronic states, f degrees of
freedom, a bond order of n and a primitive N -dimensional basis, we have N S �
2nN þðf � 1Þn2Nð Þ variational parameters, i.e., a linear dependence on the number
of modes.

Before presenting the equations of motion, it needs to be pointed out that,
similar to the MCTDH ansatz, the decomposition of equation (2.79) is not unique,
therefore, there is a gauge freedom. Indeed, it is easy to see that unitary transfor-
mations of the form
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euða;jÞjj�1jj
¼
XnðaÞj

l¼1
uða;jÞjj�1l

U ljj

euða;jþ 1Þ
jjjjþ 1

¼
XnðaÞj

l¼1
uða;jþ 1Þ
ljjþ 1

U �ljj

ð2:82Þ

leaves the wavefunction invariant. One way to fix the gauge is to adopt the so-called
left-canonical form, enforcing (for j\f ) the condition

XnðaÞj�1

j¼1

*
uða;jÞjl

@uða;jÞjl 0

@t

+������ ¼ 0; ð2:83Þ

which guarantees the conservation of the left-orthogonality
P

j

D
uða;jÞjl uða;jÞjl 0

E��� ¼ dll 0.

Once the gauge is fixed, one can derive the equations of motion for the tensor-train
ansatz. We do not report the full derivation, but just set up the problem and report
the final equations of motion. The variations are performed with respect to the SPFs

uða;jÞjj 0 (or, equivalently, their expansion coefficients). Using equation (2.79), the

approximate time derivative of the molecular wavefunction is readily evaluated as

j _Wiapprox ¼
XN S

a¼1
jai _vaðq; tÞ;

_vaðq; tÞ ¼
Xf
j¼1

XnðaÞj�1

j¼1

XnðaÞj

j 0¼1
Lða;jÞj ðq1; :::; qj�1; tÞ _uða;jÞjj 0 ðqj; tÞR

ða;jÞ
j 0 ðqjþ 1; :::; qf ; tÞ;

ð2:84Þ

where Lða;jÞj and Rða;jÞj 0 are the left and right components of the single-hole function

complementary to the SPF uða;jÞjj 0 . Due to the gauge condition of equation (2.83), the

left components are orthonormal,
D
Lða;jÞj Lða;jÞj 0

E��� ¼ djj 0 , whereas the right compo-

nents are not, D
Rða;jÞj Rða;jÞj 0

E��� ¼ S ða;jÞjj 0 : ð2:85Þ

Using the time-dependent variational principle, the variations with respect to the
SPFs lead to the system of equations�

Lða;jÞj Rða;jÞj 0
_Wapproxþ i

�h
ĤW

����� ¼ 0: ð2:86Þ

The solution of these equations is rather tedious. The final equations of motion have
the form [59, 60]

@uða;f Þj

@t
¼ � i

�h

XN S

b¼1

XnðaÞf�1

l¼1

�
Lða;f Þj Ĥ

ðabÞ��� ���Lðb;f Þl

�
uðb;f Þl ; ð2:87Þ
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@uða;jÞjj 0

@t
¼ � i

�h

XN S

b¼1

X
l;l 0;l 00;l 000

djl �P̂jl
� �

Sða;jÞ
�1h i

j 0 l 0

D
Lða;jÞl Rða;jÞl 0 Ĥ

ðabÞ��� ���Lðb;jÞl 00 Rðb;jÞl 000

E
uðb;jÞl 00l 000

ð2:88Þ
which, similar to the MCTDH equations (2.71b), contain mean fields operators, and
“projector-like” operators

P̂
ða;jÞ
jl ¼

XnðaÞj

i¼1
uða;jÞji

E��� D
uða;jÞjl

���: ð2:89Þ

All the integrals can be evaluated using the matricisation/tensorization procedures
introduced before. Note that the equations of motion involve the inverse of the
overlap matrix between the right components of the single-hole functions.
Alternative so-called “sweeping algorithms”, based on the mixed-canonical form of
the tensor-train ansatz (instead of the left-canonical form used here), avoid the need
of forming and inverting the S matrices [60].

This means that the tensor-train method, or time-dependent DMRG, does not
eliminate the need to construct the Hamiltonian operator into a sum-of-products
form. Despite that, this method has the potential to overcome the exponential
dependence on the number of degrees of freedom, which multilayer MCTDH miti-
gates but not eliminates completely.

In the context of molecular photophysics, tensor trains are relatively recent
techniques and have been mostly applied to Frenkel exciton or linear vibronic
coupling models of supramolecular assemblies. However, their use is rapidly
increasing, and applications to more sophisticated model Hamiltonians, along with
more efficient codes, are expected in the coming years.

2.4.5 Towards Direct Dynamics: Variational
Multi-Configurational Gaussian Wave Packets

The standard method introduced in section 2.4.2 involves the definition of direct
product multi-dimensional grids to represent the wavefunction. When the number of
coordinates becomes large, not only does the size of these grids grow exponentially,
but we get a larger and larger number of grid points which are inaccessible, simply
because the potential at these points is too high.

Indeed, in many problems in photochemistry and photophysics, the wave packets
explore a rather limited region of the coordinate space. In 1975, Heller used this fact
to introduce moving Gaussian wave packets (GWPs) as a basis to perform quantum
dynamical simulations [61]. In his formulation, the center of the GWPs follows
classical Hamiltonian trajectories, whereas the Gaussian width accounts for quantum
uncertainty. Alternatively, a full quantum mechanical prescription can be adopted,
determining the wave packet dynamics according to the TDVP. This gives rise to the
so-called variational multiconfigurational Gaussian (vMCG) approach [62], which is
a special case of a more general method (see below), first introduced by Burghardt,
Meyer, and Cederbaum [63]. Classically moving GWPs are described in section 2.5.
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In the vMCG method, the ansatz for the wavefunction is

vaðq; tÞ ¼
XN ðaÞ
j¼1

BðaÞj GðaÞj q;D; nðaÞj ðtÞ; gðaÞj ðtÞ
	 


; ð2:90Þ

where Gj is a multi-dimensional Gaussian wave packet,

GðaÞj q;D; nðaÞj ðtÞ; gðaÞj ðtÞ
	 


¼ exp
Xf
j¼1

� q2j
2D2

j

þ nðaÞj;jðtÞqj
 !

þ gðaÞj ðtÞ
" #

: ð2:91Þ

The parameters defining the GWPs are:

� The width matrix D, here taken as real, diagonal, independent of the specific
GWP, and kept frozen as a function of time. In a more general approach (but
computationally unfavourable), the Gaussian widths are allowed to change in
time; in this case, the GWPs are denoted as thawed Gaussians.

� The time-dependent nðaÞj vectors, which are f -dimensional and contain complex

parameters, related to the expectation values of the positions �qðaÞj and momenta

�pðaÞj of the GWP as

�qðaÞj ¼ D2Re n
ðaÞ
j

	 

; ð2:92aÞ

�pðaÞj ¼ �hIm n
ðaÞ
j

	 

: ð2:92bÞ

The parameters nðaÞj;j are propagated in time according to equations derived
from the TDVP.

� The phases gðaÞj ðtÞ, which are also time-dependent, but redundant with the
coefficients BjðtÞ. Due to this redundancy, in typical implementations, these
parameters are kept real and propagated in such a way as to guarantee that the
GPWs remain normalized.

GWPs provide a compact way to represent a high-dimensional wavefunction,
because the only quantities that effectively need to be propagated in time are the

n
ðaÞ
j vectors, which contain f complex parameters, and the coefficient BðaÞj . For a

problem with N S electronic states, N GWPs per state and f modes, the vMCG
wavefunction is constructed from N SN ðf þ 1Þ parameters, therefore, the expo-
nential scaling is overcome. The vMCG method is also at the core of the so-called
Davydov ansätze, typically used for dynamics driven by Frenkel exciton
Hamiltonians [64].

The steps to derive the equations of motion for the parameters B and n are
the same as in the previous section. As before, we only set up the problem
and report the final result; the full derivation can be found in the references [62].
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The approximate time derivative of the molecular wave function is given, for the
vMCG ansatz, as

_Wi�� approx ¼
XN S

a¼1
jai _vaðq; tÞ

¼
XN S

a¼1

XN ðaÞ
j¼1

_B
ðaÞ
j GðaÞj ðq; tÞþBðaÞj

_G
ðaÞ
j ðq; tÞ

	 


¼
XN S

a¼1

XN ðaÞ
j¼1

_B
ðaÞ
j þ _gðaÞj

	 

GðaÞj ðq; tÞþBðaÞj

Xf
j¼1

@GðaÞj

@nðaÞj;j

 !
:

ð2:93Þ

As stated above, and clear from the equation, the parameter gðaÞj is redundant with

BðaÞj and therefore is simply kept real and propagated, so as to keep the GWPs
normalized.

Applying the TDVP to the variations with respect to BðaÞj and nðaÞj;j gives the
equations �

GðaÞj
_Wapproxþ i

�h
ĤW

����� ¼ 0; ð2:94aÞ

�
@GðaÞj

@nðaÞj;j

_Wapproxþ i
�h
ĤW

����� ¼ 0: ð2:94bÞ

Replacing equations (2.90) and (2.93) into equation (2.94a), the equations of motion
for the GWP coefficients are obtained,

SðaÞ
@BðaÞ

@t
¼ � i

�h

XN S

b¼1
HðabÞ � i�hdabsðaÞ
	 


BðbÞ; ð2:95Þ

where B is the (column) vector of the coefficients, and the matrices SðaÞ, HðabÞ and
sðaÞ are evaluated as

S ðaÞjl ¼
�
GðaÞj GðaÞl

����� ; ð2:96aÞ

H ðabÞjl ¼
�
GðaÞj Ĥ

ðabÞ��� ���GðbÞl

�
; ð2:96bÞ

sðaÞjl ¼
�
GðaÞj

_G
ðaÞ
l

����� : ð2:96cÞ

The equations of motion for the GWPs centers are obtained, after some algebra, by
replacing equations (2.90), (2.93) and (2.95) into equation (2.94b). Defining the

vectors nðaÞ ¼ n
ðaÞ
1 ; n

ðaÞ
2 ; :::

	 

, one obtains the following expression
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CðaÞ
@nðaÞ

@t
¼ YðaÞ; ð2:97Þ

where the matrix CðaÞ and the vector YðaÞ are defined as

C ðaÞjj;ll ¼
�
@GðaÞj

@nðaÞj;j

1�P̂ðaÞ @G
ðaÞ
l

@nðaÞl;l

������
����� BðaÞj

�
BðaÞl ; ð2:98aÞ

Y ðaÞjj ¼ �
i
�h

XN S

b¼1

XN ðbÞ
l¼1

�
@GðaÞj

@nðaÞj;j

����� 1�P̂ðaÞ
	 


Ĥ
ðabÞ
�����GðbÞl

�
BðaÞj

�
BðbÞl ; ð2:98bÞ

and the projector on in the basis of GWPs is defined as

P̂
ðaÞ ¼

XN ðaÞ
j;l¼1

GðaÞj

����� SðaÞ
	 
�1� �

jl

�
GðaÞl

���� ð2:99Þ

Now that we have the equations of motion for the vMCG ansatz, a few facts are
worth noting:

� One of the advantages of the vMCG method is that it is almost “black-box”:
only the number of GWPs for each electronic state needs to be chosen by the
user. In particular, one does not need to define a primitive basis: the Gaussians
move where the dynamics brings them, without the need for an underlying
coordinate grid.
� In principle, the dynamics can be converged to the exact solution of the

time-dependent Schrödinger equation upon increasing the number of GWPs.
However, in complex molecular problems, e.g., dynamics at conical intersec-
tions, the more flexible MCTDH ansatz of section 2.4.3 typically converges
much faster. Nevertheless, the vMCG approach usually provides a solution
that is accurate enough for comparisons with experiments, fully accounting for
quantum effects in the nuclear motion [60].

� The expression for the CðaÞ matrix, equation (2.98a), seems complicated, but
its evaluation is in practice fast, because it is based on the analytic formulas for
Gaussian moments.
Equations (2.95) and (2.98b) are also relatively easy to evaluate, provided that
the matrix elements of the Hamiltonian operator between Gaussians (or
Gaussian derivatives) are analytic. Fortunately, many analytic expressions for
Gaussian integrals are available. Note that for the vMCG method, there is no
computational necessity for the SOP form for the potentials. For example, a
potential energy surface given as a sum of Gaussians is not necessarily in SOP
form, but the integrals required for the vMCG equations are still analytic.
� One way to simplify the evaluation of Hamiltonian integrals is to exploit the
fact that the GWPs are relatively well localized in space; therefore, for
potential terms, one does not need to know the full surface, but only a local
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approximation in the vicinity of the GWPs. For example, one can use a local
harmonic approximation (LHA)

hGj V ðqÞ Glijj �
�
Gj V jl þ gTjl � q � qjl

� �þ 1
2

q � qjl
� �TMjl q � qjl

� �����
����Gl

�
; ð2:100Þ

where the energy Vjl, gradient gjl and force constantsMjl are evaluated at some
intermediate points qjl between the positions of the Gaussians Gj and Gl .
Note that the LHA eliminates the need to know the whole potential energy
surface in advance, therefore, the vMCG method has the appealing feature of
being usable on-the-fly, i.e., computing the potential energy surface during the
wave packet evolution [62]. However, the LHA leads to the formal breakdown
of the conservation of energy, a fundamental property that should be carefully
checked during the simulation.

� Finally, we come to the main drawbacks of the vMCG method. Solving for the
time derivatives in the equations (2.95) and (2.97) involve inverting the
matrices SðaÞ and CðaÞ. This leads to two types of complications. First, the CðaÞ

matrix can get large for high-dimensional problems: for 20 degrees of freedom
and 50 GWPs, we get a 1000� 1000 matrix to invert. Formally, one does not
need to compute the inverse, but any method to solve the linear system of
equation (2.97) scales anyhow as the third power of the size of CðaÞ; moreover,
similar to the q matrices in MCTDH, this matrix might become singular when
the coefficients of some Gaussians are small, and the propagation of the
Gaussian parameters becomes ill-conditioned.

The second problem occurs when two GWPs approach each other during the
dynamics. In this case, it is the overlap matrix SðaÞ to become singular, and this
makes both equations (2.95) and (2.97) are ill-conditioned.
Over the past decades, various techniques have been developed to regularize the
equations of motion [65, 66]. However, experience shows that a universal solu-
tion to ensure numerically stable vMCG propagation for systems with more
than a few dozen modes has yet to be found.

Combining MCTDH with Gaussian wave packets: The G-MCTDH scheme
In many problems of molecular photochemistry and photophysics, it is possible to
identify a small set of primary modes that undergo a rather complex dynamics,
whereas the remaining intra- or inter-molecular motions (secondary modes) behave
as a nearly harmonic bath. Examples of primary modes could be the dominant
reaction coordinates in a photochemical process, or the tuning and coupling modes
in a conical intersection.

A practical option to model these types of problems quantum mechanically is to
adopt an MCTDH description combining flexible SPFs for the primary modes and
GWPs for the secondary modes. This gives rise to the hybrid Gaussian/MCTDH
(G-MCTDH) ansatz [63],
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vaðq; tÞ ¼
X
j

BðaÞj

Yp
j¼1

uða;jÞjj
ðqj; tÞ

Yf
j¼pþ 1

Gða;jÞjj
qj; n

ða;jÞ
jj
ðtÞ

	 

: ð2:101Þ

In this approach, the dynamics along the first p combined modes qj, which are
associated with the primary modes, is described by fully flexible SPFs. The less
complex motion of the secondary modes is represented by variational Gaussian wave
packets. Both the MCTDH and the vMCG methods can be viewed as limiting cases
of G-MCTDH.

The equations of motion for the G-MCTDH ansatz can be found in the Refs. [67]
and [68]. Briefly, the equations for the coefficients and the standard SPFs are the
same as in conventional MCTDH, see equations (2.71a) and (2.71b); those for the
Gaussian parameters resemble those of the vMCG ansatz, see equation (2.97).

In the cases where the bath behaves nearly classically, the G-MCTDH method
requires a low number of GWPs, therefore, it is competitive with the most sophis-
ticated multilayer-MCTDH scheme. This is especially true when the bath modes are
strongly correlated: using tensor networks, one might need a large number of SPFs
to capture the correlation; in contrast, Gaussian wave packets can describe a
high-dimensional combined mode, thus describing the inter-mode correlation in a
good effective way [68].

2.5 Numerical Methods: Quantum-Classical
Approximations

2.5.1 Gaussian Wave Packets Moving Classically

As discussed in section 2.4.5, Gaussian wave packets are a convenient way to
account for nuclear quantum effects using a compact wavefunction ansatz. However,
the rigorous application of the vMCG scheme has three main drawbacks: (i) to be
accurate in the evaluation of the Hamiltonian matrix elements, the potential energy
surfaces need to be precalculated; (ii) the Gaussian positions and momenta,

embedded in the nðaÞj vector [see equations (2.92a) and (2.92b)], follow non-classical
trajectories that require a potentially large matrix inversion to be computed; (iii) the
overlap matrix SðaÞ, defined in equation (2.96a), becomes singular when two GWPs
approach each other, making the numerical propagation ill-conditioned.

There is a simple way to solve these three problems in one shot: let the GWPs
follow classical trajectories! To this end, it is convenient to express the GWP in such
a way that the position and momenta are explicit,

GðaÞj ðq; tÞ ¼
1

pD2


 �1
4

exp �
Xf
j¼1

�
qj � �qðaÞj;jðtÞ
	 
2

D2 þ i
�h
�pðaÞj;jðtÞ qj � �qðaÞj;j

	 
0
B@

1
CA

2
64

3
75;
ð2:102Þ
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and follow classical Hamilton trajectories,

@�qðaÞj;j

@t
¼ @H ðaaÞðq; pÞ

@�pðaÞj;j

; ð2:103aÞ

@�pðaÞj;j

@t
¼ � @H ðaaÞðq; pÞ

@�qðaÞj;j

; ð2:103bÞ

where H ðaaÞ ¼ TðpÞþV aðqÞ is the classical Hamiltonian associated with the
adiabatic potential energy surface a. The choice of the adiabatic representation
allows us to compute energies and forces on the fly using quantum chemistry codes.
This is not possible in the diabatic picture, unless we have a strategy to construct
the diabatic states from single-point electronic structure data. Moreover, many
algorithms developed for classically moving GWPs rely on the adiabatic represen-
tation. In many works, classically moving GWPs are also denoted as trajectory basis
functions (TBFs) [69].

Classical trajectories solve the problems mentioned above: (i) they can be cal-
culated using single points gradients, therefore the entire PES is not needed; (ii) no
matrix inversion is required to compute the trajectories; (iii) two TBFs initially
located at different positions and momenta will never overlap perfectly (Liouville’s
theorem), therefore the SðaÞ matrix is never singular.

It is possible to apply the time-dependent variational principle to the
multi-configurational Gaussian ansatz of equation (2.90), assuming that the GWPs
move along predefined classical trajectories. The equations of motion for the coef-
ficients have the same form as equation (2.95), with the only difference that the sðaÞ

matrix is evaluated using the classical derivatives _G
ðaÞ
j instead of the quantum

mechanical ones. The Hamiltonian matrix elements
D
GðaÞj Ĥ

ðabÞ��� ���GðbÞl

E
can be eval-

uated either exactly, if the global PESs are available, or using the local harmonic –

or even linear or zeroth-order – approximation.
Another formalism to introduce quantummechanical coupling between classically

moving Gaussians is based on the properties of the coherent states, and it is the basis
for the coupled coherent states method developed by Child and Shalashilin [70].
In principle, this approach converges to the exact quantum mechanical result
upon increasing the number of Gaussians. Of course, the convergence is slower as
compared to the vMCG method, where the GWP trajectories are variationally
optimized. However, one gains a significant speedup in the propagation (different
Gaussians can be propagated in parallel), and for many observables, the accuracy is
good enough.

2.5.2 Spawning Techniques for Trajectory Basis Functions

The use of trajectory basis functions allows us to eliminate many of the numerical
difficulties of the vMCG method. One issue that is left is how to make the method
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fully “black box” so that the user does not need to choose the number of TBFs in
advance. This problem has been addressed by Martínez and coworkers [71, 72], who
introduced a spawning algorithm to increase the number of TBFs when needed. This
has been combined with different levels of approximation.

In the full multiple spawning method, the molecular wavefunction is set up in the
adiabatic representation as a superposition of wave packets, each given as a linear
combination of TBFs,

Wðq; tÞ ¼
XN in

r¼1
eWrðq; tÞ

¼
XN in

r¼1

XN S

a¼1

XN ðaÞr

j¼1
aðqÞij BðaÞrj ðtÞG q; �qðaÞrj ðtÞ; �pðaÞrj ðtÞ

	 


¼
XN in

r¼1

XN S

a¼1

XN ðaÞr

j¼1
aðqÞij BðaÞrj ðtÞGðaÞrj ðq; tÞ

ð2:104Þ

where the geometry dependence of the adiabatic electronic states is explicitly
indicated. In equation (2.104) Gðq; �q; �pÞ indicates a TBF centered at the phase
point �q; �pð Þ, and the same Gaussian width is assumed for all TBFs, for simplicity.
The double subscript “rj” seems redundant at this stage, but will be motivated
below; the first subscript denotes one of the specific initial wave packet, the second
one runs over the TBFs used to expand each wave packet. Denoting as BðaÞ the
vector of coefficients for the state a, its equations of motion can be derived from the
TDVP and are the same as in the vMCG method of section 2.4.5,

SðaÞ
@BðaÞ

@t
¼ � i

�h

XN S

b¼1
HðabÞ � i�hdabsðaÞ
	 


BðbÞ; ð2:105Þ

where S ðaÞrj;r 0j 0 ¼
D
GðaÞjr GðaÞj 0r 0

E��� and sðaÞjr ;j 0r 0 ¼
D
GðaÞjr

_G
ðaÞ
j 0r 0

E��� and the time derivatives are

evaluated from equations (2.102), (2.103a) and (2.103b). In the adiabatic
representation, the Hamiltonian matrix takes the form (rectilinear coordinates
are assumed)

H ðabÞrj;r 0j 0 ¼ dab
D
GðaÞjr T̂ þV aðqÞ

�� ��GðaÞj 0r 0

E
þ
Xf
j¼1

�
GðaÞjr �hDðabÞj ðqÞ

@

@qj
þF ðabÞj ðqÞ

����
����GðbÞj 0r 0

�
;

ð2:106Þ

where V aðqÞ are the adiabatic potential energy surfaces, and DðabÞj ðqÞ and F ðaÞj ðqÞ
are the derivative and scalar couplings, introduced in section 2.2.2. In most
applications the scalar couplings are neglected.

It is clear from equation (2.106) that the nonadiabatic couplings induce mixing
between the TBFs evolving in two different adiabatic surfaces, leading to more
complex nuclear wavefunctions. Therefore, the idea of making the number of TBFs

adaptive is to generate a new Gaussian GðbÞrl in the state b whenever the TBF GðaÞrj in
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the state a reaches a molecular geometry where the derivative couplings are large.
This process is denoted spawning and is activated at propagation times t0, when the
norm of the derivative coupling vector DðabÞ

�� �� or its projection on the velocity vector

DðabÞ � _qðaÞrj

��� ��� exceeds a certain threshold. At this point:

� The B coefficients are frozen, and the TBF GðaÞrj is propagated from t0 to t1 in
the state a until a maximum derivative coupling is reached. At this stage, a new

TBF GðbÞrl is generated at the same position and with a momentum

�pðbÞrl ¼ �pðaÞrj � sDðabÞ, where s is defined so as to impose energy conservation

T �pðbÞrl

	 

þV b qðaÞrj

	 

¼ T �pðaÞrj

	 

þV a qðaÞrj

	 

: ð2:107Þ

In the cases where the constraint cannot be satisfied, the position of the
spawned TBF is also adjusted with a steepest descent algorithm. Note that,
after the spawing, the number of TBFs in the r branch increases by one,
N ðbÞr ! N ðbÞr þ 1.

� The “child” TBF created in the b state is back-propagated from t1 to t0.
� The propagation is resumed from t0, and dynamics of the B coefficients is
reactivated.

More details about the FMS algorithms can be found in Ref. [73].

The ab initio multiple spawing approximation
The FMS method is an excellent starting point to design algorithms to simulate
nonadiabatic molecular dynamics while computing the potential energy surfaces and
nonadiabatic couplings on the fly. However, implementing these simulations in a
computationally efficient way requires, at present, two additional approximations,
which define the ab initio multiple spawning method (AIMS) [72]:

1. Scalar nonadiabatic couplings, usually small and hard to compute ab initio,
are neglected. The other Hamiltonian matrix elements are evaluated using the
so-called saddle-point approximation of order zero, i.e., as�

GðaÞjr V aðqÞ GðaÞj 0r 0

�����
���� � V a �qjr;j 0r 0

� ��
GðaÞjr GðaÞj 0r 0

����� ; ð2:108aÞ

�
GðaÞjr DðabÞj ðqÞ

@

@qj

����
����GðaÞj 0r 0

�
� DðabÞj �qjr ;j 0r 0

� ��
GðaÞjr

GðaÞj 0r 0

@qj

������ ; ð2:108bÞ

where �qjr ;j 0r 0 is the midpoint between the positions of the two Gaussians,
�qjr ;j 0r 0 ¼ �qjr þ �qj 0r 0

� �
=2. This approximation allows us to perform the dynamics

simulation without the need to know the entire surface in advance.
2. The initial wave packets eWr of equation (2.104) are propagated indepen-

dently. In practice, one samples an initial distribution of Gaussians, for
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example using Wigner sampling, and lets them evolve and spawn their
“children” independently. This is called the independent first-generation
approximation, and is justified by the assumptions that the initially generated
TBFs rapidly spread out in configuration space after photoexcitation.

The AIMS method has been successfully applied to a number of problems in
molecular photochemistry [74]. Note, however, that he above approximations –

especially the number 2 – formally prevent the AIMS method from converging to the
exact result when the initial TBFs are decoupled.

2.5.3 Fully Independent Trajectories: The Surface
Hopping Approach

From the computational viewpoint, the most efficient approaches for nonadiabatic
molecular dynamics are those based on classical (i.e., independent) trajectories from
a given ensemble, because they can be launched in parallel in multi-core computing
infrastructures. As explained in section 2.5.4, the use of independent trajectories is
the essence of the classical limit of quantum mechanics, therefore, it is intrinsically
an approximation. The question, still not completely solved, is: what is the best way
to do this approximation?

Many (many!) different methods have been proposed to address this problem. In
a few words, there are two main aspects that one needs to define, and that distin-
guish one method from the other [79]: (i) What are the classical equations of motion
that govern the trajectory dynamics? (ii) How do we aggregate the data from the
ensemble of trajectories to reconstruct the electronic populations and coherences?

To answer the question (i) we need to define a potential energy surface. One
possible strategy is to define some time-dependent potential, by averaging the PESs
of the different electronic states. This led to the so-called Ehrenfest method, or similar
related approaches. These types of approximation are described in section 2.5.5.

The other possibility is to use trajectories that, at each time, evolve on a specific
PES. Radiationless transitions are mimicked by letting the trajectory “hop” between
the surface of one state to another. This strategy defines the surface hopping
methods for nonadiabatic photochemistry. Conceptually, these methods can be
viewed as a simplification of the AIMS method, whereby the TBF hops to another
electronic state, instead of spawing a new child.

The most popular algorithm for surface hopping is the so-called
“fewest-switches” approach introduced by Tully [76]. In this approach, the nuclear
coordinates follow classical trajectories, indexed by the superscript ðrÞ, governed by
the PES of one specific adiabatic state ct that is active at the given time,

_qðrÞj ¼
@H ðctÞ

@pðrÞk

; _pðrÞj ¼ �
@H ðctÞ

@qj
; ð2:109Þ

where H ðctÞ ¼ TðpÞþV ct ðqÞ is the classical Hamiltonian of the active state. Due to
the hops, the active state can change over time. The electronic wavefunction is
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expanded in the adiabatic basis as Welij ¼PN S
a¼1C aðtÞ a qðtÞð Þij and the expansion

coefficients follow the time-dependent Schrödinger equation,

dC ðrÞa

dt
¼ � i

�h

XN S

b¼1
dabV b qðrÞ

	 

�DðabÞ qðrÞ

	 

� _qðrÞ

h i
C bðtÞðrÞ: ð2:110Þ

With this setup, we can imagine two different ways to compute electronic
time-dependent populations. One is to evaluate the fraction of trajectories that
are evolving in each electronic state at a given time N aðtÞ. The other way is to use
the quantum mechanical definition, based on the electronic coefficients, and the two
ways should be approximately equivalent, i.e.

N aðtÞ
N traj

� 1
N traj

XN traj

r¼1
C aðtÞðrÞ
��� ���2: ð2:111Þ

The criterion of Tully’s surface hopping is to minimize the number of state switches
while approximately satisfying the consistency relation given by equation (2.111).
To this end, when the quantum mechanical population of the active state gets
reduced, a hopping may occur. The hopping probability per unit time can be found
to be [76]

pa!b ¼ max 0;
2DðabÞ qðrÞ

� � � _qðrÞRe C ðrÞa
�ðtÞC ðrÞb ðtÞ

h i
C ðrÞa ðtÞ
��� ���2

8><
>:

9>=
>;: ð2:112Þ

The introduction of a hopping probability defines a stochastic propagation, i.e., the
trajectories are not uniquely determined by the initial conditions. At each time step,
one needs to compute the derivative coupling vector, evaluate the hopping
probability, and choose whether the trajectory hops or not, by comparing pa!b

with a random number.
If the hop occurs, the momentum p is rescaled (typically along the direction of

the derivative coupling) to ensure energy conservation, as for the FMS method, see
equation (2.107). The only difference is that, when the hop terminates in a higher
adiabatic state, and there is not enough energy left for the kinetic terms, the hop is
aborted (“frustrated hop”) and the momentum is reversed.

Tully’s surface hopping algorithm has been combined with almost all common
electronic structure methods developed for excited states, and has revealed itself to
be accurate in a number of studies. Its main limitation is a poor description of the
electronic decoherence, i.e., the loss of overlap between wave packets associated
with different PES. This phenomenon is due to the strong coupling between
electronic and nuclear dynamics in the regions of large nonadiabatic couplings
and cannot be described by a single trajectory. Therefore, surface hopping
methods are generally found to be overcoherent, and the results need to be
empirically corrected [77].
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2.5.4 The Phase Space View on Nuclear Quantum Effects

In section 2.5.1, we introduced – without any particular justification – the trajectory
basis functions as a means to describe quantum dynamics using classical trajectories,
and emphasised that the difference with the Gaussian wave packets used in the vMCG
method, which, in contrast, follow quantummechanical trajectories. Indeed, there are
different ways to retrieve classical Hamiltonian trajectories as a limit of quantum
mechanics. One aspect of this limit is the need to connect the Hilbert space, which
contains coordinate ormomentum dependent functions, with the phase space, which
describes distributions dependent on both coordinates and momenta.

One elegant way to retrieve the classical limit of quantum mechanics is the use
of the phase space formulation introduced in the 1940s by Groenewold and Moyal.
This is an alternative formulation of quantum mechanics, self-standing and
equivalent to the Hilbert space formulation, which makes use of phase space dis-
tributions just as in classical mechanics. A complete account of this subject is well
beyond the purpose of this chapter. However, it is worth reporting the main results
of the theory to understand what we are neglecting when we use classical instead of
quantum mechanics. More details can be found in Ref. [78] and, at an introductory
level, Ref. [79].

Suppose that we want to describe a quantum dynamical system governed by a
single potential energy surface. In standard Hilbert space quantum mechanics, we
would make use of a high-dimensional wavefunction vðq; tÞ. The equivalent quantity
in the phase space is the Wigner function, connected to the Hilbert space wave-
function as

W ðq;p; tÞ ¼ 1

ðp�hÞ f
Z

dsv�ðq � s; tÞe�2i
�hs�pvðqþ s; tÞ: ð2:113Þ

Note that here the momentum p is not an operator, but a variable, exactly as q is.
The Wigner function has the nice property of delivering the expectation value of a
quantum observable Xqu q̂; p̂ð Þ via phase space integration of the corresponding
classical observable Xclðq; pÞ

hv Xqu q̂; p̂ð Þ�� ��vi ¼ Z dqdpXclðq; pÞW ðq; pÞ: ð2:114Þ

Usually (but not always!), the quantum and classical operators have the same
functional expression. In particular, this is true for purely p- and q-dependent
observables, as well as their sum, such as the Hamiltonian H ðq; pÞ ¼ TðpÞþV ðqÞ.
Equation (2.114) tells us that the Wigner function behaves as a probability
distribution in the phase space. However, a purely quantum mechanical signature is
that, in small regions of the phase space, W ðq; pÞ can be negative, therefore it is
often referred to as quasi-probability.

A useful property is that if two Hilbert space wavefunctions vn and vm are
orthogonal, the corresponding Wigner functions Wn and Wm also are. More in
general, one can derive the equation
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Z
dq
Z

dpWnðq; pÞWmðq; pÞ ¼ hvn vmijj j2
ð2p�hÞ f ; ð2:115Þ

which allows us to compute state populations using projections, as for the
conventional Hilbert space formulation.

The Wigner function evolves in time according to the Moyal equation,
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@t
¼ � i

�h
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where the H-product is defined by the operator
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which is always interposed between two phase space functions, and the arrows
indicate the factor that gets differentiated. Equation (2.116) seems complicated, but
can be simplified by expanding the exponential of the H-product in Taylor series.
The classical limit is obtained for �h ! 0, which coincides with the first order

expansion H � 1þ i�h
2 K̂,
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ð2:118Þ

i.e., the classical Liouville equation! This equation contains only first-order
derivatives. It is immediate to see that, due to this fact, it can be solved by
expanding W ðq; pÞ as an ensemble of independent trajectories, formally represented
as Dirac delta functions,

W clðq; pÞ ¼ 1
N traj

XN traj

r¼1
d q � qðrÞðtÞ
	 


d p� pðrÞðtÞ
	 


; ð2:119Þ

where qðrÞðtÞ and pðrÞðtÞ follow Hamilton’s equations.
The lowest order correction to classical mechanics is obtained as
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: ð2:120Þ

This equation is definitely much worse, and, as such, not much of practical use (it is
as difficult to solve as the time-dependent Schrödinger equation – or even more
difficult). However, there are some interesting features that emerge:
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� The classical limit is clearly obtained as �h ! 0. Since the prefactor in the
correction term is �h2=24, it is also clear that the quantum corrections are small
unless strong anharmonicities are present. For harmonic potentials, the clas-
sical Liouville equation gives the exact quantum mechanical dynamics.
� High-order corrections to equation (2.120) scale as �h4 and therefore are small
and can be safely neglected in most cases. The truncation of equation (2.120) is
exact for at most quartic potentials.
� Equation (2.120) involves summations over the degrees of freedom, therefore, it
suggests that it is possible to include quantum corrections only for a few
selected modes. This gives rise to the quantum-classical Liouville equation
(QCLE) [80] (see section 2.5.5).
� The presence of cubic derivatives has the effect that the independent trajectories
ansatz of equation (2.119) cannot be used to solve equation (2.120) exactly. The
solution of the equation or the QCLE typically involves the propagation of
coupled trajectories to account for quantum mechanical coupling.

Despite being uncommon, the phase space formulation of quantum mechanics is
certainly a useful tool to explore newpossibilities to design novelmethods for quantum
dynamics. In particular, when classical trajectories are used, Moyal’s equation allows
one to understand which terms are discarded and how large they could be.

2.5.5 Mapping Discrete Electronic States to Phase Space
Variables

The phase space formulation of quantum mechanics gives a precise definition of the
classical limit of quantum mechanics, which allows simulations in terms of inde-
pendent trajectories, as well as the identification of the most important corrections.
It is interesting to apply this procedure to nonadiabatic molecular dynamics prob-
lems, which involve multiple nuclear wavefunctions associated with different elec-
tronic states. However, the Wigner function is defined in equation (2.113) via an
integral over a continuous coordinate variable s. In contrast, the whole formalism
derived by the group Born–Oppenheimer approximation relies on a discrete set of
electronic states. How can we get a phase space picture for the electronic space and,
eventually, take the classical limit?

One possible way is to use the so-called bosonization technique developed by
Schwinger [81]. This formalism establishes an exact mapping between a system with
N S discrete levels and the singly excited states of a N S-dimensional isotropic har-
monic oscillator. The formal steps are the following:

� Consider the N S-dimensional oscillator defined by the Hamiltonian
ĤHO ¼ 1

2

PN S
a¼1 P2

aþX2
a

� �
, where Pa and Xa are dimensionless coordinates and

momenta. This oscillator has N S eigenstates with one vibrational quantum,
whose wavefunctions are

waðXÞ ¼
4
p

N S

 �1

4

Xa exp � 1
2
XTX


 �
: ð2:121Þ
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� The singly excited states are mapped to the discrete electronic levels,
jai !waðXÞ. The corresponding wigner functions can be evaluated from
equation (2.113) as

W aðX;PÞ ¼ 1
pN S

exp �XTX� PTP
� �

2X2
aþ 2P2

a � 1
� �

�W 00ðX;PÞ 2X2
aþ 2P2

a � 1
� �

:
ð2:122Þ

This defines the phase space representation of the electronic states.

� The electronic operators jaihbj are mapped to operators between the singly
excited harmonic oscillator levels as

jaihbj !âyaâb; ð2:123Þ
where âb ¼ X̂bþ iP̂b

� �
=
ffiffiffi
2
p

and âya ¼ X̂a � iP̂a
� �

=
ffiffiffi
2
p

are annihilation and
creation operators for the Schwinger oscillators b and a, respectively. In the
Hilbert space (Schrödinger representation), the momentum operator is defined
as usual P̂a ¼ �i@=@Xa.

With these definitions, the mapping from the discrete to the continuous space is
exact! This means that, instead of solving the usual time-dependent Schrödinger
equation

@jW; ti
@t

¼ � i
�h

XN S

a;b¼1
jaiH ðabÞ q̂; p̂ð ÞhbjW; ti; ð2:124Þ

we can solve the mapped equation

@Wðq;X; tÞ
@t

¼ � i
�h

XN S

a;b¼1
âyaâbH

ðabÞ q̂; p̂ð ÞWðq;X; tÞ

¼ � i
�h

1
2
X̂

T
H q̂; p̂ð ÞX̂þ 1

2
P̂
T
H q̂; p̂ð ÞP̂


 �
Wðq;X; tÞ;

ð2:125Þ

and the results of the calculations will be exactly the same (provided that we
map the initial state consistently). Here, it is assumed that the electronic
Hamiltonian matrix set in the diabatic representation is real and symmetric,
H ðabÞ ¼ H ðbaÞ.

Of course, solving equation (2.125) is as difficult as solving equation (2.124). The
potential advantage that we can get from Schwinger’s model is that we can easily
write down the equivalent of equation (2.125) in the phase space using equations
(2.116) and (2.117),

@W ðq; p;X;P; tÞ
@t

¼ � i
�h

He
i�h
2
K̂qpe

i
2K̂XPW �W e

i�h
2
K̂qpe

i
2K̂XPH

	 

; ð2:126Þ

and take the classical limit by truncating the exponential operators at the first order.
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If we do this procedure only for the nuclear variables, i.e. e
i�h
2 K̂qp � 1þ i�h

2 K̂qp we
obtain, after some calculus, the quantum-classical Liouville equation [80],

@W
@t
¼ H K̂qpW þ 1

�h
H K̂XPW � 1

8
H K̂qpK̂

2
XPW ; ð2:127Þ

which still does not allow a solution in terms of independent trajectories. To reach
this situation, we must neglect the last term in equation (2.127) to obtain the
classical Liouville equation in the mapping representation,

@W
@t
¼
Xf
j¼1

@H
@qj

@W
@pj
� @H
@pj

@W
@qj


 �
þ
XN S

a¼1

@H
@Xa

@W
@Pa
� @H
@Pa

@W
@Xa


 �
: ð2:128Þ

Here W ðq; p;X;P; tÞ is the classical-like distribution function, which also depends
on the electronic phase space variables X and P, and H ðq; p;X;PÞ is the Meyer–
Miller–Stock–Thoss (MMST) Hamiltonian [82, 83], which in the diabatic represen-
tation takes the form

HMMSTðq; p;X;PÞ ¼ 1
2
XT TðpÞ1þVðqÞð ÞXþ 1

2
PT TðpÞ1N S þVðqÞð ÞP; ð2:129Þ

where TðpÞ is the classical nuclear kinetic energy, 1N S is the N S � N S identity
matrix, and VðqÞ is an electronic Hamiltonian matrix in the diabatic representation.

Many different mapping approaches
Equation (2.128) can be viewed as the classical limit of the coupled
nuclear-electronic time-dependent Schrödinger equation. This equation is the basis
of many different methods to simulate nonadiabatic dynamics, which cannot be
exhaustively reviewed here. The reason why different methods can be derived from
just one equation is that we have taken the classical limit for the electronic motion,
therefore, we have lost key properties of the full quantum mechanical problem.
Therefore, we are left with some ambiguities, for which different solutions – in
principle equally legitimate – can be proposed.

One key ambiguity is the definition of the identity operator for the electronic
space. Quantum mechanically, we have the completeness relation 1̂ ¼Pajaihaj. The
phase space expression of the left-hand side gives simply 1. The right-hand side,
using equation (2.123), would give 1̂ ! XTXþPTP

� �
=2� N S=2. This inconsis-

tency is irrelevant if exact quantum mechanics, or the quantum classical Liouville
equation, is used. However, in the classical limit, the results change if one uses one or
the other form.

In a number of tests and investigations, it has been found that, often a better
agreement with full quantum calculations is obtained by treating the identity
operator, as far as possible, as 1 [84]. To this end, the diabatic MMST Hamiltonian is
defined as

ĤMMST ¼ TðpÞþV 0ðqÞþ 1
2
XTVðqÞXþ 1

2
PTVðqÞP; ð2:130Þ
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where V 0ðqÞ ¼ 1
N S

Tr VðqÞ½ � is the average potential and the residual electronic

Hamiltonian VðqÞ ¼ VðqÞ �V 0ðqÞ1 is made traceless. The classical equations of
motion used for the independent trajectory simulations read

_qj ¼
@TðpÞ
@pj

; ð2:131aÞ

_pj ¼ �
@V 0ðqÞ
@qj

� 1
2
XT @VðqÞ

@qj
X� 1

2
PT @VðqÞ

@qj
P; ð2:131bÞ

_X ¼ 1
�h
VðqÞP; ð2:131cÞ

_P ¼ � 1
�h
VðqÞX: ð2:131dÞ

Upon solution of the equations of motion, electronic populations can be computed
using classical phase space averages. In particular, the population of the electronic
state b, given that the dynamics are initiated in state a, is approximated as5

Pb aðtÞ ¼ Tr e
i
�hĤ t jbihbje� i

�hĤ t jaihajq̂nuc
h i

�
Z

F 0bb Xt ;Ptð ÞFaa X0;P0ð ÞW nucðq0; p0Þdq0dp0dX0dP0;
ð2:132Þ

where the subscripts “0” and “t” indicate the time at which the phase space variables
are evaluated, and Faa and F 0bb are electronic projection observables (classical
projectors).

As mentioned before, given that the classical approximation is used, different
choices are possible for the projectors. For example, one can exploit the projective
property expressed by equation (2.115) and use the Wigner function of the
singly-excited oscillator states, given by equation (2.122). Another option is to
evaluate the population using the phase space expression of the operator
âyaâa ! X2

aþP2
a � 1

� �
=2. A more recent, theoretically justified technique involves

constraining the value of XTXþPTP to one fixed value for each trajectory.
Below, we report the choices associated with different methods, which are among

the most popular approaches used for mapping [75]:

5In the quantum mechanical formula q̂nuc is the initial nuclear density matrix, which, in general, is
given as a statistical ensemble of pure states q̂nuc ¼

P
npn jvnihvn j. In this case the initial Wigner

function is also the average of the Wigner functions computed for the individual states of the
mixture, W nucðq;pÞ ¼

P
npnWnðq; pÞ.
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� Linearized semiclassical initial value representation (LSC-IVR) [85]

FaaðX0;P0Þ ¼W 00ðX0;P0Þ 2X2
a;0þ 2P2

a;0 � 1
	 


; ð2:133aÞ

F 0bbðXt ;PtÞ ¼ ð2pÞN SW 00ðXt ;PtÞ 2X2
b;t þ 2P2

b;t � 1
	 


: ð2:133bÞ

� Poisson bracket mapping equation (PBME) [86]

FaaðX0;P0Þ ¼W 00ðX0;P0Þ 2X2
a;0þ 2P2

a;0 � 1
	 


; ð2:134aÞ

F 0bbðXt ;PtÞ ¼
X2

b;t þP2
b;t

2
þ 2� XT

t Xt � PT
t Pt

2N S
: ð2:134bÞ

Note that equation (2.134b) can be derived from the identity jaihaj ¼ jaihaj þ
1=N S � 1=N S

P
bjbihbj.

� “Single unity” approach for linearized semiclassical dynamics [87]

FaaðX0;P0Þ ¼
X2

a;0þP2
a;0

2
þ 2�XT

0 X0 � PT
0 P0

2N S
; ð2:135aÞ

F 0bbðXt ;PtÞ ¼W 00ðXt ;PtÞ 2X2
b;t þ 2P2

b;t � 1
	 


: ð2:135bÞ

� Spin mapping (SM) [88]

FaaðX0;P0Þ ¼ N
X2

a;0þP2
a;0

2
þ 2� XT

0 X0 � PT
0 P0

2N S

" #
d XT

0 X0þPT
0 P0 � R

2
	 


;

ð2:136aÞ

F 0bbðXt ;PtÞ ¼
X2

b;t þP2
b;t

2
þ 2� XT

t Xt � PT
t Pt

2N S
: ð2:136bÞ

Here, the constants N and R are fixed so that at the initial time Pm mðt ¼ 0Þ ¼ 1

and the initial distribution is normalized. These conditions give R
2 ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffi
N þ 1
p

and

N ¼ N S!=ðpN SR
2N S�2Þ.

� Ehrenfest dynamics

FaaðX0;P0Þ ¼ N
X2

a;0þP2
a;0

2
þ 2� XT

0 X0 � PT
0 P0

2N S

" #

� d XT
0 X0þPT

0 P0 � 2
� �

d X2
a;0þP2

a;0 � 2
	 


;

ð2:137aÞ
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F 0bbðXt ;PtÞ ¼
X2

b;t þP2
b;t

2
þ 2� XT

t Xt � PT
t Pt

2N S
: ð2:137bÞ

Which method is better? Experience shows that there is not always a clear answer
[75, 89]. Despite being very efficient, these methods need to be benchmarked against
converged quantum dynamics to properly understand how to choose a specific
mapping method on a case-by-case basis. Furthermore, the computational imple-
mentation of these approaches is limited [75]. Nevertheless, there is a lot of room for
improvement, because the approximations used to derive mapping-based approaches
are clear, and it is also relatively straightforward to understand how these methods
can be extended to simulate nonlinear spectroscopic observables.

One typical weak point, common to all these methods, is that they employ some
average potential, as evident from equation (2.131b). This might be a rather bad
approximation when the potential energy surfaces are well separated in energy, and
is a problem that does not occur in the surface hopping approach, which, however,
cannot be rigorously derived as the classical limit of quantum mechanics.

Indeed, an interesting recent developments involve the combination of mapping
approaches with trajectory surface hopping [90–92]. These techniques have the
potential of merging the best of the two methods, but, being new methodologies,
additional benchmarks and tests are needed. Moreover, as for all methods based on
independent trajectories, overcoherence is an issue and needs to be corrected in an
ad hoc.

2.5.6 Quantum-Classical Approaches vs. Numerically
Exact Quantum Dynamics

To conclude the overview on different methods for nonadiabatic molecular
dynamics, a comparison is shown below between results obtained by numerically
exact quantum dynamical simulation and quantum-classical methods. To this end,
the simulations are performed with different methods using exactly the same
molecular vibronic couplings models, which include two electronic states. Quantum
mechanical calculations are performed using the MCTDH method as implemented
in the Quantics package [93], whereas quantum-classical results are obtained by
plugins recently implemented in the PySurf code [75, 94].

All five mapping approaches of section 2.5.5 are tested. Among surface hopping
methods, a comparison is made between the fewest switches (FSSH) method [76]
described in section 2.5.3, Landau–Zener surface hopping (LZSH) [95], and the
mapping-inspired approach of Ref. [91] (MISH).

Three examples of photoinduced molecular processes are considered. Details of
these simulations can be found in Ref. [75].

� The B2u �! B3u internal conversion in pyrazine is studied using a
four-dimensional linear vibronic coupling model (see section 2.2.5)6.

6This is the model used by Worth et al. [J. Chem. Phys. 105, 4412 (1996)] including the modes m10a,
m6a, m1 and m9a.
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In figure 2.8, the time-dependent population of the initially unpopulated B3u

state is plotted as a function of time, as resulting from different types of
simulations. Exact quantum mechanical results, to be regarded as a reference,
are shown with a black line. At short times, all quantum-classical methods
underestimate by � 5% the extent of population transfer, and, in this case,
the LSC-IVR and the Ehrenfest methods perform particularly worse. In
contrast, surface hopping approaches are rather accurate. In particular, the
FSSH method predicts the correct diabatic populations at long times.

� The B2u �! B2g internal conversion of butatriene following the photoioniza-
tion to the B2u state is simulated using a full-dimensional (18-modes) quadratic
vibronic coupling model [96]. The population of the B2g state, calculated with
different quantum-classical methods, is plotted as a function of time in
figure 2.9. In contrast to the pyrazine model, the prediction of surface-hopping
methods is slightly inaccurate on the long time scale, except for the MISH
approach. Mapping approaches generally overestimate the B2g population,
with the exception of the LSC-IVR and Ehrenfest methods. Interestingly, these
are the worst-performing approaches in the case of pyrazine.

� The cis-trans photoisomerization of the protonated Schiff base PSB3, a pro-
totype for the retinal chromophore, is studied using a three-mode anharmonic
diabatic model [12]. The three coordinates are a bond length alternating
vibration (r), a dihedral torsion (h) that connects the cis and trans structures
of PSB3, and a hydrogen out-of-plane wagging mode (/). Figure 2.10 depicts
the quantum yield for the cis!trans isomerization as a function of time,

FIG. 2.8 – Simulation of the B2u �! B3u internal conversion in pyrazine performed by exact
quantum dynamics (MCTDH), mapping approaches (a), and surface-hopping methods (b).
The initial wave packet is Gaussian and located in the B2u diabatic surface.
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computed using different quantum-classical methods as well as quantum
mechanically. In this case, surface hopping methods are rather accurate in the
short time (before � 100 fs) but tend to overestimate the quantum yield at
longer times. Mapping approaches also predict too large values for the yield,
with the exception of the PBME approach.

FIG. 2.10 – Simulation of the cis-trans photoisomerization of the retinal chromophore per-
formed by quantum dynamics, mapping approaches (a) and surface-hopping methods. The
initial wave packet is Gaussian and located in the upper (green) diabatic surface.

FIG. 2.9 – Simulation of the B2u �! B2g internal conversion of butatriene following the
photoionization to the B2u state performed by exact quantum dynamics (MCTDH), mapping
approaches (a), and surface-hopping methods (b). The initial wave packet is Gaussian and
located in the B2u diabatic surface.
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2.5.7 What Else Do We Have?

The literature about nonadiabatic molecular dynamics is rich in ideas to get the
most accurate description of photoinduced phenomena without resorting to full
quantum mechanical simulations. Rather than reviewing all existing approaches in
detail, we have chosen to focus on the key conceptual ideas used to develop
approximate quantum-classical methods. Many other methods found in the litera-
ture can be understood by using such concepts.

However, to complete the picture, it is useful to provide a list of references to
other interesting methodologies – most of them still under development – not
covered in this chapter. These are:

� The multi-configurational Ehrenfest method [97, 98], where the wave packets
are constructed as a combination of Gaussians that evolve along Ehrenfest
mean-field trajectories, instead of being guided by state-specific potentials.
�Many different approaches for the approximate solution of the quantum-classical
Schrödinger equation [80, 99–101].
� The partial linearized density matrix [101] and the forward-backward methods
[103], which add a correction to the classical limit of mapping approaches.
� The coupled trajectories approach derived from the exact factorization of
the molecular wavefunction [104]. The underlying theory is based on a
molecular wavefunction ansatz, alternative to the Born-Huang expansion of
equation (2.5), where both the electronic and nuclear wavefunctions are
time-dependent.
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Abstract
The dynamics of excitonic energy transfer in molecular complexes triggered by

interaction with laser pulses offer a unique window into the underlying physical
processes. The absorbed energy moves through the network of interlinked pigments
and, in photosynthetic complexes, reaches a reaction center. The efficiency and time
scale depend not only on the excitonic couplings but are also affected by the
dissipation of energy to vibrational modes of the molecules. An open quantum
system description provides a suitable tool to describe the involved processes and
connects the decoherence and relaxation dynamics to measurements of the
time-dependent polarization.

3.1 Introduction
This lecture note reviews how to perform detailed calculations of the dynamics in
open quantum systems with applications to energy transfer in light-harvesting
complexes. The approach relies on the Frenkel exciton description of excitonic
energy transfer. For an introduction to the Frenkel exciton picture from a molecular
theory perspective, we refer to the monograph by May and Kühn [1], as well as other
relevant materials from this book, in particular chapters 5 and 6.
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Section 3.2 reviews the open quantum system approach and in section 3.3, we
compare different solution methods. Section 3.4 describes the computation of optical
spectra, while section 3.5 reviews the ensemble averages required to compare
with experimental data. As a well-studied light-harvesting complex with a known
atomistic structure, we focus exemplary calculations in section 3.6 on the
Fenna-Matthews-Olson (FMO) complex. Its structure model, derived from experi-
mental observations on crystallized complexes, is detailed in the seminal works by
Olson et al. [2] and Fenna and Matthews [3]. Parameters for the corresponding
Frenkel exciton model have been derived by Adolphs and Renger [4].

3.2 Open Quantum System Dynamics
To describe the dynamics of an electronic excitation in an LHC, the concept of an
open quantum system is employed. A comprehensive introduction to open quantum
system dynamics can be found in [5], and a concise overview of the notation
applicable to LHC is provided in [1]. For the purpose of defining the fundamental
quantities of interest, this section closely follows the approach outlined in [6, 7].
The photosynthetic complex, which interacts with light, is described using the
Frenkel exciton model. In this model, the system is characterized by the Hamiltonian
given by equation (1):

H ðtÞ ¼ H g þH ex þH bath þH ex�bath þH fieldðtÞ: ð1Þ
The first term, denoted as H g ¼ e0j0ih0j, represents the ground state Hamiltonian
with a ground state energy of e0. The second term, H ex, incorporates the excitation
energies of each pigment and the inter-pigment couplings. Additionally, the
vibrational modes of each pigment are introduced through the inclusion of H bath.
In this model, the vibrations are linearly coupled to the excitons via H ex�bath. When
expressed in bra-ket notation, the excitonic Hamiltonian H ex is formulated for a
system comprising N sites pigments (referred to as sites) as follows in the site basis
(H site

ex ):

H site
0 ¼

XN sites

m¼1

e0mjmihmj þ
X
n 6¼m

Jmnjmihnj; H site
ex ¼ H site

0 þ
XN sites

m¼1

XVm

v¼1

km;vjmihmj: ð2Þ

The site energy em ¼ e0m þPVm
v¼1km;v consists of the zero phonon energy e0m plus the

reorganization energy
P

vkm;v. The inter-site couplings are denoted by Jmn. The
vibrational states of the pigments are described by B ¼PmVm independent baths,
where several baths can be assigned to the same pigment to either represent a more
complex spectral density or to describe states representing two excitons at different
sites. Non-diagonal (site m 6¼ n) couplings between a state jmihnj and baths are not
considered here. The Vm baths are represented by a Hamiltonian H bath;m;v ¼P

i �hxm;v;iðbym;v;ibm;v;i þ 1
2Þ which consist of harmonic oscillators with frequencies

xm;v;i. The bosonic creation and annihilation operators bm;v;i are specified for each
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pigment m. Finally, the linear coupling to the excitons is written in terms of the
linear displacement of each bath mode ðbym;v;i þ bm;v;iÞ:

H ex�bath ¼
X
m

jmihmj �
X
v

X
i

�hxm;v;idmviðbym;v;i þ bm;v;iÞ; ð3Þ

Here, dmvi denotes the coupling strength, which for a continuous spectrum of
oscillator frequencies is expressed as the spectral density of vibrational modes

Jm;vðxÞ ¼ p
X
i

�h2x2
mvid

2
mvidðx� xmviÞ: ð4Þ

The spectral density is also connected to the reorganization energy

km;v ¼
Z 1

0

Jm;vðxÞ
px

dx: ð5Þ

The Liouville-von Neumann equation describes the dynamics of an open quantum
system in terms of the full (system and bath) density matrix qtotalðtÞ:

@

@t
qtotalðtÞ ¼ � i

�h
½H ðtÞ; qtotalðtÞ�: ð6Þ

For the description of the excitonic degrees of freedom and the optical response of
the system to light pulses, the vibrational degrees of freedom are traced out. The
remaining reduced density matrix qðtÞ becomes

qðtÞ ¼ Trbath qtotalðtÞ� �
: ð7Þ

The reduced density matrix is, in general, evolving in a non-unitary fashion, in
contrast to the total density matrix.

3.3 Exact vs. Approximate Solution
The density matrix of an isolated system (i.e., without coupling to vibrations)
undergoes coherent dynamics. Decoherence and relaxation is brought into the system
dynamics by the specifics of the coupling to vibrational modes, which affects the
system dynamics. We use a parametrization of the vibrational modes introduced in
[8] and implemented in [9] and [7, 10]. To describe a frequency-dependent vibrational
bath, we use a superposition of (shifted) Drude-Lorentz peaks assigned to each site:

JmðxÞ ¼
XVm

v¼1

km;vxmm;v

ðx� Xm;vÞ2 þ m2m;v

þ km;vxmm;v

ðxþXm;vÞ2 þ m2m;v

 !
: ð8Þ

Here, m�1
m;v denotes the inverse bath correlation time, and the parameter Xm;v shifts

the peak position of the spectral density and allows one to vary the pure dephasing
and relaxation processes while maintaining the reorganization energy km;v [6, 8].

There are several methods available to evolve a reduced density matrix of a
system linearly coupled to a bath, as given by equation (2), to various degrees of
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approximation. For arbitrary coupling k, the solution requires numerical methods,
such as the Hierarchical Equation Of Motion (HEOM) [11, 12]. The HEOM method
serves as the standard reference for comparing with other methods, including the
quasi-adiabatic path integral QUAPI [13] and various stochastic methods.
A Mathematica implementation of HEOM is available online at [14] as a reference
implementation for demonstrating the algorithm. We discuss high-performance
implementations of HEOM in section 3.6, which are suitable for computing quan-
tum dynamics and optical response functions in larger systems (up to 100 sites).

3.3.1 Weak Coupling Limit: Redfield Equations

To explore the dynamics of the coupled system, it is useful to consider first only a
weak system-bath coupling (small k compared to the eigenenergy differences).
In this limit, the Redfield equation provides a suitable approximation (a concise
derivation can be found in [15, 16]). When a system is coupled to a thermal
environment, it eventually reaches an equilibrium state where both the system and
the environment share a common temperature. The timescale for thermalization is
inversely proportional to the relaxation rate. The Redfield approach reveals that,
in the case of weak coupling, the relaxation rate depends on the spectral density
value at the energy difference between two energy eigenstates. Under weak cou-
pling conditions, the system and environment can be considered as forming a
product state, with entanglement considered as a negligible perturbation (Born
approximation).

The Redfield tensor R is commonly expressed in the energy representation, which
is connected to the site representation through the diagonalizing matrix A:

H exc ¼ AH siteAT : ð9Þ
In the energy basis, the matrix H exc only has diagonal entries, with i ¼ 1; . . .;N sites

representing the eigenenergies Ei ¼ �hxi. The Redfield tensor is then entirely
determined by the (in general site dependent) bath correlation function CmðxÞ,
which in turn depends on the spectral density (as described below):

Rlml0m0 ¼ Clml0m0 þ ðClml0m0 Þ� � dmm0
XN sites

j¼1

Cljjl0 � dll0
XN sites

j¼1

Cmjjm0 ; ð10Þ

Clml0m0 ¼ 1

�h2
XN sites

m¼1

AlmAmmAl0mAm0mCmðxm0 � xl0 Þ; ð11Þ

The Fourier transform of the bath correlation function at temperature T
(b ¼ 1=ðkBTÞ) is given by

CmðtÞ ¼ 1
p

Z 1

0
dxJmðxÞ nðx; bÞeixt þðnðx; bÞþ 1Þe�ixt

� � ð12Þ

¼ 1
p

Z 1

�1
dxJmðxÞnðx; bÞeixt ; nðx; bÞ ¼ 1=ðeb�hx � 1Þ: ð13Þ
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The integrand of equation (13) is depicted in figure 3.1. For the spectral density in
equation (8), it is expressed in terms of the Digamma function F (we surppress the
index m for compactness):

C ðxÞ ¼ � ik�h
2

�
mþ �xþ im�ð Þcot 1

2 bmþ �h
� �þ im� mþ ixþð Þcot 1

2bm��h
� �� 2 m2 þ imxþX2� �

X2 þðmþ ixÞ2

þ
imþ m2 þx2

þ
� �

F bmþ �h
2p þ 1

� �
p m� ix�ð Þ m2 þx2þð Þ

þ
im� m2þ þx2
� �

F bm��h
2p þ 1

� �
� imþ X2 þ ðm� ixÞ2

� �
F 1� bmþ �h

2p

� �
p m� ix�ð Þ m2 þx2þð Þ

þ
2mx 1

m2 þx2
þ
þ 1

m2 þx2�

� �
F 1þ ibx�h

2p

� �
p

þ
m�F 1� bm��h

2p

� �
p �xþ im�ð Þ

	
; ð14Þ

m� ¼ m� iX ð15Þ

x� ¼ x� iX ð16Þ
The last relation can be computed by using the residues theorem for C ðtÞ and by
performing the Fourier transformation ðt ! xÞ term by term. The Redfield tensor is
then evaluated in terms of C ðxÞ values, and the time evolution of the density matrix
elements qlm in the energy representation of the exciton Hamiltonian (2) is a solution
to the following differential full Redfield equation:

@qexclm ðtÞ
@t

¼ �iðxl � xmÞqexclm ðtÞþ
XN states

l0¼1

XN states

m0¼1

Rlm;l0m0q
exc
l0m0 ðtÞ: ð17Þ

FIG. 3.1 – Visualization of the integrand cðxÞ ¼ J ðxÞnðx; bÞeixt of C ðtÞ ¼ R1�1cðxÞdx in
the complex x plane in the domain �10\Rx\10 and 0\Ix\10. To obtain C ðtÞ, the
integration path along the real x-axis is deformed and closed by a semi-circular contour in the
positive imaginary x-plane. This new path encloses an infinite number of poles, which yield
the result of the integration by a sum of the residues at the poles, multiplied by 2pi.
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The first term in equation (17) represents the coherent evolution governed by the
diagonalized Hamiltonian, while the second term accounts for decoherence and
relaxation resulting from the coupling to the baths. To simplify the equations
further, we can use the secular Redfield approximation. In this approximation, all
entries that do not satisfy the condition ðxl � xmÞ ¼ ðxl0 � xm0 Þ are set to zero. This
approximation is employed to address the violation of positive definiteness in the
density matrix that can occur at low temperatures when using the full Redfield
equations. A detailed comparison of the dynamics obtained using the full and
secular Redfield equations is presented in [7].

To compare the results with the reduced density matrix obtained from HEOM in
the site basis, we need to transform the Redfield density matrix from the energy
basis back to the site representation:

qsiteRedfieldðtÞ ¼ ATqexcRedfieldðtÞA: ð18Þ

3.3.2 Strong Coupling Limit: Förster Energy Transfer
and Rate Equations

The Redfield description relies on a weak coupling between the system and bath (k
small compared to eigenenergy differences). In the opposite case, for a very strong
coupling, Förster theory provides an alternative approach to compute the quantum
dynamics. The Förster expression for the rate R in site basis reads [17]

RF€orster
m;n ¼ 2jJmnjR

Z 1

0
dtF�

mðtÞAnðtÞ
� 	

; ð19Þ

with
AnðtÞ ¼ exp½�ið�0n þ knÞt � gnðtÞ�; ð20Þ

F�
mðtÞ ¼ exp½ þ ið�0m � kmÞt � gmðtÞ�; ð21Þ

gmðtÞ ¼ � 1
2p

Z 1

�1
dx

JmðxÞ
x2 1þ cothðb�hx=2Þð Þ e�ixt þ ixt � 1

� �
: ð22Þ

The Förster rate is therefore determined by the overlap of absorption (A) and
emission (F) spectra of the monomers, computed using the lineshape function gðtÞ
[18]. The lineshape function is, in turn, given as double integral of the bath
correlation function C ðtÞ [19]

gðtÞ ¼
Z t

0
ds1

Z s1

0
ds2C ðs2Þ: ð23Þ

The last relation connects the spectral density of a monomeric unit to the absorption
spectrum at very low temperatures via the lineshape function. An experimental
determination of the spectral density of the FMO complex from fluorescence
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line-narrowing measurements is performed in [20]. The population dynamics in
Förster theory is then given by

qmmðtÞ ¼ qmmð0ÞeKt ; ð24Þ

Kaa ¼ �
XN

c¼1;c 6¼a

RF€orster
ca ; ð25Þ

Kab ¼ RF€orster
ab ; ða 6¼ bÞ ð26Þ

For the shifted Drude Lorentz spectral density (8), an analytic expression for the
bath-correlation and lineshape function can be computed using Mathematica:

In½1� :¼ g½t � ¼
e�t m k ðei tX þ et m ð�1þ t ðm� i XÞÞÞ

�
� iþCot

h
ðm�i XÞ �h
2kB T

i�
2 ðm� i XÞ

þ
e�t ðmþ i XÞ kð�iþ et ðmþ i XÞ ðiþ t ð�i mþXÞÞÞ

�
1þCoth

h
ð�i mþXÞ �h

2kB T

i�
2 ðmþ i XÞ

þ 1
2 p

k

 ð1� t mþ i t XÞ HarmonicNumber
h
� ðm�i XÞ �h

2kB p T

i
m� i X

þ


tþ 1

m�i X

�
HarmonicNumber

� ðm� i XÞ �h
2 kB p T

	

þ
ð1�t ðmþ i XÞÞ HarmonicNumber

h
�ðmþ i XÞ �h

2kB p T

i
mþ i X

þ
ð1þ t mþ i t XÞ HarmonicNumber

h
ðmþ i XÞ �h
2kB p T

i
m� i X

þ 1

m2 þX2 e
�2 kB p t T

�h



ðmþ i XÞ

�
HurwitzLerchPhi

�
e�

2 kB p t T
�h ; 1; 1

� ðmþ i XÞ �h
2 kB p t T

	
þHurwitzLerchPhi

�
e�

2 kB p t T
�h ; 1; 1þðm� i XÞ �h

2 kB p T

	�

þðm� i XÞ


HurwitzLerchPhi

�
e�

2 kB p t T
�h ; 1; 1� ðmþ i XÞ �h

2 kB p T

	

þHurwitzLerchPhi
�
e
2kB p t T

�h ; 1; 1þ ðmþ i XÞ �h
2 kB p T

	�

þ 4 e�
2 kB p t T

�h m Log
h
1� e�

2 kB p t T
�h

i��

While Redfield and Förster theories correspond respectively to the limiting cases of
weak or strong coupling of the system to the thermal environment, the HEOM
method developed by Kubo and Tanimura [11] provides the connection between
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both regimes and, in addition, covers both limits [16]. Within HEOM, the time
evolution of the reduced density matrix is described by a system of interlinked
differential equations comprising Nmatrices auxiliary density matrices ru of dimen-
sions N states � N states. The auxiliary density matrices (also referred to auxiliary
density operators (ADO)) are put in separate layers with a specific depth index D.
The matrices in different layers are connected by vertices with þ -upward and �
-downward connecting links.

dru
dt

¼ � i
�h
H ; ru½ � þ

X
baths

Aru þ
X
baths

Bruþ þ
X
baths

Cru� : ð27Þ

Explicit expressions for the operators A;B;C are given in [21] and [7], equations
(12)–(36). The number of matrices in each layer increases with the layer depth D,
whereas the top-layer contains as unique member the reduced density matrix r0.
The layer links are the result of a series expansion of the exponentially decaying bath
correlation function and thus contains with increasing depth increasingly higher
derivatives. The HEOM depth has to be carefully chosen to guarantee a converged
result. For the parameters encountered in the FMO complex this implies that only
the first few layers are required (D ¼ 2� 3) at T ¼ 300 K [7]. For lower
temperatures or a stronger system-bath coupling, the total number of matrixes
increases and is given by

Nmatrices ¼ MBþD
MB


 �
; ð28Þ

where B denotes the number of vibrational baths B, and M the number of
Matsubara modes M [7]. In practise this large number of matrices limits the HEOM
method for computing exciton dynamics to systems with less than 100 pigments.
A detailed comparison of Förster theory with HEOM in the Photosystem I complex
[22] shows that the aggregated transfer times from the A-B branch within the
Förster theory (9 ps) differ from the exact HEOM results in the presence of a
mixture of small and large intersite couplings (17 ps).

3.3.3 Decoherence, Dephasing, and Relaxation Dynamics

Any initial coherence, which is expressed by an off-diagonal element of the density
matrix in the energy representation, decays over a timescale determined by the
decoherence rate cdecoh. The decoherence rate is set by two contributions
cdecoh ¼ cpd þ cr=2, the pure dephasing rate cpd determined by the slope of the
spectral density as it approaches x ! 0 and the relaxation rate cr, given by the value
of the spectral density at the difference of eigenenergies. For a two-site system, where
each site is coupled to an independent bath at temperature T ,

H exciton ¼ ��=2 d=2
d=2 �=2


 �
; ð29Þ
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the respective rates are ([23], section 21.4.2):

cr �
d2J ðxÞcothð�hx=ð2kBTÞÞ

2ð�2 þ d2Þ j
x¼

ffiffiffiffiffiffiffiffiffiffi
�2 þ d2

p ;

cpd ¼
�2J ðxÞcothð�hx=ð2kBTÞÞ

2ð�2 þ d2Þ jx!0:

An illustrative example is provided by a dimer, which is coupled to an environment.
By choosing the form of the spectral density, one can fix the thermalization rate,
while at the same time, the dephasing rate can be vastly different. This is
demonstrated in figure 3.2, reprinted from [6]. For computing transport, the
thermalization rate sets the timescale of how fast energy is transferred towards a
thermal equilibrium state. Secular Redfield theory would predict a faster equilibra-
tion for a stronger coupling to the vibrational states (i.e., for increasing k), while the
non-perturbative methods (i.e., HEOM) show that there exists an optimal value for
k which supports the fastest thermalization (see [24–27]). Increasing k prolongs the
thermalization process again, as illustrated in figure 3.3. For comparison, also the
full Redfield result is shown. The good agreement between secular Redfield and
HEOM obtained for small reorganization energies relies on error compensation
effects. Modified Redfield theory, by the inclusion of multi-phonon relaxation
processes, is also able to describe this effect via rate equations, see, e.g., figure 2
in [17], but does not capture the dynamics of the coherences.

FIG. 3.2 – Left panel: Spectral density JDL;0 (unshifted Drude-Lorentz form, k ¼ 35 cm−1 and
m�1 ¼ 50 fs) and J SDL;420 (shifted Drude-Lorentz peak, X ¼ 420 cm−1, k ¼ 35 cm−1 and m�1 ¼
50 fs). The arrow indicates the difference of eigenenergies of a two-site system

H ex ¼ �75 100
100 75


 �
cm�1, whereby construction both spectral densities have the same value.

Right panel: Relaxation of the diagonal element hE2jqðtÞjE2i to the thermal state (upper
non-oscillatory graphs) and damped oscillations of the off-diagonal coherence
ReðhE1jqðtÞjE2iÞ at T ¼ 277 K. While both spectral densities give very similar relaxation
rates, the off-diagonal coherence is much prolonged for J SDL;420 due to its small slope toward
x ! 0. Reprinted from [6], figure 8, with the permission of AIP Publishing.
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3.4 Computing Optical Spectra
The spectral density of the vibrational modes J ðxÞ directly influences the line
widths computed for optical spectra. To model the creation of an exciton through
optical excitation of the molecular complex, we introduce the interaction between an
external electric field and the dipole moments of the molecules. This interaction is
represented by the dipole operator [28]:

H fieldðtÞ ¼ �
X
p

ep 	 blEpðr; tÞ: ð30Þ

Here, ep is the unit vector in the Cartesian electric field component Epðr; tÞ, and the
dipole matrix operator is given by bl ¼ bl þ þ bl�, where

bl þ ¼
XN sites

a¼1

dajaih0j; ð31Þ

bl� ¼
XN sites

a¼1

daj0ihaj;¼ ðbl þ Þy: ð32Þ

To facilitate calculations, we decompose the real part of the time-varying electric
field amplitude Eðr; tÞ ¼ E þ ðr; tÞþE�ðr; tÞ into two complex amplitudes, where
E�

p ðr; tÞ ¼ ðE þ
p ðr; tÞÞ� and

E þ ðr; tÞ ¼ ~Eðt � tcÞeiðxct�k	rÞ: ð33Þ
In this expression, ~EðtÞ represents the pulse envelope centered around time tc, xc is
the carrier frequency, and u ¼ k 	 r denotes the phase of the laser pulse. Using the
rotating-wave approximation (RWA), the complex-valued electric field is combined
with the respective excitation and de-excitation parts of the dipole operator [28, 29],
reflecting energy conservation, that is, the excitation/de-excitation of the system is
related to an annihilation/creation of a photon:

H fieldðtÞ ¼ �
X
p

ep 	 ½bl þE�
p ðr; tÞþ bl�E þ

p ðr; tÞ�: ð34Þ

To obtain the optical spectra, we examine the time-dependent optical response of
the molecular complex, specifically the non-linear polarization PðtÞ induced by a
single or a combination of weak probe laser pulses. The time-dependent polarization
is given by:

PðtÞ ¼ TrsystemðTrbathðqtotalðtÞÞbl þ Þ; qtotalðt ¼ 0Þ ¼ j0ih0j � qbath ð35Þ

¼ TrsystemðqðtÞbl þ Þ; qðtÞ ¼ TrbathðqtotalðtÞÞ; ð36Þ
where qðtÞ represents the time-evolved reduced density matrix following the
time-dependent Hamiltonian (1). For weak laser pulses, the polarization function
can be expanded in powers of the electric field [30] and written as a convolution of
the electric field with the response function S ðnÞðtn; . . .; t1Þ or calculated using a
non-perturbative approach.
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A spectrometer records for a linear absorption spectrum the sum of the incoming
electric field of the laser E0 and the polarization-induced field Esignal via its absolute
value after performing a Fourier transform:

I ðxÞ ¼
Z 1

0
dteixtðE0ðtÞþEsignalðtÞÞ











2

/ I 0ðxÞþ 2R E0ðxÞEsignalðxÞ
� �

: ð37Þ
This expression neglects the weaker quadratic term due to the signal alone. To
compute the spectra, the dipole operator, which accounts for the charge redistri-
bution in the presence of an external electric field in each molecule of the complex,
must be specified. For short pulses, it is a ðN sites þ 1Þ � ðN sites þ 1Þ dimensional
matrix, as shown in equation (31). For a specific cartesian component p, it reads:

bl þ
p ¼

XN sites

m¼1

ep 	 dmjmih0j: ð38Þ

FIG. 3.3 – Quantum dynamics starting from the highest eigenstate of the FMO Hamiltonian
[4] to the thermal state for various reorganization energies k at T ¼ 277 K. Solid line: HEOM
method (exact) population in exciton basis of the highest and lowest eigenstate populations,
dashed line: secular Redfield theory, dotted line: full Redfield. HEOM shows there exists an
optimal value of k � 110 cm−1 for the fastest thermalization (as seen by the crossing of the
populations of both states, vertical line), while in the secular Redfield approximation (not
applicable at strong couplings), a higher coupling always increases the thermalization rate.

For long enough pulses or multiple short pulses, it is possible to excite an additional
exciton, necessitating the extension of the dipole representation to include two
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exciton states. This enlarges the Hamiltonian and dipole matrix to N states entries
[31, 32]:

N states ¼ 1þN sites þ N sitesðN sites � 1Þ½ �=2: ð39Þ

3.4.1 Linear Absorption Spectra

To compute the optical spectra, it is useful to employ the Fourier transform of the
time evolution of the dipole correlation function, as described by [33] and earlier
references therein. The Fourier transform allows us to obtain frequency-dependent
spectra from the time-dependent trace.

First, we consider the linear absorption spectra, which result from a short initial
excitation and can be obtained by Fourier transforming the dipole–dipole correla-
tion function. To account for rotational averaging, we include the sum over polar-
ization directions ep (as discussed in section 3.5). The linear absorption spectra
hLAðxÞirot is then expressed as:

hLAðxÞirot ¼ Re
X
p

Z 1

0
dt expðixtÞTr½blpðtÞblpð0Þqð0Þ�: ð40Þ

Here, the dipole operators blpðtÞ are calculated in the interaction picture [30], and the
trace is taken over the system part only, as the trace over the environment is already
considered in the reduced density matrix. At finite temperatures, the presence of
decoherence and relaxation towards the thermal state results in a decay of the
time-dependent polarization, which, in the frequency domain, corresponds to a finite
line width. After the polarization vanishes, one can increase the range of time
propagation by padding the time series of the polarization with zeroes to longer
times. This increases the sampling of the frequency-resolved spectra.

3.4.2 Two-Dimensional Electronic Spectroscopy (2DES)

While the pure dephasing rate cpd determines the width of a single spectral line in
the absorption spectra, the thermalization rate cr determines the time scale towards
equilibrium of an initially excited state. Two-dimensional electronic spectroscopy
(2DES) allows one to track the excitonic energy transfer and to investigate the
energetic arrangement of site (pigment) energies.

This is achieved by a pump-probe setup involving a total of four pulses
(including the signal pulse) and by scanning over a central interval (the time
delay T 2) to observe the energy transfer. Formally, 2DES reveals the third-order
non-linear response function, involving three commutators of the dipole operator
acting at specific times t0 ¼ 0; t1; t2 and a fourth dipole operator acting at t3
representing the signal. In between the dipole operations, the reduced density
matrix is propagated from t0 ¼ 0 to t3 in N steps. The time traces of the response
function in the first T 1 and last T 3 interval around the central interval are
transformed to the frequency domain with two Fourier transforms T1 ! x1,
T 3 ! x3 [30, 34]. To obtain the 2DES in the x1 � x3 plane requires obtaining
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first a time-dependent data set in the t1; t2-plane for all times ti ¼ iDt, with
i ¼ 0; . . .;N steps and time-step Dt. The computation is performed for equidistantly
spaced times T 1 ¼ 0;Dt; . . .; t1 and T 3 ¼ 0;Dt; . . .; ðt3 � t2Þ. This requirement
increases the computational overhead by a factor N steps compared to the calcu-
lation of absorption spectra. In the impulsive limit, the 2D spectra can be sep-
arated by an expansion in terms of products of the electric field of the different
pulses with varying k vectors. A separation into rephasing (�k1 þ k2 þ k3) and
non-rephasing directions (þ k1 � k2 þ k3) results in three rephasing pathways and
three non-rephasing pathways [30, 34] representing ground state bleaching (GB),
stimulated emission (SE), and excited state absorption (ESA). In terms of the
dipole operators at distinct times, the rephasing pathways are given by

SGB;RPðT 3;T 2;T 1jp0; p1; p2; p3Þ ¼ þ iTr½bl�
p3
ðt3Þbl þ

p2
ðt2Þq0bl�

p0
ð0Þbl þ

p1
ðt1Þ� ð41Þ

SSE;RPðT3;T 2;T 1jp0; p1; p2; p3Þ ¼ þ iTr½bl�
p3
ðt3Þbl þ

p1
ðt1Þq0bl�

p0
ð0Þbl þ

p2
ðt2Þ� ð42Þ

SESA;RPðT 3;T 2;T1jp0; p1; p2; p3Þ ¼ �iTr½bl�
p3
ðt3Þbl þ

p2
ðt2Þbl þ

p1
ðt1Þq0bl�

p0
ð0Þ�; ð43Þ

and the non-rephasing pathways are given by

SGB;NRðT 3;T 2;T 1jp0; p1; p2; p3Þ ¼ þ iTr½bl�
p3
ðt3Þbl þ

p2
ðt2Þbl�

p1
ðt1Þbl þ

p0
ð0Þq0� ð44Þ

SSE;NRðT 3;T 2;T 1jp0; p1; p2; p3Þ ¼ þ iTr½bl�
p3
ðt3Þbl þ

p0
ð0Þq0bl�

p1
ðt1Þbl þ

p2
ðt2Þ� ð45Þ

SESA;NRðT 3;T 2;T 1jp0; p1; p2; p3Þ ¼ �iTr½bl�
p3
ðt3Þbl þ

p2
ðt2Þbl þ

p0
ð0Þq0bl�

p1
ðt1Þ�: ð46Þ

When working with a sequence of laser pulses with different relative polarizations,
it is necessary to adjust the electric field polarizations p0, p1, p2, and p3
accordingly. The ESA pathways access the two-exciton manifold [31, 32], which
increases the number of states to propagate from 1þN sites to N states ¼
1þN sites þN sitesðN sites � 1Þ=2 and increases the time required to compute the
commutator and the bath interactions considerably. To obtain time- and
frequency-resolved two-dimensional spectra for a specific delay time T2 ¼ ðt2 � t1Þ,
the third-order response function

SðT 3 ¼ t3 � t2;T 2;T 1 ¼ t1Þ ¼ SRP þ SNR ð47Þ
is computed separately for the three rephasing (RP) and non-rephasing (NR) path-
ways. The resulting spectra are then Fourier transformed with different signs of x1,
according to:

SRPðx3;T 2;x1Þ ¼
Z 1

0
dT 1

Z 1

0
dT3e�iT1x1 þ iT3x3SRPðT 3;T 2;T 1Þ ð48Þ

SNRðx3;T 2;x1Þ ¼
Z 1

0
dT1

Z 1

0
dT 3eþ iT1x1 þ iT3x3SNRðT 3;T2;T1Þ: ð49Þ
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3.5 Ensemble Averages

3.5.1 Isotropic Average

In typical experiments, the ensemble of randomly oriented molecules is measured
with respect to the laser direction and polarization plane. For linear spec-
troscopy, which records the first-order response function, rotational averaging is
achieved by considering three representative electric fields along the Cartesian
unit vectors:

e1 ¼ f1, 0, 0g; e2 ¼ f0, 1, 0g; e3 ¼ f0, 0, 1g: ð50Þ
In two-dimensional spectra, rotational averaging becomes more involved due to the
four dipole interactions involved. For laser pulses that share the same polarization
plane, a set of ten representative electric field directions along the vertices of a
dodecahedron suffices [32].

However, for more complex polarization sequences, up to twenty-one electric
field combinations need to be considered. This tensorial averaging is implemented as
follows [35, 36]

hSðT 3;T 2;T 1Þirot ¼
X3
k¼1

X3
l¼1

X3
m¼1

X3
n¼1

CklmnSðT 3;T 2;T1jp0;k ; p1;l ; p2;m; p3;nÞ: ð51Þ

To perform the tensorial average, for each dipole interaction (i ¼ 0, 1, 2, 3) and each
pigment, a specific Cartesian component k (k ¼ 1, 2, 3) of the dipole moment is
selected:

bl þ
pi;k

¼
XN sites

a¼1

ek 	 dajaih0j ð52Þ

bl�
pi;k

¼
XN sites

a¼1

ek 	 daj0ihaj: ð53Þ

The factors Cklmn are determined by

Cklmn ¼ dkldmn 4ðf0 	 f 1Þðf2 	 f 3Þ � ðf0 	 f 2Þðf1 	 f 3Þ � ðf0 	 f 3Þðf1 	 f 2Þ½ �=30
þ dkmdln 4ðf 0 	 f2Þðf 1 	 f3Þ � ðf 0 	 f1Þðf 2 	 f3Þ � ðf 0 	 f3Þðf 1 	 f2Þ½ �=30
þ dkndlm 4ðf 0 	 f3Þðf 1 	 f2Þ � ðf 0 	 f1Þðf 2 	 f3Þ � ðf 0 	 f2Þðf 1 	 f3Þ½ �=30;

ð54Þ

where f i represents the unit vector of the electric field perpendicular to the
propagation direction of the ith pulse pi. Symmetry considerations reduce the
34 ¼ 81 Cklmn terms to a maximum of 21 non-zero terms, which are further
reduced for specific polarization sequences. The Cklmn values for two exemplary
polarization sequences, all parallel (all pulses have the same polarization) and
double-crossed (each pair of pulses has the polarization rotated by 90
), are listed
in table 3.1.
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3.5.2 Static Disorder

A second type of averaging is required to account for variations in site energies in the
molecular ensemble, for instance, caused by slow movement/bending of the complex.
The resulting variations of the site energies (inter-site couplings are typically less
affected by those modes) require to an average of various realizations of the excitonic
Hamiltonian. This variation is termed static disorder. In the simplest case, for the
absorption spectra of a monomeric unit, this leads to an additional broadening of
the spectral line shapes in addition to the thermal line shape function discussed
before. For more complex spectra, such as 2DES, the inclusion of static disorder has
non-trivial effects on various locations of the 2DES [37].

3.6 Using HEOM for Quantum Dynamics
The hierarchical equations of motions require the propagation of a large (up to
106) number of interlinked matrices in parallel. A computationally efficient HEOM
implementation [7, 10, 27, 38] distributes the computations across many threads
and benefits from many-core processors (either many-core CPUs or GPUs).
The distributed memory DM-HEOM [7, 10] tool provides a comprehensive set of
applications to compute the time evolution of a density matrix, linear spectra,
and two-dimensional spectra. DM-HEOM is distributed as C++/OpenCL
source code [39]. A ready-to-run implementation of HEOM using GPUs is
provided on the https://nanohub.org simulation platform [9].

TAB. 3.1 – Cklmn coefficients for isotropic averaging of the h0
; 0
; 0
; 0
i and
h45
;�45
; 90
; 0
i polarization sequences.

ðk; l;m; nÞ Cklmn h0
; 0
; 0
; 0
i
ð1,1; 2,2Þ, ð1,1; 3,3Þ, ð1,2; 1,2Þ, ð1,2; 2,1Þ, ð1,3; 1,3Þ, ð1,3; 3,1Þ þ 1

15
ð2,1; 1,2Þ, ð2,1; 2,1Þ, ð2,2; 1,1Þ, ð2,2; 3,3Þ, ð2,3; 2,3Þ, ð2,3; 3,2Þ þ 1

15
ð3,1; 1,3Þ, ð3,1; 3,1Þ, ð3,2; 2,3Þ, ð3,2; 3,2Þ, ð3,3; 1,1Þ, ð3,3; 2,2Þ þ 1

15
ð1,1; 1,1Þ, ð2,2; 2,2Þ, ð3,3; 3,3Þ þ 1

5

ðk; l;m; nÞ Cklmn h45
;�45
; 90
; 0
i
ð1,2; 1,2Þ, ð1,2; 2,1Þ, ð1,3; 1,3Þ þ 1

12
,� 1

12
,þ 1

12
ð1,3; 3,1Þ, ð2,1; 1,2Þ, ð2,1; 2,1Þ � 1

12
,� 1

12
,þ 1

12
ð2,3; 2,3Þ, ð2,3; 3,2Þ, ð3,1; 1,3Þ þ 1

12
,� 1

12
,� 1

12
ð3,1; 3,1Þ, ð3,2; 2,3Þ, ð3,2; 3,2Þ þ 1

12
,� 1

12
,þ 1

12
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3.6.1 Populations and Coherences

The spectral density sets the timescale for the duration of excitonic coherences, as
discussed in section 3.3.3. Using HEOM, the conditions for long-lived electronic
coherences in the FMO photosynthetic complex have been investigated in [8, 40]. To
compute the overall efficiency and transport-time through a network of coupled
chromophores requires to additionally consider loss channels, i.e. due to radiative
decay of the excitons. This has been explored in [6, 27] and shows that from the
theoretical models, an intermediate coupling to the bath is preferred to facilitate a
the fastest thermalization (see also section 3.3.3).

3.6.2 Two-Dimensional Spectra

The simulation of 2DES signals using equations (41)–(46) and HEOM proceeds by
computing the time evolution of the reduced density matrix and the application of
the dipole operator at the specific times t1; t2; and t3. Initially the reduced density
matrix at t ¼ 0 represents a populated ground state qð0Þ ¼ r0ð0Þ ¼ j0ih0j. In
addition to the exciton Hamiltonian, the relative transition dipole strengths and
directions are also required as input parameters. For the FMO complex, the tran-
sition dipoles are directed along the nitrogen atoms NB-ND in the molecular
structure (PDB:3ENI) [41]. See also table 1 in [7] and figure 3.4.

Typical 2DES of the Fenna-Matthews-Olson (FMO) complex for the
h0
; 0
; 0
; 0
i polarization sequence computed using the DM-HEOM method [7, 10]
are presented in figure 3.5, upper row. The Hamiltonian and dipole directions used

FIG. 3.4 – Monomeric unit of the FMO complex with 7 bacteriochlorophylls with arrows
indicating the directions of the transition dipoles. The protein scaffold keeping the bacteri-
ochlorophylls in place is not shown.
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in the computations can be found in table 1 and equation (77) of Kramer et al. [7],
respectively. The parameter file for DM-HEOM [7, 10, 39] to generate the upper
right panel reads:

[program]
task=two_dimensional_spectra
observations={(matrix_trace_two_dimensional_spectra,

fmo_0000_400fs.dat)}
observe_steps=2

[filtering]
strategy=none
first_layer=−1

[solver]
stepper_type=rk_rk4
step_size=4.e−15
steps=2
track_flows=false
flow_filename=

[system]
ado_depth=3
sites=7
hamiltonian={{1410.000, −87.70000, 5.500000, −5.900000,

6.700000, −13.70000, −9.900000}, {−87.70000, 1530.000,
30.80000, 8.200000, 0.7000000, 11.80000, 4.300000},
{5.500000, 30.80000, 1210.000, −53.50000, −2.200000,
−9.600000, 6.000000}, {−5.900000, 8.200000, −53.50000,
1320.000, −70.70000, −17.00000, −63.30000}, {6.700000,
0.7000000, −2.200000, −70.70000, 1480.000, 81.10000,
−1.300000}, {−13.70000, 11.80000, −9.600000, −17.00000,
81.10000, 1630.000, 39.70000}, {−9.900000, 4.300000,
6.000000, −63.30000, −1.300000, 39.70000, 1440.000}}

[baths]
max_per_site=1
number=7
coupling={{0}, {1}, {2}, {3}, {4}, {5}, {6}}
lambda={35, 35, 35, 35, 35, 35, 35}
invnu={50, 50, 50, 50, 50, 50, 50}
Omega={0, 0, 0, 0, 0, 0, 0}
matsubaras=1
temperature=100

[dipole]
Directions={{0.74101, 0.56060, 0.36964},

{0.85714, −0.50378, 0.10733}, {0.19712, −0.95741, 0.21097},
{0.79924,0.53357,0.27661}, {0.73693, −0.65576, −0.16406},
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{0.13502, 0.87922, −0.45689}, {0.49511, 0.70834, 0.50310}}
centers={{−0.7410, −0.5606, −0.3696}, {−0.8571, 0.5038, −0.1073},

{−0.1971, 0.9574, −0.2110}, {−0.7992, −0.5336, −0.2766},
{−0.7369, 0.6558, 0.1641}, {−0.1350, −0.8792, 0.4569},
{−0.4951, −0.7083, −0.5031}}

strengths={1,1,1,1,1,1,1}
tensor_prefactors={0.2, 0.066667, 0.066667, 0.066667, 0.066667,

0.066667, 0.066667, 0.066667, 0.066667, 0.066667,
0.2, 0.066667, 0.066667, 0.066667, 0.066667, 0.066667,
0.066667, 0.066667, 0.066667, 0.066667, 0.2}

tensor_components={{0,0,0,0}, {0,0,1,1}, {0,0,2,2}, {0,1,0,1},
{0,1,1,0}, {0,2,0,2}, {0,2,2,0}, {1,0,0,1}, {1,0,1,0},
{1,1,0,0}, {1,1,1,1}, {1,1,2,2}, {1,2,1,2}, {1,2,2,1},
{2,0,0,2}, {2,0,2,0}, {2,1,1,2}, {2,1,2,1}, {2,2,0,0},
{2,2,1,1}, {2,2,2,2}}

[spectra]
steps_t_1=200
steps_t_3=200
steps_t_delay=100
pathways={gbnr,senr,esanr,gbrp,serp,esarp}

FIG. 3.5 – 2DES (sum of rephasing and non-rephasing pathways) for the FMO complex
computed with DM-HEOM from left panels to right panels for increasing delay time T2 ¼
f40, 400, 800g fs at temperature 100 K. Upper row: all parallel polarization h0
; 0
; 0
; 0
i.
Lower row: double-crossed polarization h45
;�45
; 90
; 0
i. Rotational averaging is
performed, static disorder is not considered.
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The resulting file contains the third-order nonlinear response function SðT 1;T 2;T 3Þ
for T 1;T 3 ¼ 0. . .200� 4� 10�15 s and delay time T 2 ¼ 100� 4� 10�15 s (all steps
are measured in multiples of step_size). In this example, a total of 6� 21 spectra
are computed to perform the isotropic ensemble average for all six rephasing and
non-rephasing pathways. The energy transfer process shown is revealed from left to
right in the upper panels in figure 3.5 by the appearance of off-diagonal peaks below
the diagonal line: a lower cross-peak implies a reduced probe (de-excitation) energy
as compared to the initial excitation energy: energy has been dissipated to the
vibrational modes. The dissipation drives a directional energy flow towards thermal
equilibrium, which implies a higher occupation of lower-lying energy states.

This energy transfer is clearly observable in experimental measurements per-
formed by Brixner et al. [42], as well as the HEOM computations by Hein et al. [32]
and Kreisbeck et al. [8]. Computed spectra can be separated into contributions
from ground state bleaching, stimulated emission, and excited state absorption
(see figure 3 in [43] for an illustrative example). The energy flow is not reflected by
the ground state bleaching signal, since it requires a population transfer.

In addition to energy decay, Engel et al. [44] and Panitchayangkoon et al. [45]
reported the presence of oscillatory amplitudes in the 2DES signals. These oscilla-
tions are attributed to a combination of ground-state bleach-induced vibrational
modes and electronic coherences. In computed 2DES, these contributions to oscil-
latory signals can be cleanly separated by a short-time Fourier transform [40]. The
electronic coherences are expected to decay on a timescale determined by the
combined dephasing and relaxation decoherence time [8] of the two eigenenergies at
the location of the cross-peak. In addition to the electronic coherences vibrational
peaks in the spectral density are present in 2DES signals, in particular in the ground
state bleaching part. This contribution can persist longer than the electronic
coherences, and overshadow them [8, 40]. The pure dephasing time is influenced by
the slope of the spectral density J ðxÞ towards zero frequency, while the relaxation
rate is determined by the value of the spectral density at the eigenenergies. Both
factors contribute to the decay time, as shown in the supplementary information of
Kreisbeck et al. [8] and figure 3.2.

The reorganization energy km, which is related to the spectral density JmðxÞ of
each pigment m, manifests as a downward shift of the diagonal and cross peaks as
the delay increases. This shift is consistent with the reorganization energies of
approximately 40 cm−1 assigned to the bacteriochlorophylls in the FMO complex by
Adolphs et al. [4].

Experimental data for different polarization sequences for the FMO complex is
presented in [46, 47] and requires corresponding theoretical models for interpreta-
tion. While in the all parallel polarization sequence (h0
; 0
; 0
; 0
i), all isotropic
averaging coefficients are positive numbers, for other polarizations cancellation
effects due to alternating signs (see table 3.1) occur. These lead to additional
structures in the 2DES [37], and figure 3.5, lower row.

To facilitate analysis and for studying various static disorder configuration, an
efficient storage and interpolation of 2DES results is useful. A highly compressed
storage uses custom neural networks [48]. Once the neural network has been trained
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with an extensive data set of exemplary computations, it generates a 2DES for a
specific set of site energies of the Hamiltonian. This approach has been used to
simulate 2DES data sets for differently prescribed static disorder distributions for
the FMO complex [37].

3.7 Summary
The open quantum system approach provides the required tools for tracking the
energy flow in molecular complexes. Only for small or large couplings, simplified
descriptions of the density matrix are available, while in general, more accurate
quantum propagation methods are required, such as HEOM. These methods come
with an additional computational overhead, which requires to use highly optimized
numerical algorithms. Compared to the numerical effort to obtain a linear absorp-
tion spectra, 2DES calculations increase the run times by � 104 due to the com-
plexity of ensemble averaging and the need to span three-time intervals. The
interpretation and analysis of 2DES needs theoretical models to assess the impact of
the different pathways and ensemble averages.
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4.1 Introduction
Ultrafast optical spectroscopy uses multiple short laser pulses to follow
photo-induced dynamics with both high spectral and temporal resolution across
time scales. In recent decades, the detection of resonant coherent nonlinear signals
on a dark background via incoherent observables has become popular in so-called
action-detected spectroscopy. Modern nonlinear optical spectroscopy thus includes
multi-dimensional variants in various geometries and realizations, as well as the
detection of both coherent and incoherent signals. There is a close correspondence
between the nonlinear spectra detected by means of nonlinear polarization and by
incoherent observables such as fluorescence. Nevertheless, there are profound
differences in both practical and fundamental nature, to an extent that makes the
techniques partially complementary. In this tutorial, we introduce coherently and
action-detected nonlinear spectroscopy experiments on the same footing and
directly compare and contrast them both theoretically and in terms of experi-
mental data.

First, we briefly formulate a description of nonlinear spectroscopy using per-
turbation theory in density matrix formalism, which leads to response functions that
accommodate both coherence- and population-based observables. We demonstrate
how the state of the perturbed system inherits the phase of the perturbing fields,
providing a handle for the isolation of the desired nonlinear signal. We proceed with
a direct comparison of the fluorescence- and polarization-based approach on a dimer
of squaraine molecules. Going up through the nonlinear orders, we discuss linear
absorption, four-wave mixing pump–probe and two-dimensional electronic
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spectroscopy (2DES), and six-wave mixing 2DES spectroscopy. On the example of
the dimers, we point out generic similarities and differences between the approaches.
We conclude by generalizing and summarizing the results, contrasting the methods,
and emphasizing their complementarity.

4.2 Nonlinear Spectroscopy as Measurement
of Perturbation Theory

In most cases, laboratory experiments are conducted on volume samples, e.g.,
solutions with the studied molecular complexes, solid-state samples with grown
nanocrystals, etc. The microscopic responses of many microscopic systems then add
up to form the overall macroscopic signal.

4.2.1 Microscopic Interaction with Light

At the microscopic level, the electronic system of study interacts with light that
perturbs it. We will describe the interaction in the time domain, which is natural to
follow the system dynamics. In a quantum description, the dynamics are described
by the Liouville–von Neumann equation

dq
dt

¼ � i
�h
½H ; q� � i

�h
½H int; q�: ð1Þ

Here, the system state (which does not need to be a pure quantum–mechanical
state) is represented by its density matrix q. The dynamics of the system are
generated by its Hamiltonian H and the interaction with light is included in H int.
Concerning the form of H int, for most applications and certainly for the purpose of
this tutorial, it is customary to make some approximations. First, we will use the
dipole approximation, applicable for systems smaller than the wavelength of the
excitation light (i.e., not larger than tens of nanometers). In the dipole approxi-
mation, the interaction Hamiltonian is H int ¼ �l � EðtÞ, where l is the dipole
moment operator and EðtÞ is the electric field. Note that both l and E are vectors,
and the interaction is proportional to the projection of the dipole moment to the
light polarization. Throughout this lecture, we will suppress the polarization
dependence wherever needed, occasionally mentioning it where important. Mathe-
matically, this can be expressed by considering l ¼ l!� e!, where e! is the
polarization vector of the electric field. Second, we will employ semiclassical
approximation and treat the electric field classically. Quantum optics is a fascinating
field that has only recently found proposed applications in spectroscopy with
quantum light [1, 2]. However, the experiments are challenging and presently, well
behind the theory [3]. In our formulation, we will thus put the EðtÞ field out of the
commutator in equation (1):

dq
dt

¼ � i
�h
½H ; q� þ i

�h
½l; q�EðtÞ: ð2Þ
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4.2.2 Perturbative Expansion

An important condition for the interpretation of experiments in terms of single- or
n-particle excitations is the validity of perturbation theory in E. In that case,
equation (2) can be expanded iteratively in the orders of E, getting [4]

qðnÞðtÞ ¼ i
�h

� �nZ 1

0
dtn

Z 1

0
dtn�1. . .

Z
dt1UðtnÞ l; . . . l;Uðt1Þ l; qeq½ �½ �½ �

� Eðt � tnÞEðt � tn � tn�1Þ. . .Eðt � tn � tn�1 � . . .� t1Þ:
ð3Þ

As seen from equation (3), the n-th order density matrix consists of a term that
contains n sequential interactions with the electric field (the commutators with the
dipole moment), between which the system propagates freely with propagator UðtÞ,
a superoperator that acts on the whole expression on its right side, evolving both its
bra and ket side as in UðtÞAB ¼ U ðtÞABU yðtÞ with U ðtÞ the standard Hilbert space
propagator. The zeroth order is the equilibirum density matrix qeq, the first-order
term includes a single commutator propagating in time t1, etc. The key point of this
lecture is that the perturbative expansion in qðnÞ can be precisely followed and
controlled by using a sequence of laser pulses of defined parameters. A laser pulse
with central frequency x0 at position r in time t can be described as

EpðtÞ ¼ E þ
p ðtÞþE�

p ðtÞ ¼ ApðtÞe�ix0tþ ikp�r þ i/p þA�
pðtÞeix0t�ikp�r�i/p : ð4Þ

Here, kp is the wave vector and /p is the phase of the pulse, and ApðtÞ the slowly
varying complex envelope that contains the pulse shape and chirp. The pulse
chirp is the frequency-dependent phase of the pulse, which results in different
wavelengths arriving at different times, as described in more detail in chapter 1.
For future reference, we also separated the electric field into positive frequency
(E þ ðtÞ / e�ix0tÞ and negative frequency (E�ðtÞ / eþ ix0tÞ parts. In a time-resolved
optical spectroscopy experiment, the E field consists of a sequence of several
pulses,

EðtÞ ¼
XN pulses

p¼1

EpðtÞ ð5Þ

Plugging such pulse train into the perturbative solution equation (3), we get all the
possible combinations of interaction:

qðnÞðtÞ ¼
X

p1p2...pn

i
�h

� �nZ 1

0
dtn

Z 1

0
dtn�1. . .

Z
dt1UðtnÞ l; . . . l;Uðt1Þ l; qeq½ �½ �½ �:

Epn ðt � tnÞEpn�1
ðt � tn � tn�1Þ. . .Ep1ðt � tn � tn�1. . .� t1Þ ð6Þ

Crucially, the state of the system (i.e., the total density matrix), obtains imprinted
the phase of each interacting pulse. This phase dependence can then be used to
isolate the individual contributions to the total nonlinear signal.
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In order to track the perturbed system along its pathway through the Liouville
space, it is necessary to keep track of both the bra and ket interactions, including the
appropriate parts of the electric field, and of the system evolution. This can be very
conveniently achieved by double-sided Feynman diagrams (DSFD) introduced by
Shaul Mukamel [4]. To illustrate how this works, let us consider a particular path-
way (as given by the commutator sequence), say

qð3ÞðtÞ ¼ i
�h

� �3Z 1

0
dt3

Z 1

0
dt2

Z
dt1Uðt3Þ Uðt2Þ lUðt1Þ jgihgjlf gf glf gE3ðt � t3Þ

� E2ðt � t3 � t2ÞE1ðt � t3 � t2 � t1Þ:
ð7Þ

As determined by the sides form which the dipole moments act in the commutators,
this pathway goes as qgg ! qge

t1! qge ! qee
t2! qee ! qeg

t3! qeg . It is depicted in the
form of the double-sided Feynman diagram in figure 4.1.

Now, without going into details of the evolution, from the commutator with the
system Hamiltonian in equation (2), we can see that the elements of the density
matrix oscillate as qnmðtÞ / e�ixnmt . In particular, qegðtÞ / e�ixeg t oscillates at the
optical frequency of the (quasi-resonant) transition, and so on. Our pathway will
thus have an oscillatory factor of e�ixeg t3�t1ð Þ (because the phase rotates in different
directions in t1 and t3, this is called a rephasing pathway). The electric fields on the
right-hand side consist of positive and negative frequency terms,
EðtÞ ¼ E þ ðtÞþE�ðtÞ, where E þ ðtÞ / e�ix0tþ ik�r þ i/ and E�ðtÞ ¼ E þ ðtÞð Þ�: As we
integrate over the time t1; . . .; tn, there will be terms that oscillate slowly at a fre-
quency difference xeg � x0

� �
, and that oscillate rapidly at frequency sum xeg þx

� �
.

Unless we have sub-cycle or very off-resonant pulses, the rapidly oscillating terms
cancel out and can be neglected, which is called the rotating wave approximation
(RWA). In our pathway, this will leave

qð3ÞðtÞ ¼ i
�h

� �3
�1ð Þ2

Z 1

0
dt3

Z 1

0
dt2

Z
dt1Uðt3Þ Uðt2Þ lUðt1Þ jgihgjlf gf glf g

� E þ
3 ðt � t3ÞE þ

2 ðt � t3 � t2ÞE�
1 ðt � t3 � t2 � t1Þ:

ð8Þ

To keep track of the interactions and corresponding parts of the E field, the DSFDs
are defined by a set of rules that allow direct construction of the response pathway

FIG. 4.1 – Example of a double-sided Feynman diagram of the response pathway from
equations (7) and (8).
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from the diagrams. Interactions that excite the system are represented by incoming
arrows. When exciting from the right (bra side) or de-exciting from the left (ket
side), take E� part of the field – this is marked by an arrow going from right to left,
and for the opposite cases (left to right arrow), take E þ. A heritage of the
commutators with the interaction Hamiltonian, there is an overall minus sign for
each interaction from the right. These diagrams can be used not only for
spectroscopy, but for any type of perturbation theory on the density matrix. For
details, we refer the reader to the book [4]. Using the rules, we can immediately read
off that the signal will have a phase signature �k1 þ k2 þ k3 in terms of wave vectors,
or �/1 þ/2 þ/3 in terms of pulse phases, and an overall plus sign.

After the n interactions, the system is left to evolve and produce a signal that can
be measured. The type of the signal depends on the specific type of spectroscopy.
Nevertheless, the expectation value of any observable O can be evaluated using the
known system density matrix as

hOðtÞi ¼ Tr OqðtÞf g ¼
X1
n¼0

Tr OqðnÞðtÞ
n o

¼
X
n

hOðtÞiðnÞ: ð9Þ

We will consider two general types of observables, classified by the element of the
density matrix they derive from. We have coherence-based observables, such as
polarization, and population-based observables, such as fluorescence. In any case,
the local, microscopic nonlinear signals have to be added to form a macroscopically
observable signal.

4.2.3 Production of the Overall Macroscopic Signal

4.2.3.1 Polarization

In order to produce a macroscopic signal, the microscopic response from all the
perturbed systems has to add up. In amulti-wavemixing experiment, the polarization
of each system adds up coherently to a macroscopic overall polarization that gives
rise to an additional signal field. The local microscopic polarization is calculated as

Pðr ; tÞ ¼ Tr lqðtÞf g; ð10Þ

i.e., the observable is the dipole moment operator [4]. The local nonlinear
polarizations add up to from the macroscopic signal field propagating through the
sample according to the wave equation (from Maxwell equations),

�r2Eðr ; tÞþ n2

c2
@2Eðr ; tÞ

@t2
¼ � 1

e0c2
@2Pðr ; tÞ

@t2
: ð11Þ

Here, the linear polarization has already been taken into account by a (complex)
refractive index n. The nonlinear polarization is, according to the equations above,
expanded perturbatively in the orders of interaction with the electric field as

Pðr ; tÞ ¼
X
n[ 1

PðnÞðr; tÞ ¼
X
n[ 1

X
s

PðnÞ
s ðtÞeiksr�ixs tþ i/s þ c:c: ð12Þ
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Here, s denotes the particular signal, distinguished by its frequency
xs ¼ �x1 � x2. . .� xn, wave vector ks ¼ �k1 � k2. . .� kn (vector sum) and phase
/s ¼ �/1 � /2. . .� /n, c.c. denotes complex conjugate.

Assuming a slowly varying envelope, we can solve equation (11) along the
propagation through the sample of thickness l, for details, see the book by Mukamel
[4]. We obtain

Esðl; tÞ ¼ i
2p

nðxsÞcxsle
i ks�k 0sð Þl=2sinc ks � k 0s

� �
l=2

� �
PsðtÞeik 0s l�ixs tþ i/s þ c:c: ð13Þ

A reader familiar with nonlinear optics (see, e.g., the book by Robert Boyd [5])
immediately recognizes the phase matching in the approximation of a non-depleted
pump (see chapter 1). For reasonably large interaction length l, the sinc func-
tion acts as a delta function and selects a signal wave vector very close to
the combination of the wave vectors of the pulses so that we can set k 0s ¼ ks.
We thus have

EsðtÞ / i
xs

nðxsÞc PsðtÞeiksl�ixs tþ i/s þ c:c: ð14Þ

The macroscopic electric field can, in principle, be detected, but it is very weak and,
moreover, we are interested in its phase as well. It is thus more customary to use a
so-called heterodyne detection, where the signal field is mixed with a reference field
(which can be an additional pulse or one of the original pulses). This field is
traditionally called a local oscillator, ELO, and the detected intensity is

I detðtÞ / jEsðtÞþELOj2 ¼ I sðtÞþ I LOðtÞþ 2Re E�
LOðtÞE þ

s ðtÞ� �
: ð15Þ

The signal field itself is very weak and can be neglected in comparison to the other
two terms. The intensity of the LO can be subtracted in a differential measurement,
leaving us with the last phase-sensitive heterodyne measurement. As is apparent
from this construction, with heterodyne detection of the macroscopic signal field, we
have direct access to the complex nonlinear polarization field. We will discuss the
quantity

EðnÞ
s / i

Z 1

�1
dtn

Z 1

�1
dtn�1. . .

Z 1

�1
dt1S

ðnÞ
cohðtn; . . .; t1ÞEðt � tnÞ

� Eðt � tn � tn�1Þ. . .Eðt � tn � tn�1 � . . .� t1Þ;
ð16Þ

where

S ðnÞ
cohðtn; . . .; t1Þ ¼

i
�h

� �n
hðtnÞ. . .hðt1ÞTr lUðtnÞ l; . . . l;Uðt1Þ l; qeq½ �½ �½ �f g: ð17Þ

Since the dipole moment operator is off-diagonal, the trace in equation (10) selects
elements of the density matrix off-diagonal in the electronic state manifolds. That is
why the polarization is sometimes called a coherence-based signal. This terminology is
somewhat confusing since it does not immediately correspond to the coherence
properties of the generated field. At this point, we note that when the polarization of
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light is considered, the response function gains an index for each of the dipole
moments, and the indices sum with the corresponding components of the electric
fields: Sijkl...EjEkEl . . .The pulse polarization thus allows further selection of response
pathways. This dependence is exploited in a range of applications, from anisotropy
spectra to cross-peak-specific 2DES. A detailed description of polarization control is,
however, out of the scope of this lecture, and we refer the reader to, e.g., the book by
Minhaeng Cho [6].

4.2.3.2 Fluorescence

Apart from the coherent polarization, other observables can be measured in non-
linear spectroscopy. A prominent, popular example is spontaneous emission from the
excited state, also termed luminescence or fluorescence, dependent on the particular
research field. The fluorescence from the excited state jii is proportional to its
population hijqðtÞjii by a radiative decay rate Ci:

FLðtÞ ¼ Tr
X

i2excited
jiiCihijqðtÞ

( )
: ð18Þ

Explicitly, the nonlinear fluorescence of the n-th order can be written as

FLðnÞðtÞ ¼
Z 1

�1
dtn

Z 1

�1
dtn�1. . .

Z 1

�1
dt1S

ðnÞ
incohðtn; . . .; t1Þ

� Eðt � tnÞEðt � tn � tn�1Þ. . .Eðt � tn�1 � . . .� t1Þ;
ð19Þ

where the incoherent response function now reads

S ðnÞ
incohðtn; . . .; t1Þ ¼

i
�h

� �n

hðtnÞ. . .hðt1ÞTr
X

i2excited
jiiCihijUðtnÞ l; . . . l;Uðt1Þ l;qeq½ �½ �½ �

( )
:

ð20Þ
Being an incoherent observable, the fluorescence from the (detected part of) the
interaction region of the sample is simply added up to form the total signal. Since the
nonlinear fluorescence signal depends only on the relative pulse phase differences,
the spatial extent of the emissive region is not of crucial importance. This applies to
the dependence on the inter-pulse delays as well, with the exception of the emission
time, which starts counting from the interaction with the last pulse. While this
moment can be different for different parts of the sample, the practical path length
difference is on the order of tens of micrometers, corresponding to about 100 fs
overall emission time smearing. Since the typical emission times are on the
picosecond to nanosecond timescale and the emission is, in most cases,
time-integrated anyway, the spatial extent of the signal is thus of no importance.
As a side note, this would change if thicker samples (mm and more) were used and
the emission was time-gated with ps resolution, which is possible with current
technology. Since the emission comes from the excited-state populations (diagonal
elements), this type of spectroscopy is sometimes called population-based.
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4.2.3.3 Polarization vs. Fluorescence Response

The expressions for the nonlinear polarization signal, equation (16), and nonlinear
fluorescence, equation (19), can be directly compared. In both cases, the signal
depends on an n-th order response function to the perturbation by n interactions
with the electric field. To find the corresponding system response, we have to look for
the length of the pathways the system takes through the Liouville space. These are
determined by the number of dipole moment operators present in the expressions for
the response function, equations (17) and (20). In the coherent nonlinear polariza-
tion response (17), there is the additional dipole moment from the polarization that
does not come from interaction with the incoming field. Thus, to have the same
Liouville-space length, one needs one more interaction with light in the incoherent

response (20). In an nþ 1 – wave mixing experiment, we therefore have S ðnÞ
coh response

for the polarization (n waves in, one wave out), and S ðnþ 1Þ
incoh response for the

fluorescence (nþ 1 waves in, fluorescence out). The structure of the response func-
tions is very similar and they can indeed even be expressed by a generalized response
function [7]. The fluorescence-detected response has, however, several additional
features that lead to some more or less profound differences. First, there is the
additional commutator with the dipole moment. This leads to the presence of an
additional (ESA-type) pathway in the response, with an interesting interpretation
that includes multiple excited states for nonlinear fluorescence. Second, there are the
parts connected to the emission of the incoherent signal, namely, the weighting of the
states by their emissive rate Ci and the time evolution UðtnÞ during signal emission.
Under emission-time integration, this leads to the weighting of the response pathways
by the emission quantum yield of the end states (quantum yield means what fraction
of the excited population is radiated in the form of spontaneous emission). In addi-
tion, the weighting can be controlled by time-gating the detected signal [8].

4.2.4 Signal Separation by Phase and Wave Vector

After the interaction with the laser pulses, the system is in a state that can be
described as

qðtÞ ¼
X1
n¼0

qðnÞðtÞ: ð21Þ

Importantly, this state is a superposition of the system that does not interact with the
pulses at all (n ¼ 0), interacts once with one of the pulses, etc. The observables are
determined by this state via equation (9). Since this is linear in the density matrix,
the perturbative expansion translates into a combination of nonlinear signals.

A macroscopic polarization gives rise to a propagating electric field Es in the
sample,

EsðtÞ ¼
X
n

EðnÞ
s ðtÞ; ð22Þ
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with EðnÞ
s ðtÞ described in equation (16). At the same time, all excited parts of the

sample emit linear and nonlinear fluorescence,

FLðtÞ ¼
X
n

FLðnÞðtÞ; ð23Þ

with FLðnÞðtÞ described in equation (19).
The task of the experimenter is to isolate the wanted nonlinear response of the

particular order and particular type from the total signal, which is practically always
dominated by the linear response. To this end, the dependence of the signal on the
pulse phase and/or wave vectors is utilized.

Both in population-based and coherence-based techniques, the nonlinear signal
generated at each spatial point in the sample inherits the relative phase combination
of the interacting pulses, see equations (14), (19). Specifically, each interaction with
a pulse p at position r0 brings a factor of � kp � r0 þ/p

� �
. In the case of the nonlinear

polarization, the signal constructively adds up along the phase-matching wave
vector combinations (see equation (13)). In this way, the sample performs the
(partial) signal separation by itself. While the n-th order nonlinear signal contains
all combinations of n interactions with the interacting pulses, these will end up at
different positions in the phase space (or the k space). The different k vectors get
separated spatially by signal propagation after the sample, so they can be easily
isolated. For incoherent observables such as fluorescence, the contributions have to
be separated manually utilizing their phase dependence. By varying the pulse phases
continuously (phase modulation) or in discrete steps (phase cycling), the phase
space points can be isolated in Fourier space by a Fourier transformation. Phase
cycling (or, in principle, even modulation) can be used in coherently detected
spectroscopy as well, in combination with phase matching, for additional signal
selection. We will elaborate on the phase cycling approach in the examples below.

4.2.4.1 Problem of Higher-Order Nonlinearities

A problem of the signal separation by the phase signature is that for each phase
/s ¼ a/1 þ b/2 þ . . ., there exists a higher-order contribution with two more inter-
actions with the pulses with the same phase, namely /ho ¼ /s þ/i � /i, where /i is
the phase obtained by an interaction with any of the pulses. Since this higher-order
signal has precisely the same phase signature as the desired lower-nonlinearity one, it
cannot be separated by phase cycling or phase matching. Under specific circum-
stances, one can, however, count combinatorically the number of such contributing
pathways and determine the relative contribution [9].

4.3 Wave Mixing on a Heterodimer
So far, our formulation has been completely general, not restricted to any particular
system, experimental geometry, or studied system. In the following, we demonstrate
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the coherence- and population-based spectroscopy side by side on a dimer of coupled
squaraine molecules.

4.3.1 Squaraine Dimers with Increasing Coupling

The basic properties of the squaraine dimers are introduced in figure 4.2. They
consist of squaraine A and squaraine B molecules (figure 4.2D), linked by a spacer of
increasing length. Dissolved in toluene, these dimers assume an almost linear
arrangement of their transition dipoles [11] so that we do not need to consider the
polarization dependence of the orientationally averaged response. The energy gap
DE between the transitions at the two monomers is about 1300 cm−1. Due to the
electronic coupling between the monomers, the excitons become partially deloca-
lized between the monomers. As apparent from the absorption spectrum in
figure 4.2A, there is a relatively strong (Huang–Rhys factor about 0.15) vibrational
mode at 1220 cm−1, quasi-resonant with the energy gap between the monomers (see,
e.g., the small peak on the dSQAB-3 lineshape around 14 950 cm−1). This will lead
to some vibronic mixing effects [12, 13].

However, for the purpose of demonstration, we will explicitly treat the electronic
states only and keep all vibrational modes in the environmental bath, including this
underdamped mode and the quasi-continuum of the overdamped solvent modes.

FIG. 4.2 – Squaraine dimers, adapted from Ref. [10]. A. Absorption spectra and laser spectra.
B. Electronic states in diabatic (left) and adiabatic (right) basis. C. Fluorescence emission
spectra. D. Dimer chemical structure describes the increasing length of the spacer.
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The spectroscopy of an electronic dimer is nicely described in, e.g., Ref. [14]. In the
electronic dimer, the state mixing is given by the mixing angle

tan2# ¼ 2J
DE

; ð24Þ

where J is the coupling. Due to the head-to-tail arrangement of the transition dipoles,
the coupling is indeed J-type, i.e., negative, and increases in magnitude from
−350 cm−1 for the longest spacer (dSQAB-3) to −450 cm−1 (dSQAB-2) to −650 cm−1

with the shortest spacer (dSQAB-1) [10, 11]. The increasing coupling is visible in the
absorption spectrum, the increasing splitting of the two peaks (arising predominantly
from the two monomers), and in the oscillator strength redistribution from the
higher-energy to the lower-energy peak. Note that, because of the large energy gap,
the oscillator strength redistribution is still not very large, in contrast to what
happens, e.g., in J aggregates with superradiant lowest states [14, 15]. In the emission
spectrum (figure 4.2C), the gradual shift to lower-energy states is visible as well. In
figure 4.2B, the state structure is shown, both on the site (diabatic) basis and on the
excitonic (adiabatic) basis. We have the ground state jgi, one-exciton states in
manifold j1i, and a two-exciton state together with some higher excited states of the
squaraine monomers in manifold j2i. From the kinematic perspective, we are
interested in the properties of the electronic states: the exciton delocalization, energies
of the optical transitions, and coupling of the delocalized excitons to the environ-
mental vibrations. From the dynamical perspective, there is energy transfer from the
higher-energy to the lower-energy single-exciton state, often studied in, e.g., solar
energy context. The energy transfer from the two-exciton state to the higher states,
followed by rapid internal conversion to the single-exciton states is together called
exciton–exciton annihilation since it leads to a loss of one excitation. In the squaraine
dimers, all of the mentioned relaxation processes occur on timescales of several tens of
femtoseconds. Further dynamics that can be explored but will be omitted in this
tutorial is vibronic beating, i.e., oscillatory dynamics of the electron-vibrational
wavepacket. The timescale for the oscillations and their decay is picoseconds. Finally,
we have radiative and non-radiative excited-state decay to the ground state, occurring
on a timescale of several nanoseconds.We will now look at how these properties can be
extracted with the help of coherence- and population-based spectroscopy.

4.3.2 Two-Wave Mixing: Linear Absorption

As an introduction, it is useful to first briefly consider common linear absorption
experiments. Which order of perturbation theory is that? In the language of our
description, it depends on what type of signal we detect. The most common way of
measuring absorption is to illuminate the sample with white light and compare how
much passes through (intensity I ðxÞ) compared to a reference without the sample
(intensity I 0), with the light spectrum dispersed by a spectrograph. That is, one
measures the absorption coefficient aðxÞ according to the Beer–Lambert law,

�log
I ðxÞ
I 0ðxÞ ¼ aðxÞd; ð25Þ
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where d is the thickness of the sample. In this case, we measure the linear
polarization of the sample (see figure 4.3 top).

According to equation (10),

Pð1ÞðtÞ ¼ Tr lqð1ÞðtÞ
n o

: ð26Þ

Together with equation (6), this reads

Pð1ÞðtÞ ¼
Z 1

�1
dt1S

ð1Þ
cohðt1ÞEðt � t1Þ ¼ i

�h

Z 1

0
dt1Tr lUðt1Þ l; qeq½ �f gEðt � t1Þ: ð27Þ

The commutator leads to two expressions that correspond to two Liouville-space
pathways. Since these two pathways are complex-conjugate of each other, we can
write

Pð1ÞðtÞ ¼ i
�h

Z 1

0
dt1Tr lUðt1Þlqeqf gE þ ðt � t1Þþ c:c: ð28Þ

Here, only the positive-frequency part of the E field survives since the other term
oscillates fast under the integration (RWA). The pathway before the c.c. is shown in
figure 4.3 top.

In order to obtain the absorption spectrum, the light has to be spectrally dis-
persed by, e.g., a prism or grating spectrometer. This corresponds to making a

FIG. 4.3 – Linear absorption. Top: Coherent polarization picture. Bottom: Fluorescence-
detected excitation picture. Spectra correspond to the dSQAB-3 dimer introduced in
figure 4.2. Left column: excitation pulses, sample response. Middle column: DSFD of the
corresponding response pathways. Right: obtained spectra. Note: the coherently detected
absorption (blue) was measured in transmission and already divided by the spectrally
dependent intensity. The fluorescence excitation spectrum (green) is still multiplied by the
laser spectrum (orange).
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Fourier transformation in t. Since the Fourier transform of a convolution is a mul-
tiplication, we have

Pð1ÞðxÞ ¼ S ð1Þ
cohðxÞEðxÞ: ð29Þ

Here we can directly compare with DðxÞ ¼ e0EðxÞþPðxÞ ¼ e0 1þ vðxÞð ÞEðxÞ ¼
e0erEðxÞ, identifying the linear response S ð1Þ

cohðxÞ with the susceptibility. In the
experiment, we compare the field on the spectrometer with minus without the
sample, isolating the second term. Since for complex refractive index
~n2 ¼ er ¼ 1þ vðxÞ, k ¼ ~n x

c , E
þ ðrÞ / eikr and absorption coefficient is defined from

I ¼ I 0e�aðxÞr , we can immediately relate the absorption coefficient to the imaginary

part of S ð1Þþ
coh ðxÞ;

aðxÞ ¼ x
nc

Im S ð1Þþ ðxÞ
n o

¼ x
�hnc

Re
Z 1

0
dt1eixt1 Tr lUðt1Þlqeqf gf g: ð30Þ

The coherent linear response pathway is shown in figure 4.3 top, with the emission of
coherent polarization with wave vector ks ¼ k1 indicated by a dashed arrow.

A second way to measure absorption is to excite the sample with light and
measure its spontaneous emission, which is proportional to the excited state
population (see figure 4.3 bottom). Variation of emission intensity with the
frequency of excitation light then provides information about the absorption
spectrum, in this case, called the excitation spectrum. According to equation (19),
we have for the fluorescence

FLð2ÞðtÞ ¼
Z 1

�1
dt2

Z 1

�1
dt1S

ð2Þ
incohðt2; t1ÞEðt � t2ÞEðt � t2 � t1Þ: ð31Þ

Integrating over the emission time, we get

FLð2Þ ¼ 1

�h2

Z 1

�1
dt
Z 1

0
dt2

Z 1

0
dt1Tr

X
i2excited

jiiCihijUðt2Þ l;Uðt1Þ l; qeq½ �½ �
( )

� Eðt � t2ÞEðt � t2 � t1Þ:
ð32Þ

Note that these are also effectively two pathways only: since they have to end up in
the excited state to produce emission, the dipole moments have to act from opposite
sides. As before, the pathways are complex and conjugate to each other, producing
an overall real population. One of the pathways is depicted in figure 4.3 bottom.

In order to vary the excitation spectrum, one can use quasi-monochromatic light
and scan the wavelength. Alternatively, way more useful in time-resolved spec-
troscopy, a pair of pulses can be used with variable delay s, determining the spec-
trum interferometrically by a Fourier transformation. In this case, we have

FLð2ÞðxÞ ¼
Z 1

�1
dseixs

1

�h2

Z 1

�1
dt
Z 1

0
dt2

Z 1

0
dt1Tr

X
i2excited

jiiCihijUðt2ÞlUðt1Þlqeq
( )

�A�ðt � t2ÞAðt � t2 � t1 þ sÞe�ix0 s�t1ð Þ þ c:c: ð33Þ
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Here, we have already separated the response to the two complex-conjugated
pathways and kept only the opposite-frequency parts of the electric fields since the
other terms rapidly oscillate and cancel under integration. Furthermore, we have
omitted the terms that interact twice with one of the pulses since these do not
oscillate with the delay s and produce a constant background for our measurement.
Carrying out the F.T. over s (substituting for �

s ¼ t � t2 � t1 þ s), we get

FLð2ÞðxÞ ¼ Aðx� x0Þ 1
�h2

Z 1

�1
dt
Z 1

0
dt2

Z 1

0
dt1Tr

X
i2excited

jiiCihijUðt2ÞlUðt1Þlqeq
( )

�A�ðt � t2Þe�i x�x0ð Þ t�t2ð Þeixt1 þ c:c: ð34Þ

Now, we can perform the F.T. over t (substituting t � t2). Since t2 remains in the
excited-state decay only, we can integrate over that as well, getting the FL quantum
yields Qi. We thus have

FLð2ÞðxÞ ¼ jAðx� x0Þj2 2

�h2
Re

Z 1

0
dt1Tr

X
i2excited

jiiQihijlUðt1Þlqeq
( )

eixt1
( )

:

ð35Þ
This expression (35) can be directly compared to the expression (30). The incoherent
second-order response pathway is indicated in figure 4.3 bottom, with fluorescence
emission indicated by the two dashed arrows. The fluorescence excitation spectrum
looks different from the absorption because of the additional multiplication by the
laser spectrum jAðx� x0Þj2 in equation (35) compared to equation (30). Same as in
equation (25), one can divide by the known laser spectrum to obtain the absorption
spectrum. In practice, it can be surprisingly difficult to measure precisely the same
spectrum that is absorbed, and small errors lead to large discrepancies in the
division, especially at the spectral edges. In a coupled dimer, the excited-state
populations rapidly equilibrate in a quasi-stationary state (according to Boltzmann
distribution at a given temperature), and this state then radiates with a single
effective fluorescence quantum yield [8]. Due to this separation of timescales and
inevitable excitation relaxation to the lowest excited state, the excitation spectrum
should directly correspond to the absorption one. The situation is different when
multiple relaxation pathways are present for different states, in which case is the
contribution of their respected peaks weighted by the specific quantum yields. This
is useful since the comparison of fluorescence excitation and absorption spectrum
then reports on, for example, energy transfer efficiency – a measurement often used
in photosynthetic light-harvesting complexes.

4.3.3 Four-Wave Mixing

4.3.3.1 General Description

In centrosymmetric samples such as randomly oriented molecules in solution, the
even nonlinear order polarization vanishes. The lowest-order nonlinear spectroscopy
is thus four-wave mixing (FWM).
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We have third-order nonlinear coherent polarization

Pð3ÞðtÞ ¼ i
�h

� �3Z 1

0
dt3

Z 1

0
dt2

Z 1

0
dt1Tr lUðt3Þ l;Uðt2Þ l;Uðt1Þ l; qeq½ �½ �½ �f g

� Eðt � t3ÞEðt � t3 � t2ÞEðt � t3 � t2 � t1Þ
ð36Þ

In fluorescence, the corresponding order of nonlinearity is the fourth:

FLð4ÞðtÞ ¼ i
�h

� �4Z 1

0
dt4

Z 1

0
dt3

Z 1

0
dt2

Z 1

0
dt1

� Tr
X

i2excited
jiiCihijUðt4Þ l;Uðt3Þ l;Uðt2Þ l;Uðt1Þ l; qeq½ �½ �½ �½ �

( )

� Eðt � t4ÞEðt � t4 � t3ÞEðt � t4 � t3 � t2ÞEðt � t4 � t3 � t2 � t1Þ:
ð37Þ

These expressions are completely general and can be used for many types of
four-wave mixing experiments. Here, we will focus on the most basic and
widespread experiments, i.e., pump–probe (also known as transient absorption,
TA), and its multi-dimensional variant two-dimensional electronic spectroscopy
(2DES) [16, 17]. Both of these experiments can be described by the same train of
excitation pulses: first comes a pair of pulses delayed by time delay s, exciting the
system. This delay needs to be phase-stable. In TA or transient grating experiment,
we have s ¼ 0. Then, we wait for delay time T called waiting or population time,
during which the perturbed system evolves. Finally, the spectrum of the system has
to be probed. This is done in the same way as in the linear absorption section
above. That is, in the coherence-based approach, a single pulse creates a nonlinear
polarization oscillating in time t, whose spectrum is to be detected, while in the
population-based approach, a pair of pulses is used with their delay t interfero-
metrically scanned to produce the spectrum. In the coherently-detected spec-
troscopy, we thus have a pulse train

EC-2DESðt;T ; sÞ ¼ A3ðtÞe�ix0tþ ik3�r þ i/3 þA2ðtþTÞe�ix0 tþTð Þþ ik2�r þ i/2

þA1ðtþT þ sÞe�ix0 tþT þ sð Þþ ik1�r þ i/1 þ c:c:
ð38Þ

For the action-detected experiment, we have one more pulse:

EF-2DESðt0; t;T ; sÞ ¼ A4ðt0Þe�ix0t0 þ ik4�r þ i/4 þA3ðt0 þ tÞe�ix0 t0 þ tð Þþ ik3�r þ i/3

þA2ðt0 þ tþTÞe�ix0 t0 þ tþTð Þþ ik2�r þ i/2

þA1ðt0 þ tþT þ sÞe�ix0 t0 þ tþT þ sð Þþ ik1�r þ i/1 þ c:c:
ð39Þ

In both cases, we chose the last pulse to be centered at zero time, i.e., the signal
emission begins immediately after the action of the last pulse. We emphasize at this
point that for a transient grating experiment, we have s ¼ 0, and for a pump–probe
(TA) experiment, we have s ¼ 0 and k1 ¼ k2. While coherently-detected transient
grating is relatively common, the fluorescence-detected variant has not, to our
knowledge, been realized yet.

In the nonlinear signal expressions (36) and (37), the times t1; t2; . . . are positive,
i.e., the response follows the perturbation, respecting causality. When we neglect
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pulse overlap in time (which is not always possible), we can, therefore, take the first
interaction to be with pulse 1, the second with pulse 2, etc. This leads to

Pð3Þðt;T ; sÞ ¼ i
�h

� �3Z 1

0
dt3

Z 1

0
dt2

Z 1

0
dt1Tr lUðt3Þ l;Uðt2Þ l;Uðt1Þ l; qeq½ �½ �½ �f g ð40Þ

E3ðt � t3ÞE2ðtþT � t3 � t2ÞE1ðtþT þ s� t3 � t2 � t1Þ ð41Þ
and

FLð4Þðt0; t;T ; sÞ ¼ i
�h

� �4Z 1

0
dt4

Z 1

0
dt3

Z 1

0
dt2

Z 1

0
dt1

� Tr
X

i2excited
jiiCihijUðt4Þ l;Uðt3Þ l;Uðt2Þ l;Uðt1Þ l; qeq½ �½ �½ �½ �

( )

� E4ðt0 � t4ÞE3ðt0 þ t � t4 � t3ÞE2ðt0 þ tþT � t4 � t3 � t2Þ
� E1ðt0 þ tþT þ s� t4 � t3 � t2 � t1Þ: ð42Þ

The expressions (40) and (42) can be used for the evaluation of the total signal,
broken into the individual response pathways. For interpretation, it is very useful to
consider pulses shorter than any electronic dynamics except the optical frequency
oscillations (impulsive limit), in which case the slowly-varying envelopes can be
taken as ‘physical’ delta functions, AðtÞ 	 dðtÞ. In this case, we get rid of the
integrations and obtain directly the response with t1 ¼ s, t2 ¼ T ,t3 ¼ t, t4 ¼ t0. We
therefore measure signals directly proportional to the response, sampled in the
inter-pulse delay times:

Pð3Þðt;T ; sÞ / Tr lUðtÞ l;UðTÞ l;UðsÞ l; qeq½ �½ �½ �f g ð43Þ
and

FLð4Þðt0; t;T ; sÞ / Tr
X

i2excited
jiiCihijUðt0Þ l;UðtÞ l;UðjTÞ l;UðsÞ l; qeq½ �½ �½ �½ �

( )
: ð44Þ

While the dependence of FLð4Þ on t0 opens up the possibility of gating, we will
consider the following time-integrated detection FLð4Þðt;T ; sÞ ¼ R1

0 dt0FLð4Þ

ðt0; t;T ; sÞ, getting
FLð4Þðt;T ; sÞ /

X
i2excited

Tr jiiQihij l;UðtÞ l;UðjTÞ l;UðsÞ l; qeq½ �½ �½ �½ �f g; ð45Þ

where Qi is the quantum yield of state i.

4.3.3.2 Signal Selection by Phase Matching and Phase Cycling

As we demonstrated when introducing the double-sided Feynman diagrams above,
the individual Liouville-space pathways contain various combinations of the
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positive- and negative-frequency parts of the electric fields of the excitation pulses.
In the coherently-detected case, the individual contributions will have different
wave vectors. There is, e.g., a contribution with a wave vector �k1 þ k1 þ k1
that travels along pulse one and would be hard to isolate from the linear signal.
There are, however, other contributions as well that travel in other directions.
Here, we will focus on the contribution with wave vector �k1 þ k2 þ k3. In the
incoherently-detected spectroscopy, the contributions cannot be distinguished by
spatial propagation. However, we can still distinguish them by their (relative) phase
signature. The phase signature that corresponds to the wave vector combination
above is �/1 þ/2 þ/3 � /4. The wave vector can be selected by choosing the wave
vector of the local oscillator. The phase dependence is used in phase cycling or
phase modulation approach. In phase modulation, the excitation beams are
phase-modulated at slightly different frequencies (for typical Ti:sapphire 80 MHz
repetition rate, the frequency differences are typically around 10 kHz), typically by
acousto-optical modulators [18–21]. A lock-in detection is then used to isolate the
appropriate phase combination. The advantage of lock-in detection is that it sup-
presses the slow, low-frequency noise (1/f noise in lock-in speak, pink or flicker
noise) at the same time. Phase modulation is typically used with MHz laser repe-
tition rate systems. For kHz laser repetition rate systems, the phase can be cycled
discretely on a shot-to-shot basis, typically using a pulse shaper [10, 18, 22, 23].
An excellent paper on phase cycling is by Howe-Siang Tan [24]. Briefly, for a
phase signature a/1 þ b/2 þ c/3 þ d/4 (we have ½a; b; c; d� ¼ ½�1; 1; 1;�1� for our
contribution), one can (denoting /nm ¼ /n � /mÞ isolate the contribution by

FLð4Þ
b;c;d ¼

1
LMN

XL�1

l¼0

XM�1

m¼0

XN�1

n¼0

e�ilb2pL e�imc2pMe�ind2pNFLð4Þ

� /21 ¼ l
2p
L

;/31 ¼ m
2p
M

;/41 ¼ n
2p
N

� �
:

ð46Þ

The technique is called phase cycling because the complex unit cycle in phase space
is separated into L, M , and N points uniformly, the inter-pulse phases are cycled
along these points, and the measured fluorescence signals are added with the
complex weights. The number of points is chosen such that the discrete Fourier
Transformation can distinguish between the desired orders of nonlinearity (signals
with coefficient b and bþ pL where p is an integer get aliased (overlap)). For
standard four-wave mixing, to suppress the lower-order contributions, one can use
L ¼ M ¼ N ¼ 3, i.e., 1� 3� 3� 3 phase cycling.

When we stay with the �k1 þ k2 þ k3, respectively �/1 þ/2 þ/3 � /4 contri-
bution, there are three types of pathways that constitute the signal. These are
depicted in figure 4.4, with the curly arrows indicating signal emission. As is
apparent from the C-2DES and F-2DES comparison, the additional commutator has
here more profound consequences than in the linear experiment. First, the
excited-state absorption (ESA) type pathway has the same sign as the GSB and SE
type pathways. And second, there is an additional response pathway of the ESA
type (ESA2), with an opposite sign, ending in a double-excited state. What are the
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consequences for the interpretation of the overall signal? We will illustrate this in the
particular example of our squaraine dimer.

4.3.3.3 Experimental Setup

We will be comparing the coherently and fluorescence-detected experiments under
practically identical conditions. We have already invested some effort in formulating
their description in an unified way, facilitating direct comparison. Experimentally,
we used a setup at Würzburg University, sketched in figure 4.5. It is a typical kHz
pulse repetition rate laser system, with MHz Ti:Sapphire oscillator as a seed for an
amplifier with about 35 fs, 1 kHz, 4 mJ pulses (Spectra Physics). To broaden the
spectrum, the pulses are attenuated to about 1.5 mJ and broadened in an Ar or Ne
filled 1 m long hollow core fiber (Ultrafast Innovations). The pulse chirp after
the fiber can be compensated by chirped mirrors, part of the beam is split off by a
wedge, delayed by a delay stage (Newport), and used as a probe. The rest of the
pulses are pre-compressed by a GRISM (prism pair with engraved gratings)
compressor and shaped by the Dazzler Acousto-Optical Programmable Dispersive
Filter (AOPDF, Fastlite)). The shaper is used both for pulse compression, spectral
shaping, and generation of pulse sequences. The pulses are overlapped in a sample
cell (Starna) through which the sample flows. The nonlinear polarization signal is
detected in the same direction as the probe beam, overlapping them on a CCD
spectrometer (Princeton instruments) working shot-to-shot in line mode. The
fluorescence is collected by an objective and detected by an avalanche photodiode
(Laser Components), not in the photon counting mode but resolved in the APD
response time, digitized by a digitizer card (Teledyne) and integrated on the fly.

FIG. 4.4 – Liouville-space pathways for coherently (C-) and fluorescence (F-) detected 2DES.
Adapted from Ref. [10].
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4.3.3.4 Four-Wave Mixing: Transient Absorption

First, we compare coherently detected (i.e., standard) pump–probe (C-PP) and
fluorescence-detected pump–probe (TA) spectroscopy (developed by us) of the most
weakly coupled squaraine dimer (dSQAB-3). The measured data as well as calcu-
lated maps are presented in figure 4.6. The pump-probe is measured in a very
standard way, recording the signal self-heterodyned with the probe field and per-
forming pumped/unpumped differential acquisition. The coherently-detected data
are evaluated as TA:

C-PPð3Þðx;TÞ ¼ �log
I pumped

I unpumped
	

2Re E�
pr � Eð3Þþ ðx;T ; 0Þ

n o
I pr

: ð47Þ

Here, we used the approximation log 1þ xð Þ 	 x and neglected I sig. In reality,
we measure not two but four combinations of the pump and probe pulses to
isolate and subtract the pump scatter (if any) and background contributions:

�log I pumped�I scatter
I unpumped�I background

. Note, however, that only the incoherent part of the scatter can

be subtracted in this way, leaving the potential scatter-probe interference ripples on
top of the TA spectrum. A single pump and single probe pulses are used of highly
similar spectra and duration (around 12 fs, spectrally covering the two main
transitions of the dimer).

For the fluorescence-detected variant, The experimental setup is kept as it is, but
the probe pulse now serves as the pump, while the pump pulse is shaped into a pulse
pair (by the Dazzler AOPDF) that is used as a probe. Compared to the linear
absorption section above, we can see that this is really a direct analog of transient
absorption and should be, thus perhaps, called transient excitation spectroscopy.
The fluorescence from the spot of pulse overlap in the sample is collected by

FIG. 4.5 – Setup at University of Würzburg used for the measurements directly comparing
coherently and fluorescence-detected spectra. Adapted from Ref. [10].
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a 10� objective perpendicular to the beams, coupled to a multimode fiber,
and recorded time-integrated by the avalanche photodiode. The F-PP data are
calculated as

F-PPð4Þðx;TÞ ¼
Z 1

0
dteixt FLPuþPrðt;TÞ � FLPrðtÞf g

/
Z 1

0
dteixt

Z 1

0
dt0FLð4Þðt0; t;T ; 0Þ: ð48Þ

Note, that the Fourier transform (in practice discrete, carried out after subtraction
of the average signal value over t) isolates the oscillatory component of the measured
fluorescence in t, i.e., the part probed by the probe pulse pair, eliminating the
fluorescence from the pump beam only. The fluorescence from the probe pulses alone
is measured with the pump beam blocked and subtracted. In case one has perfectly
phase-stable pump and probe beams, using 2 � 2 phase cycling on the probe
pulse pair is recommended to get rid of coherence between the pump and the probe.
A natural choice of geometry for F-PP would be single-beam, all-collinear. However,
slightly non-collinear is fine as well, as we use here to facilitate comparison.
Using pulse-shaper for the double-pulse scan allows one to scan the delay in a

FIG. 4.6 – Coherently (left) and fluorescence-detected (right) transient absorption. Shown
is theoretical non-perturbative calculation (top) and experiment (bottom). Adapted from
Ref. [26].
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(partially) rotating frame to save acquisition time [10]. However, any phase-stable
way, such as an interferometer, would do.

In both cases, the pump and probe are delayed by a mechanical delay line to
access delays up to nanoseconds with femtosecond precision (the shaper can reach
only a couple of picoseconds). To maintain the symmetry between the experiments,
we use the same intensity for the pump and probe beams, making sure to stay in
the perturbative regime. This can be checked by fluorescence intensity scaling
linearly both with the pump and the probe intensities. The sample is flown
through a standard 200 μm flow cell, tilted at an angle to allow collection of
fluorescence.

In the calculation, we follow the experimental procedure. That is, we solve
equation (2) non-perturbatively in the system-field interaction, using Redfield
theory for the interaction with the vibrational bath [25] (see chapter 3). We use
finite 12 fs Gaussian pulses and vary the delays and pulse amplitudes same as in
the experiment. The only difference is for the coherently-detected pump-probe, as
we do not solve signal propagation and thus do not have phase matching. We use
simple 1 � 2 phase cycling of the probe pulse instead. As can be seen from
the good correspondence between the theory and experiment in figure 4.6, our
description of the experiment is quantitatively sufficient not to distinguish
between the measurement and calculation in our discussion. Let us discuss the
shape of the transient maps and the difference between the two approaches. It is
characteristic for the field that we use a non-perturbative approach for calcula-
tions (straightforward treatment of finite pulses, automatically includes all pos-
sible interactions with the pulses etc.), and perturbative language of response
pathways for interpretation.

Unsurprisingly, the transient spectra feature two peaks at the positions of the
two absorption peaks (see figure 4.2). The upper-energy peak decays rapidly with
population relaxation to the lower-energy state. While this applies to both C-PP
and F-PP, in C-PP, the upper peak disappears completely since the SE from the
upper transition shifts to the lower one, and the upper transition is not bleached
anymore (the SQA squaraine is in its ground state). In contrast, in F-PP the
seeming bleach of the upper transition remains. As a result, the population
transfer is much more pronounced in C-PP. This is a general difference between
the techniques that can be understood either at the response pathway level or at
the conceptual level. At the diagram level, we will think on a collective state basis.
There, in C-PP, the GSB-type pathway through the upper transition is canceled
by the ESA-type pathway with population relaxation in the waiting time. This
causes the peak to disappear. This cancellation cannot happen in F-PP, since the
ESA pathway has the same sign. All this depends on the contribution of the ESA2
pathway with the opposite sign, ending in the two-exciton manifold. In case the
double-excited state would produce two photons, the ESA2 + ESA pathways act
together as the standard ESA pathway in C-PP, and one recovers the standard
C-PP. However, and this is the case almost for all connected molecular systems,
two excitons will sooner meet and undergo exciton–exciton annihilation
(EEA) than the emission can occur. In the dimer the separation of timescales is

Coherently and Fluorescence-Detected Ultrafast Spectroscopy 131



extreme, since the EEA takes about 30 fs, while emission takes 3 ns. One of the
two excitations is therefore lost, the photon yield of the ESA2 pathway is precisely
the same as that of the ESA pathway, and they cancel each other out. The
GSB-type pathway involving the upper transition thus remains until the molecules
recover by relaxation back to ground state. On the conceptual level, one can
understand the F-PP as the amount of fluorescence caused by the probe, modified
by the presence of the pump. When the pump has excited the system, the probe
absorption will not always lead to fluorescence. This is because 1) the probe can
induce stimulated emission of the pump-induced excitation (same as in C-PP), 2)
the system is already bleached by the pump (this would be the standard
ground-state bleach known from C-PP), or 3) the pump-induced excitation can
annihilate the one induced by the probe. The latter is why the bleach of both
transitions remains as long as the pump excitation lives in the system, since the
upper transition can absorb the probe, but does not produce more fluorescence as
long as there already is an excitation in the system. From this point of view, it is
also easy to see the reason for the presence of a signal before time zero, i.e., in the
situation when the probe comes before the pump. While the probe always finds the
system in the ground state, the following pump can decrease the system excitation
due to stimulated emission or EEA. As an important side note, it is important to
reverse the direction of the probe pulse pair scanning when measuring before time
zero (pulse needs to be scanned to earlier times, while after time zero the pulse is
scanned to later times). Writing down the response pathways for systems with
perfect EEA, we find for T \ 0 two pathways in both of which the ground-state
absorption is probed, and for T [ 0 one pathway probing ground state bleach and
one the stimulated emission. In other words, for T \ 0, there is the bleach-type
absorption spectrum only, while for T [ 0, there is also SE by the probe. This can
even be utilized, since subtracting half of the negative time transient map from the
positive time isolates the SE-type pathways, reporting on the excited-state
dynamics. We verified this on the squaraine dimers and mCherry fluorescent
proteins, isolating the dynamic Stokes shift [26]. The full extent of the applicability
of this approach has not yet been explored. In both techniques the signal lives with
the excited state lifetime, which is around 3 ns.

Another consequence of the additional ESA2 pathway is the absence of ESA for
complete EEA (in case of ESA into doubly excited states) and rapidly relaxing
higher excited states (in case of ESA into these). In the pathway language, this is
because the two pathways cancel out. The physical intuition is that as long as ESA
does not lead to more emission, it will not be visible in the signal.

Next to these fundamental differences, there are practical differences as well.
First, since F-PP arises from the resonant excitation only, it does not suffer from
off-resonant processes such as cross-phase modulation, stimulated Raman scatter-
ing, etc., together comprising the so-called coherent artifact (CA). Note that in our
case of a strong probe, the CA is unusually strong as well, exacerbating the situa-
tion. In practice, however, the CA is still often the problem preventing access to the
early-time behavior, even for short pulses. F-PP is thus excellent for short-time
dynamics. Another difference is that, due to the type of acquisition, the C-PP is
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implicitly divided by the probe spectrum, while the F-PP remains multiplied by the
laser spectrum. While this does not influence the dynamics, it does change the
spectral shape. Division by the laser spectrum to correct is possible, but introduces
noise, especially at the edges of the spectrum. For a detailed description of F-PP and
its comparison with C-PP on diverse samples, we refer the reader to Ref. [26]. Now,
we proceed with 2DES.

4.3.3.5 Four-Wave Mixing: 2DES

We have seen already both in the linear absorption (excitation spectra) and in the
F-PP (transient excitation) that a double-pulse scan can be used to obtain spectral
resolution for two interactions with the electric field. In the fluorescence-detected
version of the TA, we used the double-pulse scan to get the spectrum along the probe
axis. In the pump–probe, both coherently and fluorescence-detected, we do have two
interactions with the pump pulse. It is, therefore, straightforward to replace the
pump pulse with a double pulse to spectrally resolve the excitation process as well.
This leads to the 2D electronic spectroscopy (2DES) in the pump–probe geometry.
We thus still have k1 ¼ k2 ¼ kPu , k3ð¼ k4Þ ¼ kPr , but now we do not set s ¼ 0
anymore. We can use the same experimental setup as before, figure 4.5. For the
C-2DES, we use the probe pulse and make the Dazzler produce the pump pulse pair.
For F-2DES, we now make all four pulses using the Dazzler shaper in an all-collinear
geometry. In C-2DES, the signal is isolated the same as in C-PP (self-heterodyned,
the probe field acts as the LO, producing an inherently absorptive spectrum without
phasing). The delay s between the pump pulses is scanned, and discrete FT leads to
the result

C-2DESðxt ;T ;xsÞ ¼
Z

dseixssPPð3Þðxt ;T ; sÞ: ð49Þ

In F-2DES, we drop the differential acquisition, and proceed with full 1 � 3 � 3 � 3
phase cycling of all pulses. The absorptive spectrum is then obtained by adding the
rephasing (½a; b; c; d� ¼ [−1, 1, 1, −1]) and non-rephasing (½a;b; c; d� ¼ [1, −1, 1, −1])
contributions, with the usual xs axis flip for one of them (typically rephasing) to
obtain positive frequencies [27]. We have

F-2DES½a;b;c;d�ðxt ;T ;xsÞ

¼
Z

dteixt t
Z

dse�ixss
X2
l¼0

X2
m¼0

X2
n¼0
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ð50Þ

where the þ in the s F.T. applies for non-rephasing and � for rephasing part.
In the theoretical description, we exactly follow the experiment, same as in the

case of PP, only now we also scan the time interval between the first pair of pulses.
The 2D spectra taken at T ¼ 30 fs are shown in figure 4.7. Once again, the corre-
spondence between the experiment and theory is good enough to compare the
techniques only.
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The spectra feature two diagonal peaks, at the position of the two absorption
peaks of the dimers, see figure 4.2. With increasing electronic coupling the peaks
split from each other by excitonic splitting, and the lower peak becomes relatively
more prominent due to J-type coupling leading to oscillator strength redistribution.
Note that because of the additional two interactions with the electric field, the peak
amplitude is proportional to jlj4 instead of jlj2 as in linear absorption. The oscillator

FIG. 4.7 – Coherently (C-, top) and Fluorescence- (F-, bottom) detected Two-dimensional
electronic spectra (2DES) of squaraine dimers with decreasing spacer length, i.e., increasing
coupling (left to right). Shown is always theoretical calculation (top rows) and experimental
data (bottom rows). Spectra are taken at T ¼ 30 fs. Adapted from Ref. [10].
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strength differences are thus much more pronounced. There are also cross peaks in
the 2D spectra at the frequencies of the two transitions, indicating spectral corre-
lations between them. The most striking feature is the opposite sign of the upper
cross peak, which is positive (in our convention) in C-2DES and negative in F-2DES.
In C-2DES, it is well known that the magnitude of the cross-peaks at T ¼ 0 reflects
the extent of excitonic delocalization. Moreover, the sign of the cross-peaks is
determined by the coupling sign, with a negative upper cross-peak indicating neg-
ative coupling ([10] and references therein). This is visible considering the response
pathways on a collective-state basis, where the balance of ESA and GSB-type
pathways reflects the redistribution of the oscillator strength that scales with the
coupling [8]. In case of no coupling, the transition from state g ! A and B ! AB
have the same strength. This is broken with increasing delocalization, with the
extreme of complete delocalization resulting in one of the g ! A;A ! AB and
g ! B;B ! AB pathways to the double excited state being suppressed and the
other one enhanced. In C-2DES, the T ¼ 0 cross peaks thus report on excitonic
coupling and resulting delocalization, as can be seen from the relative magnitude of
the cross peaks (normalized to the total volume of the peaks) increasing with the
electronic coupling (dSQAB-3 with weakest coupling to dSQAB-1 with strongest
coupling) [10]. With time evolution, the lower cross-peak magnitude increases due to
population relaxation from the higher to the lower excited state (SE pathway). Since
the relaxation is very fast, especially in the dSQAB-1 dimer, and the pulses are of
finite length (12 fs pulses, about 25 fs fastest relaxation), it already starts happening
close to T ¼ 0. It is, therefore, easier to look at the upper cross-peak magnitude.
This, however, works only when there is no intrinsic ESA to higher excited states, as
is the case of the squaraines, where the higher excited states lie well below the double
excited state.

Interestingly, in F-2DES the cross peak magnitude does not increase with the
electronic couping. In fact, the cross peak amplitude actually somewhat decreases
with the coupling strength, as predicted by theory [8, 10]. Clearly, the cross peaks in
F-2DES, i.e., spectral correlations, do not originate from the delocalization. What is
then their cause? It can be shown both conceptually and in the language of Feynman
diagrams that the transitions are correlated by EEA. In C-2DES, the cross peaks
reflect delocalization because it breaks the cancellation between the ESA and
GSB-type pathways. In F-2DES, the ESA-type pathway has the same sign as the
GSB and thus cannot cancel it, so, as in the F-PP, it all depends on the contribution
of the ESA2 pathway. If we do get two photons from the double excited state, the
ESAþESA2 pathways act as the standard ESA, and the F-2DES spectrum will
look the same as the C-2DES. However, in the case of efficient EEA, the ESA and
ESA2 pathways cancel each other, and we are left with the GSB and SE, where the
former leads to T – independent cross peaks. The physical origin of these cross-peaks
in EEA can be understood by considering very weak (i.e., quasi-independent)
molecules, with a possibility of EEA. In case of no EEA, the 2D spectral signals from
both molecules reach the detector independently, so we get the total spectrum being
the sum of the two. Crucially, this includes the situation when photons from both of
the excited molecules reach the detector. However, if the EEA is present, it decreases
the photons from both molecules since one of the two excitations does not survive.
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This nonlinearity therefore introduces correlation between the transitions at the
otherwise independent molecules. We note here that some coupling between the
molecules is necessary for the EEA to happen, so in this sense, the cross peaks still do
indicate that. However, even indirect coupling (via a third molecule) is enough.
Moreover, we see that any type of nonlinearity that introduces a correlation between
the signals from the two molecules will lead to a spectral correlation. An example
would be, e.g. the nonlinearity of the detector, which has, in practice, the same
effect. This is very dangerous since most sensitive detectors tend to be nonlinear over
a larger range, and in phase cycling, a large dynamic range is required. The necessity
to subtract large linear signals to isolate weak nonlinear contribution makes the
experiment fragile to such kind of nonlinearities and resulting artifacts.

Apart from the cross peak presence, F-2DES shares all the advantages of F-PP:
there is no coherent artifact, so dynamics close to time zero are more easily acces-
sible. In this context, note that the techniques are still sensitive to finite pulse
overlap effects. An example of pulse overlap manifesting in an artificial signal is
given, e.g., in the SI of Ref. [10]. The close relation between the PP and 2DES is
easily formalized in a so-called projection-slice ‘theorem’ [27]. This states nothing
more than the property of Fourier transformation that by integrating over xs, one
obtains the response at s ¼ 0. The absorptive C-2DES (F-2DES) spectra as shown
in figure 4.7, integrated over xs, thus produce precisely the C-PP (F-PP) transient
maps in figure 4.6 (for dSQAB-3). The correspondence with TA means that all
effects discussed for C/F-PP above, such as less pronounced relaxation due to the
always present ground-state bleach in F-PP, apply to C/F-2DES as well.

Another rather mundane difference worth mentioning is that, in this geometry,
the F-2DES has the laser spectrum imprinted along both axes, while in C-2DES in
pump–probe geometry, the spectrum is implicitly divided by the probe spectrum
along xt . An experimenter would expect the spectra to be merely multiplied by the
pump spectrum along xs, and, optionally, dependent on the acquisition scheme, by
the probe spectrum along xt . At least, this is exactly what happens when mea-
suring the excitation spectrum interferometrically. Here in 2DES, however, the
situation is a bit more subtle. It is possible to show, by carrying out the Fourier
transformations in equations (40) and (42) sequentially, that under the conditions
of 1) the same pulse shape within the first and second pulse pair, 2) negligible pulse
overlap effect and 3) xT ! 0 (no oscillations in waiting time), the spectral multi-
plication is indeed the result (see appendix in Ref. [10]). Since the typical laser
spectrum decreases towards the edges, the peaks are ‘pulled’ inside, resulting in
shifted peak positions. This is important to consider when trying to read off the
peak positions. When conditions 1) and 2) apply but there are oscillations in T , it is
still possible to correct the 3D Pð3Þðxt ;xT ;xsÞ or FLð4Þðxt ;xT ;xsÞ in full Fourier

domain, to obtain the S ð3Þ
cohðxt ;xT ;xsÞ or S ð4Þ

incohðxt ;xT ;xsÞ. It is thus, at least in
principle since this has not been tried to my knowledge, possible to isolate directly
the response function. Such response function could then be used to compare to
theory without the need of calculating dynamics with finite pulses, and also to
predict other FWM experiments.
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4.3.3.6 Six-Wave Mixing: 2DES

The main motivation for measurements of even higher orders of nonlinearity is the
option to observe the dynamics and energies of multiple excitations [28]. The natural
extension is to consider two more interactions with the excitation pump pulses,
keeping the total number of pulses the same. Experimentally (and theoretically),
the step from four-wave mixing to six-wave mixing is thus easy. In the coherently-
detected case, one keeps the probe weak, increases somewhat the intensity of the
pump, and scans s with two times finer steps, fine enough to sample the oscillations
at the frequency given by the two-exciton energy. The 3rd and 5th-order spectra can
then be distinguished by their position along the xs axis. As a word of caution, the
fact that one sees the 5th order spectrum directly implies that the seemingly 3rd
order spectrum will include fifth-order contribution as well, typically in form of
annihilation dynamics [9]. In the fluorescence-detected case, higher-order phase
cycling is to be used. In case of all pulses with the same amplitude, 1 � 5 � 5 � 5
phase cycling is advisable. We note that action-detected spectroscopy with the
unequal intensity of pulses, e.g., with weaker probe pulse pair, has not been explored
so far, although this would decrease the number of necessary phase cycling steps
(e.g., from 1 � 5 � 5 � 5 = 125 to 1 � 5 � 3 � 3 = 45, i.e., almost three-fold
faster measurement). The acquired FWM and SWM 2D spectra of dSQAB-3 at
T ¼ 30 fs are shown in figure 4.8. Clearly, the structure of the 2D spectra is very
different from the one-exciton case. Along the excitation frequency xs, we have now
only a single, significantly broadened peak, at the two-exciton frequency. Along the
detection frequency we still have two peaks at the position of the two transitions.
The main peak has opposite sign to the FWM case, which comes from the additional
i
�h

� �2 factor in the perturbation theory. The sign of the upper peak is negative in
C-2DES, and positive in F-2DES, a result of the different balance of pathways.
A detailed analysis of the higher-order spectra gets involved due to the large
number of pathways. A general aspect, however, seems to be that the
main peak rises with the timescale of EEA (about 30 fs) in C-2DES, while in
F-2DES the peaks are present from T ¼ 0. The coherently-detected version thus
seems better suited for the measurement of EEA [29]. On the other hand, the
fluorescence-detected version can provide cleaner information about peak energies at
T ¼ 0 and thus, e.g., bi-exciton interaction energies [28].

4.4 Overview: Fluorescence vs. Polarization
Finally, now that we have compared the fluorescence and coherence-based approa-
ches, we are in the position to contrast their features. As we have shown in our
unified description, the n-th order nonlinear polarization probes the same type of
response as nþ 1-th order nonlinear fluorescence. Despite this correspondence, the
spectra in general look quite different. All the differences essentially boil down to the
signal being emitted for a relatively long time spontaneously in the case of fluores-
cence detection, in contrast to the practically immediate coherent polarization
response to the pulse sequence. During the signal emission, effects such as diverse
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quantum yield for different states, presence of dark states, or exciton–exciton
annihilation lowering the emission of two-exciton states will contribute to the signal.
As a result, in F-2DES and F-PP the ESA-type pathways are suppressed. This
results in a lack of photo-induced spectra, the presence of bleach-type peaks even
after energy relaxation, and the presence of cross-peaks in F-2DES that result from
EEA and not from delocalization. The bleach presence is a serious drawback in large
systems with energetically close sites, where it can obscure the relatively small SE
reporting on excited state dynamics [30]. What is also suppressed in fluorescence
detection is coherent artifact and dark product states, including photo-damaged
sample. Fluorescence detection is in principle more sensitive and much more easily
applicable in the microscope, to the point that it allows TA measurement on single
molecules [31]. In C-2DES and especially C-PP, the high nonlinear orders are
extracted more easily, with less experimental effort, than in fluorescence-based
counterparts. Moreover, the rise of the 5th order coherent polarization signal follows
the EEA, which is not the case of the fluorescence-detected variant. The coherently
detected approach is thus better suitable for the measurement of multi-excitonic
states, exciton interaction such as EEA, exciton long-range diffusion, etc. Recently,
we have even developed a (phase-cycling-inspired) approach to measure high-order
multi-excitonic signals in TA [32]. From the experimental side, the coherent

FIG. 4.8 – Direct comparison of coherently (C-) and fluorescence (F-) detected four-wave
mixing (left) and six-wave mixing (right) 2DES of squaraine dimers with the longer spacer
(dSQAB-3). Adapted from Ref. [7].
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techniques are very well implementable using (tens of) kHz systems with
shot-to-shot measurement. The fluorescence-based techniques benefit from higher
repetition rates in the MHz regime, and higher sensitivity due to the detection
against the dark background. This makes them well-suited for microscopy [21] and
even single-molecule spectroscopy [31]. The techniques are thus, both experimen-
tally and theoretically, to a degree complementary.
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Chapter 5

Light Harvesting in Photosynthesis:
From Structure to Function
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5.1 Overview
This chapter provides an introduction into the structure-based description of light
harvesting in photosynthesis. A first important aspect of this description is the
derivation of an effective Hamiltonian, termed Frenkel exciton Hamiltonian, from
first principles and its structure-based parameterization by combining quantum
chemical/electrostatics/molecular mechanics methods, as will be discussed in
section 5.2. A second aspect concerns the development of dynamical theories,
using the Frenkel exciton Hamiltonian, to describe optical spectra and excita-
tion energy transfer, discussed in section 5.3 together with applications to the
Fenna-Matthews-Olson (FMO) protein. As an example, we will consider
light-harvesting and trapping of excitation energy by primary charge transfer in the
core of green sulfur bacteria (figure 5.1), which will be studied in section 5.4. In the
final section 5.5 of this chapter, we will discuss similarities and differences between
photosynthetic pigment-protein complexes (PPCs) and organic solar cells (OSCs).
The latter are studied in detail in chapter 6.

5.2 Frenkel Exciton Hamiltonian and Parameterization
In the spirit of the Born–Oppenheimer approximation [4], we first solve the elec-
tronic problem for fixed nuclear coordinates and, in a second step, add the kinetic
energy of nuclei and the electron-vibrational coupling. To obtain the electronic
eigenstates we divide the molecular aggregate into building blocks that are defined
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such that electron exchange between different building blocks is small and can be
neglected. In a pigment-protein complex (PPC), the chromophores, in good
approximation, form their own building blocks. In this case, as will be discussed in
the following, the wavefunction of the complex may be expanded with respect to
Hartree products of wavefunctions of the isolated building blocks, and the eigen-
states of the aggregate can be obtained by diagonalizing a Frenkel exciton Hamil-
tonian. The latter contains in the diagonal the local transition energies of the
complex which are shifted, e.g., by electrostatic, inductive, and dispersive interac-
tions between the chromophores and their environment, and in the off-diagonal, the
excitonic couplings that couple excited states, which are localized at different

FIG. 5.1 – Arrangements of bacteriochlorophyll (BChl) a pigments in Fenna Matthews Olson
(FMO)/ reaction center complex (RCC) supercomplexes in the core of green sulfur bacteria
[1, 2], as viewed parallel to the photosynthetic membrane. The membrane-embedded RCC
consists of two core antenna complexes (RCC-Ant1 and RCC-Ant2) and the reaction center
(RCC-RC). The protein is omitted for clarity. Pigments 802 and 803 in the RC are chlorophyll
(Chl) a. Pigments colored in the same way belong to the same exciton domain, introduced in
section 5.3. The dashed lines encircle certain compartments, identified in a minimal model of
light-harvesting, that also reveals the time constants of energy transfer between the different
compartments, as explained in detail in section 5.4. The red dashed line in the center encircles
the primary electron donors (BChl a 801) in the reaction center (RC). After excitation energy
transfer to the RC, electrons are transferred from the excited state of the primary donors with
a time constant of 2 ps to the neighboring primary electron donors (Chl a 802) in the two
symmetric branches of the RC, depicted in blue. Figure adopted from Ref. [3].
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chromophores. Once we have determined the electronic states at the equilibrium
positions of nuclei in the electronic ground state, we will expand the resulting
Frenkel exciton Hamiltonian for small displacements of nuclei from their equilibrium
positions and add the kinetic energy of nuclei to obtain a complete Hamiltonian that
can be used for quantum dynamical studies of excitation energy transfer and optical
spectra, discussed in section 5.3.

5.2.1 Electronic Degrees of Freedom

We start with the general electronic Hamiltonian of the PPC that depends para-
metrically on the nuclear positions R

H ¼
X
i

p̂2i
2me

þV ðri; . . .; rNe ;RÞ; ð1Þ

where p̂i ¼ �i�hri denotes the momentum of the ith electron (with mass me, and
V ðri; . . .; rNe ;RÞ contains the Coulomb couplings between electrons, electrons, and
nuclei and between nuclei. Here, R denotes the equilibrium position of nuclei in the
electronic ground state.

In the next step, we divide the Hamiltonian into building blocks characterized by
the fact that there is no electron exchange between different building blocks.

H ¼
X
a

Ha þ 1
2

Xa 6¼b

a;b

V ab ¼ H 0 þV ; ð2Þ

where

Ha ¼
X
i

p̂2ia
2me

þV ðrðaÞ1 ; . . .; rðaÞNa
;RÞþ T̂

ðaÞ
n ð3Þ

is the Hamiltonian of the isolated building block a and Vab contains the Coulomb
couplings between different building blocks a and b

Vab ¼
X
i;j

e2

jrðaÞi � rðbÞj j
�
X
I ;j

Z I e2

jRðaÞ
I � rðbÞj j

�
X
i;J

ZJ e2

jrðaÞi � RðbÞ
J j

þ
X
I ;J

ZI ZJ e2

jRðaÞ
I �RðbÞ

J j
; ð4Þ

where rðcÞk and RðcÞ
K are the spatial coordinates of the kth electron and Kth nucleus,

respectively, of building block c.
The eigenfunctions of the Hamiltonian Ha of the isolated building block a are

denoted as uðaÞ
na ðrðaÞ1 ; � � � rðaÞNa

Þ with corresponding eigenenergies EðaÞ
na
. Hence, the

eigenstates of the Hamiltonian H 0 ¼
P

aHa in equation (2) are products of the
eigenfunctions of the building blocks

unðr1; . . .; rNeÞ ¼ hr1; . . .; rNejn1n2n3 � � � nN i
¼ QN

a¼1
uðaÞ
na ðrðaÞ1 ; . . .; rðaÞNa

Þ ð5Þ
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and we have

H 0jni ¼ Enjni ð6Þ
with the eigenenergy

En ¼
X
a

EðaÞ
na
: ð7Þ

Note that a simple product of eigenfunctions in equation (5) is sufficient since there
is no electron exchange between different building blocks.

Since the states nj i form a complete basis in the Hilbert space of the complex, we
can expand the eigenstate jwM i of the total HamiltonianH (equation (2)) in this basis

jwM i ¼
X

n1���nN

cðMÞ
n1���nN

jn1 � � � nN i ¼
X
n

cðM Þ
n jni: ð8Þ

In the following, we will use the variational principle to determine the coefficients

cðMÞ
n According to this principle, the expectation value hwM jH jwM i becomes minimal
for the true eigenfunction of H . As a constraint of the minimization, we require a

normalization of the wavefunction jwM i, that is, hwM jwM i ¼ 1 ¼PkðcðMÞ
k Þ2. We

introduce Lagrangian multipliers kM and minimize the expression

K ¼ hwM jH jwM i � kM
X
k

ðcðMÞ
k Þ2 � 1

( )
: ð9Þ

We will consider real-valued eigenfunctions jni and jwM i and, hence, all coefficients
cðMÞ
k are real and we have hnjH jmi ¼ hmjH jni. As a minimum condition, we have

@=@cðM Þ
n K ¼ 0 ð10Þ

which, using equation (8), leads to the following eigenvalue problem

cðMÞ
n hnjH jni � kMð Þþ

Xk 6¼n

k

cðMÞ
k hnjH jki ¼ 0 ð11Þ

where the diagonal matrix elements are given as

hnjH jni ¼ hnj
X
a

Ha þ 1
2

Xa 6¼b

a;b

V̂ abjni

¼
X
a

EðaÞ
na

þ 1
2

Xa 6¼b

a;b

V ðabÞ
nanb;nanb

ð12Þ

and the off-diagonal matrix elements are

hnjH jki ¼ 1
2

Xa 6¼b

a;b

V ðabÞ
nanb;kakb ; ðk 6¼ nÞ; ð13Þ
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where k 6¼ n means that na and nb should not simultaneously be ka and kb,
respectively. Note that the Lagrangian multiplier kM is identified as the eigenenergy
of jwM i in equation (11).

The matrix element of the inter-building block Coulomb coupling V ðabÞ
nanb;mamb

is
obtained from the following integral over the electronic coordinates of building
blocks a and b

V ðabÞ
nanb;mamb

¼
Z

drðaÞ1 � � � drðaÞNa

Z
drðbÞ1 � � � drðbÞNb

�uðaÞ
na
ðrðaÞ1 ; � � � rðaÞNa

ÞuðbÞ
nb
ðrðbÞ1 ; � � � rðbÞNb

Þ

�V̂ abu
ðaÞ
ma
ðrðaÞ1 ; � � � rðaÞNa

ÞuðbÞ
mb
ðrðbÞ1 ; � � � rðbÞNb

Þ ð14Þ

and contains the inter-building block Coulomb couplings V̂ ab given above
(equation (4)).

By using Pauli’s principle for the exchange of electrons and renaming integration
variables, the above high-dimensional integral can be simplified to [5]

V ðabÞ
nanb;mamb

¼
Z

dra
Z

drb
qðaÞma ;naðraÞqðbÞmb;nbðrbÞ

jra � rbj

�dnb;mb

X
J

Z
dra

eZJq
ðaÞ
ma ;naðraÞ

jra �RðbÞ
J j

�dna ;ma

X
I

Z
drb

eZIq
ðaÞ
mb;nbðrbÞ

jrb �RðaÞ
I j

�dna ;madnb;mb

X
I ;J

e2ZIZJ

jRðaÞ
I � RðbÞ

J j
;

ð15Þ

where the one-particle densities qðaÞma ;naðraÞ and qðbÞmb;nbðrbÞ of the electrons in building
block a and b, respectively, were introduced according to

qm;nðrÞ ¼ e
Z

dr2 � � � drNumðr; r2; . . .; rN Þunðr; r2; . . .; rN Þ; ð16Þ

which for m ¼ n is the electronic charge density of the mth molecular state and for
m 6¼ n is the transition density between the mth and the nth electronic state.
Whereas the charge density has a classical analog, the transition density is a
quantum mechanical quantity related below to the excitonic coupling leading to a
delocalization of excited states over different pigments (building blocks). Note also
that the first moment of the transition density is the transition dipole moment,
which characterizes the system-field interaction in dipole approximation.

Examining the eigenvalue problem in equation (11), it is seen that the
off-diagonal matrix element hnjH jki couples different electronic states jni and jki.
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A considerable mixing of these states only occurs if the absolute magnitude of the
difference in respective diagonal elements jhnjH nj i � hkjH jkij is not much larger
than this coupling. We leave it as an exercise to the reader to diagonalize a 2 × 2
matrix and investigate the eigenvectors obtained for different ratios between the
difference in diagonal elements and the off-diagonal element.

With this relation in mind and taking into account that any Coulomb matrix
element V ðabÞ

nanb;mamb
is small (meV) compared to the difference between the first

excited state of a building block and its ground state, EðaÞ
1 � EðaÞ

0 (eV), we may well
neglect any mixing of the ground state of the PPC with any excited state, by setting
hnjH j0i ¼ 0 for n 6¼ 0. This approximation is known as the Heitler-London
approximation [6]. In this case, the ground state of the aggregate reads

jw0i ¼ j0; . . .; 0i ð17Þ
with energy

E0 ¼
X
a

EðaÞ
0 þ 1

2

X
a;b

V ðabÞ
00;00; ð18Þ

that contains the sum of ground state energies EðaÞ
0 of isolated building blocks and

the electrostatic coupling V ðabÞ
00;00 between the ground state charge densities of

different building blocks. The states next higher in energy are those in which one
building block is in its first excited state, whereas all the remaining building blocks
of the PPC are in their electronic ground state. Such a state is termed a localized
1-exciton state of the complex. Since the protein starts to absorb at much higher
energies than the pigments, no mixing of the excited pigment states with states
involving excited protein building blocks needs to be considered. Thus, we obtain the

following eigenvalue problem for the 1-exciton states jmi ¼ uðmÞ
1

Qa 6¼m
a uðaÞ

0 in which
all building blocks are in their electronic ground state, except for pigment m, which
is in its first excited state

cðMÞ
m EðmÞ

1 þ
Xa 6¼m

a

EðaÞ
0 þV ðm;aÞ

10;10

� �(

þ 1
2

Xa 6¼m;b 6¼m

a;b

V ða;bÞ
00;00 � kM

)
þ
Xk 6¼m

k

cðMÞ
k V ðk;mÞ

10;01 ¼ 0:

ð19Þ

Three types of matrix elements need to be considered: the Coulomb coupling V ðm;aÞ
10;10

between the charge density of the excited state of pigment m and the ground state
charge density of the remaining building blocks of the PPC (including pigments and

the protein), the ground state charge density coupling V ða;bÞ
00;00 between the remaining

building blocks of the PPC, and the Coulomb coupling V ðk;mÞ
10;01 between the

ground-to-excited state transition densities of the pigments. Note that k in
equation (19) runs over all pigments, whereas a also includes the building blocks of the
protein.
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If we are interested in the transition energies between the ground state jw0i and
the one-exciton states jwM i, we may subtract from the diagonal elements of the
above matrix the energy E0 of the ground state (equation (18)), resulting in

cðMÞ
m Em � EMf gþ

Xðk 6¼mÞ

k

cðMÞ
k V km ¼ 0; ð20Þ

with the local transition energy (site energy) of pigment m

Em ¼ EðmÞ
1 � EðmÞ

0 þ
X
a

V ðm;aÞ
10;10 � V ðm;aÞ

00;00

� �
ð21Þ

that is given as the transition energy EðmÞ
1 � EðmÞ

0 of the isolated pigment m and the

difference in charge density coupling V ðm;aÞ
10;10 of the excited state of pigment m with

the ground state charge density of the environment and the ground state charge

density coupling V ðm;aÞ
00;00 . The eigenenergy

EM ¼ kM ð22Þ
corresponds to the transition energy between the ground state jw0i and the
delocalized one-exciton state jwM i, which determines the position of optical lines
observed in spectroscopy, and

Vkm ¼ V ðk;mÞ
10;01 ð23Þ

is the Coulomb coupling between the transition densities of pigments k and m. The
latter is termed excitonic coupling. Hence, the singly excited states of the PPC may
be seen as eigenstates of the following Frenkel exciton Hamiltonian

H ex ¼
X
m

Emjmihmj þ
Xm 6¼k

m;k

V km jmihkj; ð24Þ

which contains a diagonal matrix elements the site energies Em (equation (21)) and
in the off-diagonal the excitonic couplings Vkm (equation (23)).

Moreover, our derivation of the exciton Hamiltonian provides us with a minimal
model for the calculation of its parameters. As equation (21) suggests, the site energy

Em of pigmentm is obtained from the transition energyEðmÞ
1 � EðmÞ

0 of this pigment in
vacuum and the difference in charge density coupling between the excited and the
ground state of the pigment with the remaining building blocks of the PPC (including
other pigments and the protein parts). The excitonic couplings Vkm (equation (23))
are obtained from the Coulomb interaction between transition densities of the
pigments.

In the derivation of the Frenkel exciton Hamiltonian, discussed above, we have
neglected the inter-building block Coulomb coupling between strongly off-resonant
states (Heitler-London approximation). These interactions can, however, in prin-
ciple, be included in perturbation theory, where the transition energy shift

DEm ¼ Em � ðEðmÞ
1 � EðmÞ

0 Þ ¼
X
n

DEðnÞ
m ð25Þ
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is sorted with respect to the power n of the inter-building block Coulomb coupling.
The first-order contribution

DEð1Þ
m ¼

X
a

V ðm;aÞ
10;10 � V ðm;aÞ

00;00

� �
ð26Þ

was already obtained using the variational principle approach used above. The next
higher-order contribution

DEð2Þ
m ¼ DE ind

m þDEdisp
m ð27Þ

contains the inductive and dispersive site energy shifts [7]. The inductive
contribution reads

DE ind
m ¼ �

Xk 6¼m

k

Xc 6¼0

c

jV ðm;kÞ
10;1c j2 � jV ðm;kÞ

00;0c j2

EðkÞ
c � EðkÞ

0

�
Xk 6¼m

k

Xn 6¼1

n

jV ðm;kÞ
10;n0 j2

EðmÞ
1 � EðmÞ

n

�
Xn 6¼0

n

jV ðm;kÞ
00;n0 j2

EðmÞ
0 � EðmÞ

n

 !
:

ð28Þ

The first line contains the Coulomb coupling between the transition density qðkÞ0c of

the kth building block and the charge density of the excited state qðmÞ
11 and the

ground state qðmÞ
00 of pigment m, and in the second line we have the Coulomb

coupling between the ground state charge density qðkÞ00 of k and the transition

densities qðmÞ
0n and qðmÞ

1n of m. The sums over the transition densities with the
respective energy denominators can be interpreted as electronic polarizations [8–10].
Hence the first line contains the difference in polarization of the environment by the
excited and the ground state charge density of the pigment. The second line contains
the difference in polarizations of the excited and ground state of the pigment by the
ground state charge density of the environment.

The dispersive site energy shift in equation (27) reads

DEdisp
m ¼ �

Xk 6¼m

k

Xc 6¼0

c

Xn 6¼1

n

jV ðm;kÞ
10;nc j2

EðmÞ
n � EðmÞ

1 þEðkÞ
c � EðkÞ

0

 

�
Xn 6¼0

n

jV ðm;kÞ
00;nc j2

EðmÞ
n � EðmÞ

0 þEðkÞ
c � EðkÞ

0

! ð29Þ

and contains the Coulomb coupling between transition densities of the pigment and
the environment. These transition density couplings can be interpreted as the
difference in van der Waals-type couplings between the excited and the ground state
of the pigment.

In the charge density coupling (CDC) method [11], the local transition energy of
the chromophore m is approximated by including the first-order corrections
explicitly. Screening effects of this charge density Coulomb coupling, arising from
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higher-order coupling terms in the perturbation series, are included by an effective
dielectric constant �eff . The local transition energy Em is then given as

Em ¼ E0 þ 1
�eff

X
I ;J

ðqðmÞ
I ð1,1Þ � qðmÞ

I ð0,0ÞÞqðkÞJ ð0,0Þ
jRðmÞ

I � RðkÞ
J j

: ð30Þ

Here, E0 denotes a reference energy that will be assumed to be the same for the same
type of chromophore. Dispersive and inductive site energy shifts are assumed to be
site-independent and, therefore, can be included in the constant E0.

5.2.1.1 Higher-Order Corrections to the Excitonic Couplings-The
Poisson-TrEsp Method

In order to describe contributions from higher excited states of the environment to
the excitonic coupling between pigments, we consider a homodimer with equal site

energies E1 ¼ E2 ¼ E0 and excitonic coupling V ð0Þ
12 . In this case, the delocalized

eigenstates (exciton states) are obtained as

j�i ¼ 1ffiffiffi
2

p ðj1i � j2iÞ; ð31Þ

with energies Eð0Þ
� ¼ E0 � V ð0Þ

12 . Now, we switch on the excitonic coupling to the
off-resonant high-energy transitions between the ground state and the cth excited
state of the environmental building blocks k

V̂ ¼
X
k

X
c

V ð1;kÞ
10;0cj1ihk; cj þV ð2;kÞ

10;0cj2ihk; cj
� �

þ h:c:; ð32Þ

where “h.c.” denotes the hermitian conjugate and jk; ci denotes a singly excited
state, where the environmental site k is in its cth excited state and all other building
blocks are in their electronic ground state. In second-order perturbation theory the
following energies are obtained for the exciton states j�i

E� ¼ Eð0Þ
� þ

X
k

X
c

jh�jV jk; cij2
Eð0Þ

� � EðkÞ
c

¼ E0 � V ð0Þ
12 þ 1

2

X
k;c

V ð1;kÞ
10;0cV

ð1;kÞ
0c;10 þV ð2;kÞ

10;0cV
ð2;kÞ
0c;10 � V ð1;kÞ

10;0cV
ð2;kÞ
0c;10 �V ð2;kÞ

10;0cV
ð1;kÞ
0c;10

E0 � V ð0Þ
12 � EðkÞ

c

:

ð33Þ

Taking into account that E0 � V ð0Þ
12 � EðkÞ

c � E0 � EðkÞ
c , the difference between

perturbed exciton energies becomes

E þ � E� ¼ 2V ð0Þ
12 þ 2

X
k;c

V ð1;kÞ
10;0cV

ð2;kÞ
0c;10

E0 � EðkÞ
c

; ð34Þ
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where we have also used the fact that the eigenfunctions of all states are assumed to
be real-valued. Identifying the perturbed excitonic coupling V 12 as half the splitting
between eigenstates results in

V 12 ¼ V ð0Þ
12 þ

X
k

V ðkÞ
12 ; ð35Þ

where V ð0Þ
12 is the direct excitonic coupling between the pigments and

V ðkÞ
12 ¼

X
c

V ð1;kÞ
10;0cV

ð2;kÞ
0c;10

E0 � EðkÞ
c

ð36Þ

contains a superexchange-type contribution involving excitonic couplings to

off-resonant states of the environmental building block k. V ðn;kÞ
10;0c ¼ V ðn;kÞ

0c;10 is the
Coulomb coupling between the transition density of the 0 ! 1 transition of
pigment n and the transition density of the 0 ! c transition of the building block
k reading

V ðn;kÞ
10;0c ¼

Z
drn

Z
drk

qðnÞ10 ðrnÞqðkÞ0c ðrkÞ
jrk � rnj

�
X
I ;J

qðnÞI ð1,0ÞqðkÞJ ð0; cÞ
jRðnÞ

I � RðkÞ
J j

:

ð37Þ

In the second line of the above equation, we have approximated the integral by a
sum over pairwise Coulomb interactions between atomic transition charges,
introduced in the Transition charges from the Electrostatic Potential (TrEsp)
method [5]. These charges are obtained from a fit of the electrostatic potential of the
ab-initio transition density. Applying a dipole approximation to the environmental
building block k results in

V ðn;kÞ
10;0c ¼

X
I

qðnÞI ð1,0ÞdðkÞ0c � ðRðnÞ
I � RkÞ

jRðnÞ
I � Rk j3

; ð38Þ

with the transition dipole moment dðkÞ0c of the 0 ! c transition

dðkÞ0c ¼
X
J

qðkÞJ ð0; cÞRðkÞ
J ð39Þ

of building block k with center coordinate Rk . With the above approximations

the environmental mediated excitonic coupling V ðkÞ
12 in equation (36), can be

expressed as

V ðkÞ
12 ¼ 1

2

X
I ;J

qð1ÞI ð1,0Þqð2ÞJ ð0,1Þ
Rð2Þ

J � Rk

� �
âkð�E0Þ Rk � Rð1Þ

I

� �
jRð2Þ

J � Rk j3jRð1Þ
I � Rk j3

; ð40Þ
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where we introduced the polarizability tensor of the kth building block at energy E0

with Cartesian components

ðað�E0ÞÞij ¼ 2
X
c

dðkÞ0c

� �
i
dðkÞ0c

� �
j

EðkÞ
c � E0

: ð41Þ

With this polarizability tensor, equation (40) can be interpreted in the following

way. The transition charge qð1ÞI ð1,0Þ of pigment 1 creates a field

EI ¼ qð1ÞI ð1,0Þ Rk �Rð1Þ
I

� �
=jRð1Þ

I �Rk j3; ð42Þ

which induces a dipole moment in the kth environmental building block

pk ¼ âkð�E0ÞEI ; ð43Þ

that interacts with the partial charge qð2ÞJ ð0,1Þ at position Rð2Þ
J of monomer 2 via the

dipole potential

/pk ðR
ð2Þ
J Þ ¼ pk Rð2Þ

J �Rk

� �
=jRð2Þ

J � Rk j3: ð44Þ

Noting that the polarizability tensor âkð�hxÞ is related to the dynamic polarizability
âdynk ð�hxÞ, that describes the polarization by a field of frequency x by [8–10]

âdynk ð�hxÞ ¼ 1
2

âkð�hxÞþ âkð��hxÞð Þ � 1
2
âkð��hxÞ; ð45Þ

we can identify the polarization in equation (40) as a fast (optical) polarization of
the environment, which takes care of the fact that an electronic excitation energy
transfer event does not leave any time for a slow polarization of the environment.

The above derivation is exploited in the Poisson-TrEsp method [10, 12, 13]. In
this method, the protein/solvent environment is described by a homogeneous
dielectric of optical dielectric constant �. The transition charges of the pigments are
placed in molecule-shape cavities with � ¼ 1 inside the cavities and � ¼ n2, with the
(average) refractive index n outside. The electrostatic potential of the transition
density of chromophore m, /1;0

m ðrÞ is obtained by solving a Poisson equation

r �ðrÞr/ð1;0Þ
m ðrÞ

� �
¼ �4p

X
I

qðmÞ
I ð1,0Þdðr� RðmÞ

I Þ; ð46Þ

where �ðrÞ equals one if r points into a cavity and n2 otherwise. The coupling
between chromophores m and n is then obtained as

Vmn ¼
X
J

/ð1;0Þ
m ðRðnÞ

J ÞqðnÞJ ð1,0Þ: ð47Þ

An uncertainty in the calculation of couplings is the absolute magnitude of the
transition charges which can vary substantially for different quantum chemical
methods used to calculate the transition density. Fortunately the shape of the
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transition density is often very similar. Therefore, the magnitude can be scaled by a
constant factor that is obtained by comparing the first moment of the transition
density, that is the transition dipole moment, with the experimental vacuum
transition dipole moment. The latter can be extrapolated from dipole strengths
measured in different solvents (The values for different types of chlorophylls and
bacteriochlorophylls can be found in Ref. [14]).

By comparing the couplings obtained with Poisson-TrEsp with those obtained in
vacuum, directly from the TrEsp charges, an empirical screening factor
f apprmn ðRmn; jmnÞ can be inferred, such that the couplings may be approximated as

Vmn � f apprmn ðRmn; jmnÞ
X
I ;J

ðqðmÞ
I ð1,0ÞqðnÞJ ð0,1Þ
jRðmÞ

I � RðnÞ
J j

: ð48Þ

Whereas previous works suggested an exponential distance dependence of the
screening factor [15, 16] or a rather constant screening factor [17], a recent
investigation of excitonic couplings in photosystem I trimers found an improved
approximation of the screening effects using a function [10]

f apprmn ðRmn; jmnÞ ¼ 0:60þ 39:6Hðjjmnj � 1:17Þ expf�0:56Rmn=Åg ð49Þ
containing the orientation factor jmn of the dipole-dipole interaction

jmn ¼ e!m � e!n � 3ð e!m � e!mnÞð e!n � e!mnÞ; ð50Þ
where e!m and e!n are unit vectors that are oriented along the transition dipole
moments l!m and l!n of pigments m and n, respectively, and the unit vector e!mn is

oriented along the center-to-center vector R
!

m � R
!

n between these pigments. The
Heaviside step function

Hðjjmnj � 1:17Þ ¼ 1 jjmnj � 1:17
0 else

�
ð51Þ

ensures that the screening factor depends exponentially on distance for in-line-type
geometries (jjmnj � 1:17) and is constant for sandwich-like geometries (jjmnj\1:17).

5.2.2 Vibrational Degrees of Freedom

So far we have discussed how the electronic degrees of freedom can be treated by the
Frenkel exciton Hamiltonian introduced above. We have considered the equilibrium
position of nuclei in the electronic ground state of the complex for the definition of
the Frenkel exciton Hamiltonian. In order to include the nuclear degrees of freedom,
we will consider small displacements of nuclei from their equilibrium positions and
add the kinetic energy of nuclei in the following. The Frenkel exciton Hamiltonian is
expanded into a Taylor series for small displacements of nuclei around their equi-
librium position

Hmn � H ð0Þ
mn þ

X
J

ðrJHmnj0Þ � ðRJ � Rð0Þ
J Þ; ð52Þ
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where H ð0Þ
mn ¼ HmnðfRg0Þ denotes the exciton Hamiltonian at the equilibrium

position of nuclei in the electronic ground state of the aggregate fRg ¼ fR0g, the
sum runs over all atoms J of the complex and ðrJHmnj0Þ denotes the gradient of the
Hamiltonian with respect to the three Cartesian coordinates of nucleus J , taken at
fRg ¼ fR0g. We introduce mass-weighted normal coordinates qnðtÞ via

RJ � Rð0Þ
J ¼ M�1=2

J

X
n

AðnÞ
J qn; ð53Þ

with the mass MJ of nucleus J , and AðnÞ
J contains the contribution of nucleus J to

the eigenvector of normal mode n. The normal coordinates qn are related to

dimensionless coordinates Qn ¼ C n þC y
n with the creation and annihilation

operators of vibrational quanta C y
n and C n, respectively by qn ¼ ð�h=2xnÞ1=2Qn [4].

Hence, equation (52) may be expressed as

Hmn � H ð0Þ
mn þ

X
n

gnðm; nÞ�hxnQn; ð54Þ

where the dimensionless exciton-vibrational coupling constants gnðm; nÞ have been
introduced as

gnðm; nÞ ¼ x�3=2
n ð2�hÞ�1=2

X
J

M�1=2
J AðnÞ

J � ðrJHmnj0Þ: ð55Þ

Two requisites for the calculation of the above coupling constants are the
performance of a normal mode analysis in the electronic ground state of the
complex and the calculation of the gradients of the Frenkel exciton Hamiltonian.
Whereas for isolated chromophores a quantum chemical normal mode analysis is
possible, for whole aggregates one has to rely on classical molecular mechanics
approaches. However, also a combination of the two is possible since the diagonal
elements of Hmn, that is the local excitation energies Em in equation (21) also

contains a contribution of the isolated chromophores EðmÞ
1 � EðmÞ

0 that depends
solely on the intramolecular nuclear degrees of freedom. Therefore, in the spirit of the
derivation of the Frenkel exciton Hamiltonian above, the coupling constants
gnðm; nÞ may be grouped into intra-molecular and inter-molecular coupling
constants

gnðm; nÞ ¼ dm;ng
ðintraÞ
n þ gðinterÞn ðm; nÞ; ð56Þ

where the intramolecular coupling constants are identical for identical chromophores
and contain the influence of intramolecular electron-vibrational coupling, and the
intermolecular coupling constants comprise the effect of the modulation of
inter-building block Coulomb coupling by the nuclear dynamics on the diagonal
and off-diagonal elements of Hmn. Note that we neglect the mixing between inter-
and intramolecular vibrational modes because of the different energies of their
vibrational quanta.
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The complete Hamiltonian governing the coupled exciton-vibrational motion
also includes the vibrational Hamiltonian, which, in terms of the normal modes
introduced above, is a sum over independent harmonic oscillator modes n with
normal mode frequencies xn. Hence, the total Hamiltonian of the aggregate reads

H ¼
X
m;n

H ð0Þ
mn þ

X
n

gnðm; nÞ�hxnQn

 !
jmihnj þ

X
n

�hxn

4
P2

n þQ2
n

� �
; ð57Þ

where the dimensionless momentum Pn ¼ iðC n � C y
nÞ [4] was used in the harmonic

oscillator Hamiltonian. The above Hamiltonian can be treated fully quantum
mechanically to derive, e.g., expressions for the lineshape function of optical
transitions or rate constants of excitation energy transfer. All these expressions are
related to the spectral density of the exciton-vibrational coupling

JmnklðxÞ ¼
X
n

gnðm; nÞgnðk; lÞdðx� xnÞ ð58Þ

that contains the exciton-vibrational coupling constants introduced above and the
normal mode frequencies xn. Taking into account that the intra- and intermolecular
modes have different frequencies, the spectral density can be expressed as a sum of
intra- and intermolecular contributions

JmnklðxÞ ¼ dm;ndn;kdk;lJ ðintraÞðxÞþ J ðinterÞ
mnkl ðxÞ; ð59Þ

with

J ðintraÞðxÞ ¼
X
n

gðintraÞn

� �2
dðx� xnÞ; ð60Þ

and

J ðinterÞ
mnkl ðxÞ ¼

X
n

gðinterÞn ðm; nÞgðinterÞn ðk; lÞdðx� xnÞ: ð61Þ

The intermolecular spectral density contains information about the modulation of
excitonic couplings, transition energies and also about correlations in the modula-
tions of those quantities, whereas such effects in the intramolecular spectral density
are neglected because of the local nature of the latter.

5.2.3 Parameterization of the FMO Protein

Application of the above parameterization to the FMO protein revealed the fol-
lowing results:

� The electrostatic pigment-protein coupling creates a site energy funnel in
the FMO protein such that the pigments that are closer to the outer antenna are
blue-shifted and those closer to the reaction center complex (RCC) are red-shifted
[11, 18, 19]. These calculations provided a structure-based explanation of some of
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the earlier fits of site energies [12, 20–22]. Based on these fits and earlier linear
dichroism spectra of isolated FMO proteins and membrane fragments with FMO
proteins attached [23], the relative orientation of the FMO protein with respect to
the RCC has been predicted in 2006 [12]. The first experimental verification of this
orientation was provided based on chemical labeling and mass spectrometry [24].
Recently, the first high-resolution cryo-electron microscopy studies of the
FMO-RCC supercomplex were reported [1, 2], which also provided evidence that
the pigments, identified as low-energy sites earlier, are closest to the RCC. Con-
cerning the effect of electrostatic pigment-protein coupling, it was found that the
electric field of the backbone of two alpha helices in the neighborhood of BChl 3 in
the FMO protein and a hydrogen bond between a tyrosine residue and the 3-acetyl
group of BChl 3 are the main contributors to the red shift of this pigment. The
latter prediction has been recently verified by site-directed mutagenesis experi-
ments [25].

� Based on Poisson-TrEsp calculations of the excitonic coupling and vacuum
dipole strength of the pigments extrapolated from an analysis of absorption
spectra in different solvents [14], an effective dipole strength of 30 D2 was inferred
[12] to be used in calculations of inter-pigment excitonic couplings. The excitonic
couplings had been found to be critical for the fit of site energies, and an
unusually low effective dipole strength was inferred from a fit of optical spectra
[20]. The Poisson-TrEsp calculations [12] explained this value quantitatively.

� The calculation of the spectral density of the FMO protein revealed a
one-order-of-magnitude smaller Huang-Rhys factor for the fluctuations of the

FIG. 5.2 – Comparison between the intermolecular spectral density J 33ðxÞ of low-energy
pigment BChl 3 (red bars) obtained from an NMA [26], the intrapigment part of the spectral
density J intraðxÞ extracted from experiment [27] (green bars), and the overall spectral density
of the lowest exciton state in the FMO protein, extracted from fluorescence line narrowing
spectra (black line) [28]. For comparison, the intermolecular spectral density averaged over all
sites is also shown (dashed red line). Figure adapted from Ref. [26].
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excitonic couplings as compared to that of the site energies [13]. In addition,
correlations in site energy fluctuations at low vibrational frequencies were found
in different pigments in the same [13] as well as in different monomeric subunits of

the FMO trimer [26]. The intermolecular contribution J ðinterÞ
3 ðxÞ ¼ J ðinterÞ

3333 ðxÞ of
the site energy fluctuations of the low-energy site 3 obtained from a NMA [26] is
compared in figure 5.2 to experimental data [27, 28]. The calculated spectral
density is larger than the experimental one at very low frequencies and smaller at
intermediate and high frequencies. The deviations at small and intermediate
frequencies could be due to the harmonic approximations, and the deviations at
high frequencies are due to contributions from intramolecular vibrational modes
of the pigments. The site-averaged intermolecular contribution to the site energy
modulation (dashed line in figure 5.2) is very similar to the spectral density

J ðinterÞ
3 ðxÞ of the low-energy site 3.

5.3 Quantum Dynamics
Taking into account the fact that the modulation of excitonic couplings is negligibly
small compared to that of the site energies [13] (see above), we arrive at the following
Frenkel exciton Hamiltonian

H ¼
X
m

Em þ
X
n

gnðmÞ�hxnQn

 !
jmihmj þ

X
m;n

Vmnjmihnj þ
X
n

�hxn

4
P2

n þQ2
n

� �
;

ð62Þ
where Em and Vmn are the site energy of pigment m and the excitonic coupling
between pigments m and n, taken at the equilibrium position of nuclei in the
electronic ground state. To find the eigenstates of the above Hamiltonian and the
resulting exciton-vibrational dynamics is a non-trivial task. To get some first
insights we use the completeness relation 1 ¼ j0ih0j þPmjmihmj and introduce
potential energy surfaces of localized excited states jmi by rewriting the above
Hamiltonian as

H ¼
X
m

~Em þ
X
n

�hxn

4
ðQn þ 2gnðmÞÞ2

 !
jmihmj þ

X
m;n

Vmnjmi

þ
X
n

�hxn

4
P2

n þQ2
n

� �
j0ih0j þTnuc;

ð63Þ

with the kinetic energy of nuclei Tnuc ¼
P

n
�hxn

4 P2
n and the minimum energy of the

PES (at Qn ¼ �2gnðmÞ), ~Em ¼ Em � EkðmÞ, where

EkðmÞ ¼
X
n

�hxng2nðmÞ ð64Þ
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is the reorganization energy of the local exciton-vibrational coupling of site m.
If this reorganization energy is much larger than the excitonic coupling,
i.e., EkðmÞ[ [ jVmnj in good approximation, localized excited, states are excited
and the nuclei relax in the PES of these excited states, releasing the reorganization
energy EkðmÞ. Energy transfer between these localized excited states can be
described by standard Förster theory [4, 7].

In the limit of very strong excitonic couplings, that is, EkðmÞ\\jVmnj, delo-
calized excited states jMi ¼Pmc

ðMÞ
m jmi are excited, where the coefficients cðM Þ

m

follow from the eigenvectors of the exciton matrix defined above and the lowest
eigenenergy EM of a delocalized state is lower than the Em of a localized excited
state an amount that is in the order of the nearest neighbor excitonic coupling.
Qualitatively speaking, the system tries to minimize the free energy after optical
excitation. In the case of strong excitonic couplings, the excitons created after light
excitation relaxes between different delocalized excited states, and this relaxation
can be described by using perturbation theory in the local exciton-vibrational
coupling, as done in Redfield theory [7].

In photosynthetic pigment-protein complexes, the theory is challenged by the
fact that the nearest neighbor excitonic couplings Vmn are in the same order of
magnitude as the local reorganization energies of exciton-vibrational coupling.
Hence, there is no obvious small parameter that can be used for perturbation
theory. Numerically exact methods have been developed to deal with this situa-
tion, such as the hierarchical equation of motion (HEOM) approach [29–31] (see
chapter 3), the density matrix renormalization group/polynomial transformation
approach [32, 33], path integral methods [34–37], the multi-configurational
time-dependent Hartree (MCTDH) method [38] (see chapter 2) and polaron
transformation techniques [39]. Here, we will follow a different strategy and transform
the Frenkel exciton Hamiltonian in equation (62) into the exciton basis, defined at
the equilibrium position of nuclei in the electronic ground state. The resulting
Hamiltonian reads

H ¼
X
M

EM þ
X
n

gnðM ;M Þ�hxnQn

 !
jM ihM j

þ
X
M ;N

gnðM ;N Þ�hxnQnjM ihN j þ
X
n

�hxn

4
P2

n þQ2
n

� �
;

ð65Þ

where the exciton-vibrational coupling constant gnðM ;N Þ in the exciton basis

gnðM ;N Þ ¼
X
m

cðMÞ
m cðN Þ

m gnðmÞ ð66Þ

now contains diagonal (M ¼ N ) as well as off-diagonal (M 6¼ N ) contributions.
Interestingly, the off-diagonal contributions are smaller than the diagonal ones, as
was revealed, e.g., by a normal mode analysis of the spectral density of the FMO
protein [13] (figure 5.3).
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The diagonal elements can be used to construct potential energy surfaces of the
exciton states, as was shown above for the localized excited states (equation (63)),
and is illustrated in figure 5.4.

The off-diagonal elements of the exciton-vibrational coupling couple different
excitonic PES and give rise to exciton relaxation. Expressions for the lineshape
function DM ðxÞ for the optical transition between the ground state and exciton
state jM i have been derived using an exact treatment of the diagonal elements of the
exciton vibrational coupling and different levels of perturbation theory for the
off-diagonal elements. The general expression for the lineshape function reads

DM ðxÞ ¼ R

Z 1

0
dteiðx�~xM ÞteGM ðtÞ�GM ð0Þe�t=sM ; ð67Þ

where the diagonal part of the exciton-vibrational coupling is contained in the
function GM ðtÞ

GM ðtÞ ¼
Z 1

0
dxJMM ðxÞ ð1þ nðxÞÞe�ixt þ nðxÞeixt� �

; ð68Þ

with the spectral density

JMM ðxÞ ¼
X
n

g2nðM ;M Þdðx� xnÞ; ð69Þ

the exciton relaxation-induced lifetime broadening

s�1
M ¼

XN 6¼M

N

Rff MNg; ð70Þ

FIG. 5.3 – Coupling constants gnðM ;N Þ of exciton-vibrational coupling of delocalized exciton
states of the monomeric subunit of the FMO protein, obtained from equation (66), using the
microscopic coupling constants gnðm; nÞ from the NMA as a function of normal mode index n

for the first 4000 normal modes. The black solid line shows the corresponding normal mode
frequencies xn. Figure taken from Ref. [13].
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and the transition frequency

~xM ¼ xM � EkðMÞþIff MNg ð71Þ
containing the reorganization energy EkðM Þ ¼Pn�hxng2nðM ;MÞ of the PES of the
M th exciton state. Equations (70) and (71) contain the real and imaginary parts,
respectively of the function f MN reading [42]

f MN ¼
Z 1

0
dteixttrvib U y

M ðtÞVMNUN ðtÞVNMW eqðgÞ
n o

; ð72Þ

FIG. 5.4 – Illustration of free energy surfaces of exciton states and inter-surface transfer as
described by Redfield theory [40], Modified Redfield theory [41], and Non-equilibrium
Modified Redfield (NeMoR) theory [42, 43]. After optical excitation of the Mth exciton state,
in Redfield and Modified Redfield theory, the inter-free energy surface coupling giving rise to
exciton relaxation is treated by assuming that the nuclei are relaxed in the initial exciton
state. Redfield theory, in addition, neglects the mutual displacement of free energy surfaces of
exciton states along the nuclear coordinate (reaction coordinate) axis. The present NeMoR
theory takes into account the finite nuclear relaxation time and the mutual displacements of
free energy surfaces of exciton states. Figure taken from Ref. [42].
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where the inter-PES coupling VMN contains the off-diagonal elements of the
exciton-vibrational coupling

VMN ¼
X
n

gnðM ;N Þ�hxnQn; ð73Þ

the time-evolution operators U y
M ðtÞ and UN ðtÞ of the vibrational degrees of freedom

in the PES of the Mth and N th exciton state, respectively, and the equilibrium
statistical operator W eqðgÞ of the vibrations in the electronic ground state.

Different approximations of the function f MN in equation (72) exist, as illus-
trated in figure 5.4. In Redfield theory [40], the mutual shift between the PES of
exciton states jM i and jN i are neglected by setting UN ðtÞ ¼ UM ðtÞ. In addition, it
is assumed that after optical excitation of the state jM i the nuclei relax instanta-
neously in the PES of this state, prior to exciton relaxation. In this case, the equi-
librium operator W eqðgÞ of the vibrations in the electronic ground state can be
replaced by that of the exciton state jMi, W eqðgÞ � W eqðM Þ. The inverse lifetime
s�1
M in equation (70) is obtained as

s�1
M ¼ 1

2

XN 6¼M

N

kRedfM!N ; ð74Þ

with the Redfield rate constant

kRedfM!N ¼ 2px2
MN JMN ðxMN Þð1þ nðxMN Þþ JMN ðxNM ÞnðxNM Þð Þ; ð75Þ

that contains the spectral density

JMN ðxÞ ¼
X
n

g2nðM ;N Þdðx� xnÞ; ð76Þ

with the off-diagonal elements of the exciton-vibrational coupling. Please note that
this spectral density can be expressed by the spectral densities of the
local-exciton-vibrational coupling, using equation (66), as

JMN ðxÞ ¼
X
m

cðMÞ
m

� �2
cðN Þ
m

� �2
JmðxÞþ

Xm 6¼n

m;n

cðM Þ
m cðN Þ

m cðMÞ
n cðN Þ

n JmnðxÞ; ð77Þ

where

JmðxÞ ¼
X
n

g2nðmÞdðx� xnÞ ð78Þ

contains the fluctuation of the site energy of pigment m and

JmnðxÞ ¼
X
n

gnðmÞgnðnÞdðx� xnÞ ð79Þ

describes the correlations in the fluctuations of the site energies of pigment sm and n.
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In modified Redfield theory [41] the mutual displacement between the PES of
exciton states jMi and jN i is taken into account, and vibrational relaxation is
assumed to be fast by approximating W eqðgÞ � W eqðM Þ. In non-equilibrium
modified Redfield theory [42, 43] the finite relaxation time of nuclei is taken into
account by evaluating the full expression for f MN in equation (72). Application to
the water-soluble chlorophyll-binding protein (WSCP) revealed only very minor
differences between the different theories, within reasonable parameter ranges [42]. It
should, however, be noted that the very high-frequency intramolecular modes,
outside of the range in which exciton relaxation occurs, were not included in this
study. A word of caution is needed here. These very high-frequency intramolecular
modes have small Franck–Condon factors. Therefore, the interpigment excitonic
coupling involving excitations of these modes is small, and slight perturbations by
the environment will destroy any delocalization effects of the exciton-vibrational
wavefunction. Such dynamic localization effects are difficult to describe theoreti-
cally. However, non-perturbative approaches exist now [44, 45] that provide support
for an implicit treatment of these localization effects [46, 47]. In this treatment, the
high-frequency intramolecular vibronic transitions are treated as localized excita-
tions and delocalization is only allowed for the 0-0 transition, including the
low-frequency part of the spectral density.

A problem, related in spirit, occurs if there are pigments that are only weakly
coupled to other pigments that form strongly coupled exciton domains, or if there is
weak inter-domain excitonic coupling. Working with perturbation theory in the
exciton basis of the whole complex could lead to an artificial exciton delocalization
involving weakly coupled pigments. Consider, for example, a molecule in
Les-Houches (France) and another one in Telluride (USA), 8600 km apart. If both
have the same transition energy, their exciton matrix has equal diagonal elements
and hence, the exciton states will be delocalized since the off-diagonal elements (the
excitonic couplings) are not exactly zero. In reality, however, the slightest pertur-
bation will bring the two molecules out of resonance and the excited states will be
localized. Such a dynamic localization is difficult to describe explicitly, requiring a
non-perturbative approach. Again an implicit treatment of the dynamic localization
effects can be applied by introducing domains of strongly coupled pigments, in which
the exciton wavefunction is allowed to delocalize, and treating the inter-domain
excitonic coupling in second-order perturbation theory [30, 48, 49].

The standard generalized Förster theory rate constant for excitation energy
transfer between an exciton state jMai in domain a and exciton state jNbi in domain
b reads [48]

kGF
Ma!Nb

¼ 2p

�h2
jVMaNb j2

Z
dxDNbðxÞD0

Ma
ðxÞ; ð80Þ

where the excitonic coupling between the two exciton states,

VMaNb ¼
X
ma ;nb

cðMaÞ
ma

cðNbÞ
nb

Vmanb ð81Þ

contains the exciton coefficients of these states and the individual inter-domain
excitonic couplings Vmanb between pigments ma and nb in domains a and b,
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respectively. The functions DNbðxÞ and D0
Ma

ðxÞ in equation (80) are the absorption
and emission lineshape functions, respectively, of these exciton states. The
absorption lineshape function is given in equation (67) by setting M ¼ Nb, and
the emission lineshape function D0

M ðxÞ is obtained from equation (67) by setting
M ¼ Ma and by changing the sign of the first exponent on the r.h.s.
(eiðx�~xM Þt ! e�iðx�~xM Þt). In addition, we have neglected the small off-diagonal
frequency shift in equation (71), that is, we approximate ~xM by xM � EkðMÞ.

The above rate constant has been extended to include correlations in site energy
fluctuations between pigments in different exciton domains [26]. In this case, the rate
constant reads

kGF
Ma!Nb

¼ jVMaNb j2
�h2

Z 1

�1
eið~xMa�~xNb ÞteGMa ðtÞ�GMa ð0ÞeGNb ðtÞ�GNb ð0Þe�tð1=sMa þ 1=sNb Þ

�eGMaNb ðtÞ�GMaNb ð0Þ;
ð82Þ

where the first line formally resembles the standard result in equation (80) and the
function GMaNbðtÞ in the second line reading

GMaNbðtÞ ¼
Z 1

0
dxJMaNbðxÞ ð1þ nðxÞÞe�ixt þ nðxÞeixt� � ð83Þ

contains the spectral density

JMaNbðxÞ ¼
X
ma ;nb

cðMaÞ
ma

� �2
cðNbÞ
nb

� �2
JmanbðxÞ; ð84Þ

which is non-zero only if there are correlations in site energy fluctuations of pigments
in different domains, that is, if JmanbðxÞ is non-zero.

5.3.1 Energy Transfer in the FMO Protein

Application of the quantum dynamic theories to the FMO protein, using the
parameterization given above, resulted in the following insights:

� Correlations in site energy fluctuations have practically no influence on exciton
relaxation within the FMO monomer [13] as well as excitation energy transfer
between different FMO monomers [26].

� The site-dependence of the Huang-Rhys factor is not critical for exciton relax-
ation and transfer. Exciton relaxation in the monomeric subunit of the FMO
proteins occurs on a sub-ps timescale and excitation energy transfer between the
subunits takes about 10 ps [26], in agreement with transfer times inferred from
2D electronic [50] and hole-burning spectroscopy [51], respectively.

� The semiclassical limits of Redfield [52, 53] and generalized Förster [26, 53]
theories reveal that in a world where electrons move according to the laws of
quantum mechanics and nuclei behave classically, that is, without taking notice
of the coordinate/momentum uncertainty principle, exciton relaxation in the
monomeric subunit of FMO would lead to equal population of all exciton states,
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i.e., the principle of detailed balance assuring a preferential population of
low-energy states would be violated, whereas this principle would be fulfilled for
the transfer between different monomeric subunits of the FMO protein. The
different behavior is explained by the difference in the relative strength of exci-
tonic coupling and nuclear reorganization energies [53].

5.4 Light-Harvesting Efficiency of the Core of Green
Sulfur Bacteria

Finally, we want to discuss a recent application of the parameterization of the
Frenkel exciton Hamiltonian derived above and the dynamical theory of optical
spectra and excitation energy transfer to calculate the light-harvesting efficiency of
the FMO protein-reaction center core complex (FMO-RCC) supercomplex of green
sulfur bacteria [3]. Green sulfur bacteria (GSB) are able to survive under extremely
low light conditions, as in the neighborhood of black smokers or 100 m below the
surface of the black sea. Whereas all other photosynthetic organisms organize a
couple of hundred pigments in their light-harvesting antennae per reaction center
(RC), the number of antenna pigments is one order of magnitude larger in GSB.
Most of these antenna pigments are self-organized in the chlorosomes, from where
the excitation energy is transferred through the baseplate and the FMO protein to
the RCC. Recently the first high-resolution cryo-electron microscopy (cryo-EM)
structural models of the FMO-RCC supercomplex were reported [1, 2]. These
structures provided the basis for the calculations of the light-harvesting efficiency
(LHE) which are summarized below. Details are given in a recent publication [3].
First, the Frenkel exciton Hamiltonian has been parameterized.

The excitonic couplings have been obtained using the Poisson-TrEsp method
described above. A site-independent spectral density of the site energy fluctuations
has been used, obtained from experimental fluorescence line narrowing spectra of
the FMO protein [28]. The neglect of the modulation in excitonic couplings and the
neglect of correlations in site energy fluctuations, as well as the assumption of a
site-independent Huang-Rhys factor, have been justified above [13, 26]. The site
energy calculations using the structure-based CDC method did not result in values
that were able to reproduce the experimental optical spectra of the FMO and RCC
subunits. Therefore, a genetic algorithm [12] has been applied to determine the site
energies from a fit of the optical spectra of the FMO and RCC subunits.
The resulting optical spectra of the FMO protein and the RCC are compared in
figure 5.5 with the experimental data, revealing very reasonable agreement.
The optimal site energies for the FMO protein agree very well with those obtained
earlier [11, 18, 19] from calculations based on the crystal structure of this complex.
It seems that the crystal structure of the FMO protein has reached a high enough
resolution for meaningful electrostatic calculations, whereas the cryo-EM model still
needs some refinement. So far, there is no crystal structure available for the RCC,
and hence, no independent verification of the fitted site energies of this complex is
possible.
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With the parameters, determined above, the rate constants kRedfMa!Na
(equa-

tion (75)) of intradomain exciton relaxation and kGF
Ma!Nb

(equation (80)) of
inter-domain transfer can be calculated. These rate constants enter the following
master equations for the populations of exciton states

d
dt P

ðaÞ
Ma

ðtÞ ¼ �
XN ðaÞ

pig

Na

kRedfMa!Na
PðaÞ

Ma
ðtÞ � kRedfNa!Ma

PðaÞ
Na
ðtÞ

� �

�
XN dom

b;b6¼a

XN ðbÞ
pig

Nb

kGF
Ma!Nb

PðaÞ
Ma

ðtÞ � kGF
Nb!Ma

PðbÞ
Nb
ðtÞ

� �
� kMa!ET þ kMa!FLð ÞPðaÞ

Ma
ðtÞ

ð85Þ

where N dom is the number of domains, N ðaÞ
pig and N ðbÞ

pig are the number of pigments in
domains a and b respectively. The third line of the above equation contains the sinks
of the excitation energy. If an exciton reaches the RC, it can be irreversibly trapped
by primary electron transfer, described by the rate constant kMa!ET, which is given as

kMa!ET ¼ 1
sET

da;RC cðMRCÞ
PA

��� ���2 þ cðMRCÞ
PB

��� ���2	 

: ð86Þ

FIG. 5.5 – Left: Comparison of measured [21] (black lines) and calculated [3] (red lines)
absorption (upper part), circular dichroism (middle part) and linear dichroism (bottom part)
spectra of the FMO protein, all at cryogenic temperatures (T = 6 K). Right: Same as left, but
for the RCC and temperatures given in the right upper corners. Experimental spectra taken
from [54] (absorption) and [55] (linear and circular dichroism). Figure adopted from Ref. [3].
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Here, cðMRCÞ
PA

��� ���2 and cðMRCÞ
PB

��� ���2 are the probabilities to find the primary electron donors

PA and PB in the central special pair formed by BChls a 801 of the two branches of
the RC (figure 5.1) excited in state jMRCi and sET is the intrinsic inverse rate
constant of primary electron transfer P	(Chl a 802) ! Pþ (Chl a 802)−. Due to the
fortuitous circumstance that the primary electron donor is a Chl a, whereas all
antenna pigments are BChl a, the RC can be selectively excited and the decay of
excited states measured. Neerken et al. [56] reported a fastest decay constant of
1.5 ps, which most likely reflects primary electron transfer. In our simulations, we
take sET ¼ 2 ps as a conservative estimate.

The LHE is limited by the losses due to fluorescence (including non-radiative
decays of excited states) described by the rate constant

kMa!FL ¼ 1
sFL

lMa

�� ��2
lBChl
�� ��2 ; ð87Þ

where lBChl
�� ��2 is the dipole strength of an isolated BChl a pigment and lMa

�� ��2 is that
of exciton state jMai. sFL is the intrinsic fluorescence lifetime of BChl a, which is
about 2 ns. This time sets the clock for light-harvesting. Every exciton that reaches
the RC within this time has a high chance of being converted into a charge-separated
state. The population of the latter, denoted as P þ ðtÞ, is obtained from

P þ ðtÞ ¼
X
MRC

kMRC!ET

Z t

0
dsPðRC Þ

MRC
ðsÞ: ð88Þ

Due to the inhomogeneous distribution of pigments in the FMO-RCC supercomplex,
we expect certain bottlenecks in the light-harvesting. As discussed above, exciton
relaxation within the monomeric subunit of the FMO protein is at least an order of
magnitude faster than intermonomer transfer. Hence, it is possible to assume that
the exciton states within a domain are in quasi-thermal equilibrium before
interdomain transfer occurs, that is,

PðaÞ
Ma

� f Ma
PaðtÞ; ð89Þ

with the Boltzmann factor

f Ma
¼ e��hxMa =kbTP

Na
e��hxNa =kbT

: ð90Þ

Inserting the above approximation (equation (89)) into the master equation
(equation (85)) and performing a sum over Ma, using

P
Ma

f Ma
¼ 1 results in a

master equation for the domain populations Pa ¼
P

Ma
PMa

d
dt

PaðtÞ ¼ �
XN dom

b;b 6¼a

ka!bPaðtÞ � kb!aPbðtÞð Þ

� ka!ET þ ka!FLð ÞPðaÞ
a ðtÞ;

ð91Þ
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with the rate constant ka!b of inter-domain exciton transfer

ka!b ¼
X
Ma ;Nb

f Ma
kGF
Ma!Nb

ð92Þ

and those of primary electron transfer and fluorescence

ka!ET ¼ 1
sET

da;RC
X
MRC

f MRc
cðMRCÞ
PA

��� ���2 þ cðMRCÞ
PB

��� ���2	 

ð93Þ

and

ka!FL ¼ 1
sFL

X
Ma

f Ma

lMa

�� ��2
lBChl
�� ��2 ; ð94Þ

respectively. The population P þ ðtÞ of the charge-separated state then follows as

P þ ðtÞ ¼ kRC!ET

Z t

0
dsPRC ðsÞ: ð95Þ

The next level of coarse-graining can be obtained by combining certain domains into
larger compartments and assuming fast equilibration within these compartments.
The energy transfer rate constant between two such compartments I and J is given as

kI!J ¼
Xa2I ;b2J
a;b

X
Ma ;Nb

f I ;Ma
kGF
Ma!Nb

ð96Þ

with the Boltzmann factor

f I ;Ma
¼ e��hxMa =kbTP

a2I
P

Na
e��hxNa =kbT

: ð97Þ

On the basis of a comparison of the different levels of coarse-graining, described
above, one can search for a minimal model that still captures the main
characteristics, in particular the light-harvesting efficiency, of the most detailed
description. As a measure, the population of excited states PexcðtÞ obtained from a
sum over all excited state populations as well as the populations of the
charge-separated state P þ ðtÞ, obtained in the different models, will be compared.
As an initial condition, incoherent transfer from the baseplate to the FMO-protein is
taken into account, as described in detail in Ref. [3].

In figure 5.6, the populations PexcðtÞ and P þ ðtÞ are compared for different levels
of coarse-graining. In the full model (equation (85)), about 95% of the initial exci-
tations are converted into a charge-separated state. Very similar kinetics are
obtained by assuming fast intradomain exciton equilibration (equation (91)) and
also within a 5-compartment model, consisting of the FMO-protein, RCC-Ant1,
RCC-RC, RCC-Ant2, and the charge-separated state P þ . Assuming, in addition,
fast exciton equilibration in the whole RCC, as in the 3-compartment model results
in noticeable deviations from the results obtained in the more detailed models.
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These deviations show that the transfer between the core antenna subunits
(RCC-Ant1 and RCC-Ant2) and the RC are a bottleneck of the overall
light-harvesting process. According to the 5-compartment model the transfer
RCC-Ant1/2 ! RC occurs with a time constant of 23 ps. Interestingly, the reverse
reaction (RC ! RCC-Ant1/2) takes only 11 ps. This difference reflects the different
number of pigments in the antenna subunits and the RC giving rise to an entropic
contribution to the free energy difference that is reflected in the rate constants.

In the 3-compartment model, which assumes fast exciton equilibration in the
whole FMO-RCC supercomplex, additional deviations occur, suggesting that a
second light-harvesting bottleneck is the transfer between the FMO protein and the
RCC, occurring with 39 ps in forward and 28 ps in backward direction. In summary,
the minimal model of light-harvesting is the 5-compartment model, the time con-
stants of which are given in figure 5.1.

Finally, we want to investigate how the LHE depends on different factors, in
particular, the site energy funnel in the FMO protein that is supposed to guide the
excitons to the RCC [11, 12, 18], the quantum nature of the vibrations that
guarantees the preferential equilibrium population of low-energy exciton states in
the domains [52, 53] and the timescale of primary electron transfer in the RC.
The influence of these different factors is investigated in figure 5.7. Inverting the site
energy funnel in the FMO protein has some influence on the kinetics but barely
influences the LHE. The funnel is shallow and the 2 ns fluorescence lifetime is large
enough that it can still be out-competed by the excitation energy transfer to the
RCC at room temperature. Ironically, the site energy funnel has been used to predict
the relative orientation of the FMO-protein relative to the RCC [12]. The present

FIG. 5.6 – Populations of charge-separated state Pþ (red lines) and excited states (black
lines) of the FMO-RCC supercomplex obtained using different levels of coarse-graining, as
described in the text and the figure legend. Figure adopted from Ref. [3].
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calculations suggest that this prediction, although it turned out to be correct [57],
was somewhat fortuitous, since the LHE does not depend critically on it. Note,
however, that this site energy funnel was found to be important for photoprotection
[3]. In the presence of molecular oxygen, the excitation energy of the low-energy
BChl 3 is quenched by a nearby Cys residue, a quenching that occurs on a similar
time-scale as the transfer to the RCC and, therefore, has a large impact on the LHE,
protecting the RC from excitation energy that could lead to damage at the
secondary electron acceptors (the iron-sulfur clusters).

Very similar results as for the inverted site energy funnel of the FMO protein are
obtained if the motion of nuclei is described classically (the dashed lines in
figure 5.7). In this case, the principle of detailed balance is still valid for the transfer
between different exciton domains [26, 53], just within the exciton domains there is
no correct exciton equilibration [52, 53], similar to the inverted site energy funnel in
the FMO protein. Interestingly, the largest influence on the LHE comes from the
time constant of primary electron transfer. Slowing down this time constant by a
factor of 10 (from 2 to 20 ps) results in a 10% reduction of the LHE (dashed-dotted
lines in figure 5.7). A fast primary electron transfer is needed to catch every exciton
that reaches the RC, before it can escape back to the antenna, an escape that is
promoted by the entropic factor, discussed above, giving rise to faster outward than
inward transfer (figure 5.1).

FIG. 5.7 – Populations of charge-separated state Pþ (red lines) and excited states (black
lines) of the FMO-RCC supercomplex obtained by using different parameters for the site
energies in the FMO protein or the time constant of primary electron transfer and different
theories for the vibrational motion, as described in the text and the figure legend.
Figure adopted from Ref. [3].
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5.5 Photosynthetic Light Conversion as a Blueprint
for Organic Solar Cells?

Finally, we want to discuss similarities and differences between photosynthetic
pigment-protein complexes (PPC) and organic solar cells (for introduction to
organic solar cells (OSC), see chapter 6). Both use organic molecules for light
harvesting and charge separation. Whereas PPCs have a well-defined structure,
OSCs self-organize in a more random way in two inter-penetrating phases of donor
and acceptor molecules. An electron-hole pair (exciton) created by light absorption
in one phase will be transferred to the interface between the two phases, where it will
separate, the electron being transferred in the acceptor phase and the hole in the
donor phase. Only two different molecules are needed in OSCs, whereas PPCs utilize
proteins to fine-tune the energetics of the system and to hold the pigments at
optimal distances for efficient energy transfer in the light-harvesting antennae and
electron transfer in the RC. The main photosynthetic pigment in cyanobacteria and
plants is chlorophyll, which due to its planar ring-structure (enforced by the delo-
calization of p electrons) is rather rigid leading to a rather weak coupling of elec-
tronic excitations to intramolecular vibrational modes. The pigments in PPCs are
non-covalently bound to proteins and the distances between pigments in
light-harvesting antennae are kept large enough to avoid electron exchange effects,
as coupling to charge transfer states, that could lead to quenching of excited states,
which would limit the light-harvesting efficiency (LHE). OSCs contain a polymer
phase, where the spectroscopic units are not so easily identified. Strong couplings
between p electrons and intra and intermolecular vibrations of the polymer occur,
where the low-frequency vibrations involve torsional degrees of freedom that limit
the delocalization of excited states to certain segments of the polymer between
which the excitation energy is transferred, much like in PPCs. Whereas in PPCs,
these spectroscopic units are more or less static, in OSCs, they are changing in time.
Moreover, the relatively large coupling to intramolecular vibrations in OSCs leads to
additional dynamic localization effects of the exciton wavefunction. Coupling to
intramolecular charge transfer states in the polymer has to be taken into account, as
well as a modulation of this short-range as well as the long-range excitonic coupling
by the intra and intermolecular vibrations. Non-perturbative methods, as the
multi-configurational time-dependent Hartree method (MCTDH-see also chapter 2)
are needed to describe this rich electron-vibrational dynamics, whereas in PPCs one
can often obtain a qualitatively correct picture by simpler theories, as described
above. In both cases, OSC and PPC, one has to find the right parameterization of
the Frenkel-exciton (charge transfer) Hamiltonian. A simplification in the case of
PPCs, is that this parameterization needs to be done only once, since the structural
changes are small enough to be described by harmonic oscillator models. In case of
OSCs, larger variations of the parameters during the exciton and electron transfer
dynamics need to be taken into account. A rough characterization of the 3D
structure (morphology) of the organic solar cell is sufficient, since the structural
variations anyway have to be taken into account explicitly in the theory. In the case
of PPCs, a high-resolution structural model provides a representative structure that
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can be used in dynamic models of excitation energy and charge transfer. Without
such a model, mostly obtained by X-ray crystallography or in recent years more and
more by cryo-EM, a parameterization of the Hamiltonian would be practically
impossible, because of the complexity of the system. The exact 3D structure of the
complex is needed in order to evaluate the electrostatic pigment-protein coupling
that tunes the local excitation energies of the pigments and the redox properties of
the RC. A PPC can use the different properties of the 20 naturally occurring amino
acids for this tuning. Our calculations, presented above, seem to suggest that the
exact values for the site energies are not so important for a high LHE, because the
RC is only a shallow trap and excitation energy transfer to the RC is fast compared
to the fluorescence lifetime. There are, however, situations, where a switch from a
light-harvesting into a quenching mode of the PPC is needed in order to protect the
RC from receiving too much excitation energy. In the FMO protein of green sulfur
bacteria it was found that this quenching is most efficient at the low-energy sites [3].
In this case, the presence of oxygen switches the FMO protein from a
light-harvesting into a photoprotective mode. In the light-harvesting apparatus of
higher plants and cyanobacteria, the decisive factor for this transition is the
intensity of sunlight. In response to high light, a conformational change of the PPC
opens the dissipative channels for the excitation energy. The microscopic mecha-
nisms are not yet understood in detail. One likely candidate is the mixing of excited
and intermolecular charge transfer states. In OSCs, such mixing is always present,
and diabatization schemes have been developed to parameterize the Frenkel exciton
charge transfer Hamiltonian in an efficient way (see chapter 6). These schemes are
expected to be helpful also in the study of PPCs.

A more delicate tuning of cofactor properties concerns the photosynthetic
reaction center. Whereas there are many different light-harvesting complexes in
photosynthesis, nature has organized all photosynthetic reaction centers in a very
similar way. There is a central chlorophyll or bacteriochlorophyll dimer and two
membrane-spanning branches of cofactors. Electron transfer occurs downhill in free
energy between neighboring cofactors along both (in type I RCs) or along one
branch (type II RCs). The free energy differences are caused by electrostatic
pigment-protein coupling and also by utilizing chemically different cofactors. Due to
this, stepwise and downhill electron transfer recombination reactions can be sup-
pressed, and, hence, charge separation is very efficient. The high oxidation power
allowing the type II RC of photosystem II in plants and cyanobacteria to split water,
was found to be created mainly by electrostatic pigment-protein coupling [58, 59].
OSCs do not have proteins for redox tuning and also do not utilize additional
molecules for stabilizing the charge-separated state. Nevertheless, the electron-hole
pairs can be separated at the interface. The exact microscopic mechanism is still a
matter of discussions in the literature, but chapter 6 suggests that non-trivial
dynamic effects involving donor-acceptor coherences and ultrafast charge transfer
are exploited for efficient charge separation. After the initial charge separation, the
motion of the charge carriers (electrons in the donor phase and holes in the acceptor
phase) depends even more strongly than that of the excitons on the nuclear
dynamics, because of the larger electron-vibrational coupling and the dominance of
short-range effects that are very sensitive to structural variations. In photosynthesis,
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a qualitatively correct picture is obtained by applying standard non-adiabatic
electron transfer theory for nearest neighbor electron transfer in the RC. However,
there are experimental reports of slow nuclear relaxation processes in photosynthetic
RCs [60–62], whereas the standard theories assume nuclear relaxation processes are
fast compared to the charge transfer. In addition, many of the kinetic details of
primary photosynthetic charge transfer, in particular in photosystems I and II of
higher plants and cyanobacteria are still unknown [59]. It could well be that a
complete picture of primary photosynthetic charge transfer requires new theories
and experiments. In that respect, the photosynthetic community can learn from the
theoretical developments in the field of OSCs that can deal with scenarios, where the
vibrations are much more than a heatbath of harmonic oscillators.
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6.1 Introduction
Molecular materials for organic photovoltaics (OPV) applications [1, 2] offer vast
flexibility in designing optimal components for the elementary excitations (i.e.,
excitons) and the transport of emerging charge carriers (i.e., electrons and holes).
OPV device materials are thin, lightweight, flexible, and semi-transparent, com-
bining various advantages over established photovoltaic materials. Since the advent
of organic photovoltaics, efficiencies have risen significantly, and power conversion
efficiencies (PCE) well above 10% are now feasible [3]. The PCE represents the ratio
between the input optical power and the resulting electrical power – for comparison,
silicon-based devices exhibit PCE values around 25%. In general, the PCE threshold
is defined by a detailed balance limit, i.e., the Shockley–Queisser limit [4, 5].

In the first OPV generation between 2000 and 2005, fullerene-based materials
were at the forefront, exemplified by donor-acceptor (DA) combinations involving
poly(3-hexyl-thiophene) (P3HT) as donor material and fullerene-based acceptors,
e.g., [6,6]-phenyl-C61 butyric acid methyl ester (PCBM). The P3HT:PCBM blend
made PCEs around 6% feasible, benefitting from the so-called bulk heterojunction
(BHJ) technology [5, 6], which led to a breakthrough in producing materials where
donor and acceptor domains were optimally mixed. At a later stage, starting around
2010, donor materials were improved, achieving PCEs of around 10%. Finally, since
around 2018, new non-fullerene acceptor (NFA) materials have taken the stage
[6, 7]. In particular, the PM6:Y6 combination [8, 9] shown in figure 6.1a has reached
PCEs above 15%, promising that the 20% threshold will soon be reached [3].
From today’s vantage point, NFA materials have doubtlessly led to a renaissance of
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the field. In parallel, different types of materials and alternative strategies were
exploited, especially perovskite-based PV cells [10], dye-sensitized PV [11], as well as
singlet fission [12] as a mechanism of carrier multiplication, and single-component
photovoltaics [13], to name but a few active research avenues.

Despite the progress made during the past 20 years, the optimization of OPV
materials and the identification of structure-function relations remain challenging,
given the complexity of the elementary conversion steps. While energy gap criteria
were mainly advocated in the past, more detailed analysis has highlighted the role of
exciton transport towards the DA interface, along with the nanoscale morphology,
nonradiative energy losses, as well as the ubiquitous presence of vibronic
(electron-phonon) coupling effects. In fact, vibronic coupling can be both beneficial
and detrimental, to the point that the suppression of vibronic coupling has been
proposed as an optimization strategy [14].

In this chapter, we give an overview of the elementary steps relevant to organic
photovoltaics and discuss their theoretical and computational treatment. A focus is
placed on the construction of suitable lattice Hamiltonians and on the role of
ultrafast conversion events requiring a quantum dynamical treatment [15]. While
the examples that are discussed mainly relate to fullerene-based materials, the basic
strategies can be transposed to new NFA materials.

FIG. 6.1 – (a) Chemical structure of the non-fullerene acceptor Y6 and the donor species PM6
(representation from Ref. [9]) along with energy levels measured by cyclic voltammetry [8].
Curved arrows indicate two channels for carrier generation, via electron transfer (channel I) or
hole transfer (channel II). (b) Schematic illustration of charge separation at a donor-acceptor
interface: The first pathway (I), generally considered the dominant mechanism in OPV
materials, involves exciton migration to the DA interface followed by electron transfer to the
acceptor domain, while the second pathway (II) involves generation of an exciton in the
acceptor domain, followed by break-up of the exciton in the acceptor domain (i.e., creation of
a charge transfer exciton), and finally hole transfer to the donor domain. In the Y6:PM6
material, pathway (I) involves a significant driving force, while pathway (II) proceeds in a
barrierless way.
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Another aspect that is touched upon in this chapter relates to the similarities
and differences as compared with biological light-harvesting systems (see chapter 5).
The latter also involve a combination of exciton transport and exciton dissociation,
achieved with extremely high efficiencies. Indeed, suggestions for the design of
bio-organic semiconductors have been put forward [16, 17].

The remaining sections are organized as follows: section 6.2 sketches out the
elementary steps in OPVs, section 6.3 summarizes the computational strategy that
we employed in our recent work, combining vibronic lattice Hamiltonians and
quantum dynamics, and section 6.4 presents two case studies illustrating the role of
quantum coherence in exciton dissociation and exciton transport. Section 6.5 gives a
brief perspective on two-dimensional electronic spectroscopy, and section 6.6
concludes with a discussion.

6.2 Key Elementary Steps
The fundamental mechanism of charge generation in OPV devices differs signifi-
cantly from inorganic semiconductors. In contrast to the latter, the elementary
excitations (excitons) in OPV materials are essentially of Frenkel type [18], i.e.,
tightly bound electron-hole (e-h) pairs resulting from local molecular excitations. In
contrast, inorganic semiconductors exhibit Wannier–Mott type [19] excitons with an
extended e-h radius; these excitons are weakly bound since the electron-hole
attraction is screened by a large dielectric constant.

For this reason, charge separation – i.e., e-h pair dissociation – is a stepwise
process in OPV materials. As sketched out in the upper panel of figure 6.1b, excitons
migrate to the donor-acceptor interface, where initial charge separation generates
bound interfacial CT states, i.e., e-h pairs that experience strong Coulombic
attraction as a consequence of the low dielectric screening of organic materials.
Subsequently, the interfacial CT state breaks up and generates free carriers, i.e.,
electrons (e) and holes (h), that are collected at the electrodes.

As illustrated in figure 6.1, the PM6:Y6 material [6, 8, 9] is thought to also
exhibit an alternative pathway, shown in the lower panel of figure 6.1b. This
pathway exhibits the initial excitation of e-h pairs in the acceptor domain, followed
by a break-up of the exciton in the acceptor domain, preceding hole transfer to the
donor material. This second pathway proceeds in a barrierless fashion in PM6:Y6,
and is, hence, thought to be favored in this highly efficient material. Indeed, most
efficient NFA materials are characterized by small interfacial energy offsets and yet
lead to highly efficient charge separation – contrary to expectations based on the
first-generation materials.

Turning to a microscopic perspective, figure 6.2 illustrates that the creation of
long-range charge-separated (CS) states from the initial CT state results from
overcoming an effective Coulomb barrier to charge separation (see panel a). This
barrier typically varies between 0.2 eV and 0.5 eV, exceeding the thermal energy by
a factor of 10 or more (noting that kBT = 0.026 eV at room temperature), and
depends on the local microelectrostatics as well as charge delocalization effects.
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As can be inferred from figure 6.2b, the interfacial CT state tends to be predomi-
nantly populated and long-lived, but CS states potentially appear on ultrafast time
scales, too. In the case illustrated in figure 6.2b, two key factors are at play [20]:
First, the effective Coulomb barrier is lowered by charge delocalization, and second,
the initial charge separation generates a significant amount of vibronic excess
energy. The conditions under which CS states can arise on (ultra-)short time scales
have been extensively addressed in the literature. However, other factors can affect
the charge separation efficiency, notably the nonradiative decay to the ground state,
both from the initial exciton and from the interfacial CT state.

FIG. 6.2 – (a) Illustration of the formation of charge-separated states: Initial excitation
(1) can lead to direct transfer to the interfacial CT state (2), but vibronic excess energy could
also entail the excitation of long-range charge-separated (CS) states that partially decay to
the interfacial CT state (3, 4). (b) Simulation results from Ref. [20], to be discussed in detail in
section 6.4.1, showing time-evolving populations of excitonic (XT) and charge-separated
(CS) states. At the center, the CS1 � CT state is shown, which accumulates population with
time, while the remaining CS states are weakly populated. (c) Lattice model of a regioregular
P3HT:PCBM type interface underlying the calculations shown in (b). Each oligothiophene
(OT) unit corresponds to a lattice site, while the fullerene domain is subsumed into an
effective acceptor particle [20, 21].
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Finally, we note that in photosynthetic light-harvesting complexes (see chapter 5),
the electron and hole are generally even closer than in OPV materials. Charge
separation in the reaction center is achieved by step-wise electron transfer along a
chain of well-defined cofactors with decreasing free energy of the transferred electron.
In this way, recombination reactions are suppressed, and within less than a
nanosecond, the electron and the hole are separated by the thickness of the
photosynthetic membrane (30 Å) with nearly 100% quantum efficiency [22].

In section 6.4.1, we will return in some detail to the model of a regioregular
P3HT:PCBM junction as depicted in figure 6.2. Furthermore, section 6.4.2 will
show simulations of the exciton migration process that leads to the initial encounter
with the DA interface.

6.3 Theoretical Approaches
The atomistic modeling of OPV materials is challenging, both on the electronic
structure and dynamics side. Multiple excited electronic states are involved, typi-
cally belonging to excitonic and charge-separated manifolds whose spatial delocali-
zation is highly sensitive to electronic couplings and vibronic effects. While kinetic
descriptions, notably relying on the kinetic Monte-Carlo (KMC) approach, are
viable on longer time scales, simulations of the elementary steps in OPV materials
require a time-dependent quantum description of both electrons and nuclei.

To date, theoretical and computational approaches that capture quantum
dynamical effects on (ultra-)short time scales essentially fall into two classes. The first
class of methods consists of lattice Hamiltonians adapted to homogeneous or
heterogeneous molecular aggregates, combined with quantummaster equations, e.g.,
the Hierarchical Equations of Motion (HEOM) [23, 24], or alternatively
wavefunction-based propagation schemes, e.g., using the Multi-Configuration
Time-Dependent Hartree (MCTDH) method [15, 25, 26] or else path-integral based
approaches. The second class of methods consists of ab initio molecular dynamics
(AIMD) [27] and non-adiabatic excited-state molecular dynamics (NA-ESMD)
[28, 29] simulations. Here, standard quantum-classical dynamical techniques like
mean-field Ehrenfest dynamics and surface hopping are often employed; these, how-
ever, suffer from various drawbacks that may hamper the interpretation of the ele-
mentary transfer mechanisms within the coupledmanifolds of excitonic states [30, 31].
As an alternative, more sophisticated quantum-classical techniques [32, 33] or else
combinations of atomistic and kinetic descriptions have been proposed, e.g., the
multichromophoric FRET (MC-FRET) approach [34] and the delocalized kinetic
Monte Carlo (dKMC) scheme [35]. Whether or not the more approximate propaga-
tion schemes are valid strongly depends on the molecular material under study.

In this chapter, we report on advances in the full quantum treatment of the
elementary events in typical DA materials, relying on first-principles parametrized
vibronic lattice Hamiltonians and multiconfigurational quantum dynamics treat-
ments of MCTDH type. In the present section, an outline is given of the construction
of the relevant lattice Hamiltonians (section 6.3.1) and strategies for reducing the
system dimensionality (section 6.3.2), along with a brief perspective on the quantum
dynamical approach (section 6.3.3).
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6.3.1 First-Principles Parametrized Lattice Hamiltonians

Given that the lattice Hamiltonians mentioned above should accommodate both
Frenkel-type excitations and charge-separated states, we employ a general electron-
hole (e-h) quasi-particle picture, including charge separation effects [36–38]. While
our discussion is restricted to the single-excitation picture, the approach can be
generalized to multi-exciton states and singlet fission [39–41]. Importantly, the
parametrization of these Hamiltonians can be fully or partially based on electronic
structure calculations.

6.3.1.1 Electron-Hole Lattice Models

Following Refs. [36–38], delocalized molecular excitations in molecular aggregates
can be described as superpositions of e-h quasi-particle states jmelhi � jmli repre-
senting an electron located at the site me � m and a hole located at the site lh � l.
Localized e-h states correspond to Frenkel excitonic (XT) configurations, jXTni ¼
jm ¼ n; l ¼ ni (with n = 1,…, N for an N -site lattice), while charge transfer exciton
(CTX) configurations of type jCTXn;n0 i ¼ jm ¼ n; l ¼ n0i correspond to spatially
separated e-h pairs, n 6¼ n0. In DA systems where a net charge transfer occurs
between donor and acceptor species, one often refers to the interfacial charge
transfer state as the CT state. Charge-separated (CS) states then denote states with
increasing e-h separation (see figure 6.2a).

A general aggregate Hamiltonian in the e-h the basis takes the following form
[38], including vibronic coupling terms, i.e., diagonal and/or off-diagonal elements
that carry a dependence on the vibrational coordinates,

bH ðbxÞ ¼ X
ml

X
m0l0

bH ml;m0l0 ðbxÞjmlihm0l0j ð1Þ

where bx ¼ fbx ig denotes a set of vibrational coordinates (also referred to as phonon

modes in the following). The Hamiltonian elements bH ml;m0l0 can be written as a sum

over an electronic part (bH el), a vibrational or phonon part (bH ph), and a vibronic

coupling, or electron-phonon part (bH e-ph),

bH ml;m0l0 ðbxÞ ¼ bH el
ml;m0l0 þ bH e-ph

ml;m0l0 ðbxÞþ bH phðbxÞ ð2Þ
Further, the electronic Hamiltonian is composed of an electronically diagonal on-site

part ( bH on-site) and an off-diagonal coupling part ( bH coup),

bH el
ml;m0l0 ¼ dmm0dll0 bH on-site

ml;m0l0 þ ð1� dmm0dll0 Þ bH coup
ml;m0l0 ð3Þ

The electronic coupling part typically comprises both energy and charge transfer
contributions, i.e., Frenkel-type excitonic couplings, as well as transfer integrals
that couple charge-separated configurations to Frenkel configurations and among
each other.
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6.3.1.2 Construction of Lattice Hamiltonians from Electronic Structure Data

The Hamiltonian of equations (1)–(3) encodes a fragment-based representation that
is highly suitable to describe both local excitations and charge separation effects in
molecular aggregates. However, the connection to direct treatment of these aggre-
gate systems using electronic structure methods is not necessarily straightforward.
The latter usually rely on an adiabatic, supermolecular representation, while the
Hamiltonian of equations (1)–(3) employs a diabatic, site-based picture. The term
diabatic refers to an electronic basis with well-defined properties, e.g., in terms of the
site-based e-h distribution.

To translate electronic structure information to the Hamiltonian of equations
(1)–(3), suitable diabatization procedures [21, 42–45] are required. Various such
diabatization schemes are applicable, including fit procedures as typically employed

FIG. 6.3 – Translation between supermolecular electronic structure results and the
fragment-based Hamiltonian of equations (1)–(3). (a) Oligothiophene chain which is mapped
onto a monomer representation of aromatic rings, conforming to a J-aggregate model. The
bright oligomer state (S1) is the lowest state of the excitonic manifold. As can be inferred from
the e-h map (bottom), the S1 electronic density is a sensitive function of the torsional coor-
dinates (here, the h10;11 torsion at the center of an OT-20 oligomer). The near-diagonal
character of the e-h map reflects that a Frenkel model holds to a good approximation.
(b) Stacked (OT-n)5 assembly, which is mapped onto an e-h model containing significant
admixtures of CTX states. Similarly to an H-aggregate, the bright state (S5) is found at the
top of the modified XT manifold, but the electronic density is concentrated at the edges of the
lattice, see the e-h map (bottom). Adapted with permission from Ref. [15]. Copyright 2021
Annual Reviews.
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for linear and higher-order vibronic coupling Hamiltonians [42], determination of
selected coupling elements [43], wavefunction-based diabatization schemes [46, 47],
or analogous TDDFT-based approaches [21, 44, 45]. In future developments, we
expect that machine learning approaches, e.g., based on neural network fitting, will
be used extensively, possibly in combination with the lattice models addressed here.

Figure 6.3 illustrates the translation between a supermolecular perspective and
the diabatic e-h lattice representation, for excitation energy transfer (EET) in an
oligothiophene chain (panel a) and, analogously, inter-chain EET in a regioregular
oligothiophene assembly (panel b). In the latter case, charge transfer excitons
(CTX) coexist with Frenkel excitons. From the vantage point of the Frenkel exciton
picture, the oligomer chains can be interpreted as J-aggregates [48], exhibiting a
head-to-tail alignment of the monomer transition dipoles, while the stacked species
correspond to H-aggregates with face-to-face orientation (or, from an alternative
viewpoint, HJ-aggregates [48–50] composed of individual repeat units as building
blocks). In the case shown in panel (b), the H-aggregate picture is significantly
modified, though, since CTX states arise upon photoexcitation [49, 51].

6.3.2 Vibronic Coupling Effects

The manifestations of vibronic coupling effects are ubiquitous in molecular assem-
blies and organic functional materials. Vibronic coupling leads to deexcitation by
internal conversion and stabilization of local excitations (excitons) by self-trapping
[52, 53], but also enhances transport by fluctuations [54, 55] and vibronic resonance
effects [56]. Many of these effects necessitate a molecular-level description in terms of
wavepacket dynamics on multiple potential energy surfaces (PESs), rather than a
conventional rate theory approach.

Hence, the construction of approximate PESs for molecular aggregates is of
paramount importance. Here, we address two representative PES construction
schemes that are subsequently employed in the examples presented in the case
studies of section 6.4. The first scheme relates to a multi-state linear vibronic
coupling (LVC) model [42, 57], which employs first-principles computed vibronic
couplings and the related spectral densities (SDs) [58]. The second scheme is tailored
to a more detailed description of anharmonic potentials and is based upon PES cuts
from electronic structure calculations [59, 60]. These two schemes are illustrated in
figure 6.4 and will be discussed in some detail in the following.

6.3.2.1 Linear Vibronic Coupling Models for Multi-Chromophoric Systems

Within the LVC approximation, a shifted harmonic oscillator (HO) model is used to
approximate the molecular PESs, usually adopting a basis of ground-state normal
modes (NMs). Despite its simplicity, the LVC model accounts for the most impor-
tant types of excited-state topologies and encompasses both avoided crossings and
conical intersections [42, 61]. Furthermore, the LVC Hamiltonian coincides with
various model Hamiltonians from solid-state physics, notably the Frenkel–Holstein
(FH) Hamiltonian and its generalization in terms of vibronic lattice Hamiltonians in
an e-h basis.
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We now outline the construction of a fragment-based LVC model for
multi-chromophoric systems [57], as sketched in figure 6.4a. Each fragment, denoted
monomer Mn in the following, is associated with a subset of normal modes qMn

,
referred to as local normal modes (local NMs). Intermolecular modes can be included
separately, such that the main aim is to accurately account for the local NM space.
The full normal mode space is therefore spanned by a combination of N sets of local
NMs, bqT ¼ ðbqT

M 1
; bqT

M 2
; . . .; bqT

MN�1
; bqT

MN
Þ. With this convention, the zeroth-order

vibrational Hamiltonian is given as follows, using mass and frequency weighted
coordinates,

bH ph ¼ 1
2

bpT
xbpþ bqT

xbq� �
ð4Þ

where x is a diagonal frequency matrix in the local NM representation, ðxÞij ¼ dijxi.
Vibronic interactions are defined within a shifted HO approximation for Ns

electronic states jXsi and N ph phonon modes,

bH e-ph ¼
XNs

s¼1

XN ph

j¼1

cs;jbq j jXsihXsj ¼
XNs

s¼1

cTs bqjXsihXsj ð5Þ

The state-specific vibronic couplings fcs;jg, j ¼ 1; . . .;N ph, are computed from
Franck–Condon gradients for every state of interest (or, alternatively, by

FIG. 6.4 – Approximate molecular potentials that appear in the vibronic lattice Hamiltonians
of section 6.3.2: (a) LVC model, which translates state-specific vibronic couplings fcng (r.h.s.)
to a shifted HO model (center), here shown for an OT:fullerene aggregate. (b) Analytic
mapping procedure which translates oligomer PESs (r.h.s.) to monomer potentials fvG; vEg
and the excitonic coupling fwg (center), according to a generalized Frenkel–Holstein model.
Adapted with permission from Ref. [15]. Copyright 2021 Annual Reviews.
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excited-state geometry optimization, from which the displacement of the respective
minima can be obtained). Even though all normal modes are taken to be local – i.e.,
localized on a given molecular fragment – the vibronic couplings may be non-local:
e.g., in the case of CTX states, modes bqMn

belonging to the nth fragment also
couple to the ðnþ 1Þst and ðn � 1Þst fragment, due to the delocalized nature of the
CTX states.

Assuming that the frequency distribution of the vibrational modes is dense, it is
natural to characterize the influence of the vibrations on the electronic subsystem in
terms of a spectral density (SD), or its discretized representation. Due to the
non-local part of the electron-phonon coupling, correlated fluctuations appear,
which are included in a Ns � Ns dimensional SD matrix J with elements

J ss0 ðxÞ ¼ p
2

XN ph

j¼1

cs;j cs0;jdðx� xjÞ ð6Þ

Spatially correlated fluctuations can have different origins: Notably, local modes
can couple to delocalized electronic states (as discussed above), or else delocalized
modes – typically of intermolecular type – can couple simultaneously to several local
excitations [62–64]. Correlated fluctuations have been conjectured to slow down
decoherence and favor coherent transfer processes, even though this aspect remains
controversial [64].

In the case of photosynthetic light-harvesting complexes the main function of the
exciton-vibrational coupling is the dissipation of excess energy of the exciton during
relaxation and transport [65]. Although correlations in site energy fluctuations were
found [66], these occur for such small vibrational frequencies that they have prac-
tically no influence on exciton relaxation. Moreover, artificially creating correlations
at higher vibrational frequencies was found to lead to long-lived coherences, but, at
the same time, to a suppression of exciton relaxation [66].

6.3.2.2 Effective-Mode Reduction Schemes

For extended molecular assemblies, the full normal-mode space quickly becomes
prohibitively large. In view of a quantum dynamical treatment, it is, therefore, of key
importance to reduce the dimensionality of the vibrational subspace while pre-
serving the features of the dynamics. To this end, we employ an effective-mode
reduction scheme [56, 57, 67, 68] that generates a reduced set of collective modes
that couple to the electronic subsystem.

To see how the effective-mode scheme works, we consider the vibronic interaction

term of equation (5). First-layer effective modes (FLEMs) bQs are constructed to
subsume the state-specific vibronic couplings of equation (5) into a single collective
coordinate per electronic state,

bH e-ph ¼
XNs

s

cs bQsjXsihXsj with bQs ¼
1
cs

cTs bq ð7Þ
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where cs is a normalization constant. In the next step, the primary FLEMs bQs are
orthogonalized. Subsequently, a full-dimensional coordinate transformation is built,bQ ¼ Tbq, whose first row is defined by equation (7). This transformation generates
the FLEMs along with ðN ph � NsÞ residual modes. The latter couple to the FLEMs
and, therefore, exert an indirect influence on the electronic subsystem.

In the transformed representation, the phonon part of the Hamiltonian, bH ph of
equation (4), takes the form

bH ph ¼ 1
2

bPTXbPþ bQTXbQ� �
ð8Þ

where a non-diagonal form of the frequency matrix arises, X ¼ TxTT . As a result,
bilinear couplings emerge, which can be cast, e.g., in a band-diagonal form, yielding
a hierarchical electron-phonon model [57, 68].

By truncating this hierarchical representation and re-diagonalizing the X
matrix, a series of approximate LVC models can be defined. In practice, mode
reduction by factors 5–10, as compared with the original NM space, is possible while
preserving an accurate picture of the dynamics on short time scales.

6.3.2.3 Analytic Mapping Procedure: Anharmonic Potentials

The LVC model, in conjunction with a local NM basis, is generally well suited for
situations where the electronic coupling between monomer species is comparatively
weak, as in many OPV aggregates and in photosynthetic systems (see chapter 5).
This approach can be augmented by including a dependence on the electronic
coupling of intermolecular modes. However, the investigation of transfer processes
between strongly coupled monomers requires a different strategy. An example of the
latter situation, to be discussed below (section 6.4.2), is intra-chain EET in conju-
gated polymers (see also figure 6.3a). In this case, the monomer basis is taken to
refer to individual repeat units, with large electronic couplings between neighbor-
ing units – typically of the order of 1 eV. Besides the difficulty of carrying out
suitable diabatization procedures adapted to the monomer basis, anharmonic
large-amplitude motions – notably, torsional motions – are an important feature
that needs to be accounted for.

For these reasons, we describe here an approach, sketched in figure 6.4b, that is
based on PES cuts – in 1D or multi-D – generated by electronic structure calcula-
tions for oligomer species [59, 60]. These are converted into a vibronic lattice
Hamiltonian of generalized Frenkel–Holstein [52, 69] type, set up in a monomer basis
as described above. The mapping procedure of Ref. [59] is an analytic protocol based
on the solution to an inverse eigenvalue problem that works in a pointwise
fashion and provides an exact mapping of adiabatic PESs onto a generalized FH
model. While the method is restricted to homo-oligomers, it can be selectively
applied, e.g., to the donor domain of DA systems.
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As just mentioned, the e-h basis of equation (1) is here assumed to be restricted
to Frenkel excitonic species of a homo-oligomer,

bH ðbx; byÞ ¼ X
n;n0

bH n;n0 ðbx; byÞjXTnihXTn0 j ð9Þ

where two types of modes are included, i.e., site-local modes bx ¼ fbxng and
site-correlated modes by ¼ fbyn;nþ 1g, where the latter are assumed to couple to
neighboring sites. Differently from other approaches that separate the elements of
the exciton Hamiltonian into electronic and vibronic parts (see section 6.3.1.1), the
Hamiltonian is here formulated from the outset in terms of coordinate-dependent
diabatic potential functions,

bH n;n0 ðbx; byÞ ¼ dn;n0 bT ðbpx ; bpyÞþ bH on-site
n ðbx; byÞ� �

þðdn0;nþ 1 þ dn0;n�1Þ bH coup
n;n0 ðbx; byÞ ð10Þ

Here, the on-site part takes the following form,

bH on-site
n ðbx; byÞ ¼ bV 0ðbx; byÞþ bDnðbxn; byn�1;n; byn;nþ 1Þ ð11Þ

with the ground-state potential

bV 0ðbx; byÞ ¼ XN
l¼1

bvG bx l ; byl�1;l ; byl;l þ 1

� � ð12Þ

and the difference potential

bDn bxn; byn�1;n ; byn;nþ 1

� � ¼ cE þ bvE bxn; byn�1;n; byn;nþ 1

� �� bvG bxn; byn�1;n; byn;nþ 1

� � ð13Þ
where cE is the constant excitation energy of a single monomer and bvG and bvE are
ground-state and excited-state monomer potentials, respectively. Further, the
excitonic couplings of equation (10) are given as nearest-neighbor couplings,

bH coup
n;n0 bx; byð Þ ¼ dn0;n�1 bw bxn�1; bxn; byn�1;n

� �þ dn0;nþ 1 bw bxn; bxnþ 1; byn;nþ 1

� � ð14Þ
The monomer functions bvG, bvE, and bw , are now determined analytically, for a
specified geometry ðbx; byÞ from a set of adiabatic oligomer potentials (specifically the
lowest-lying S1 and S2 PESs in the case of J-aggregates), along with the
ground-state potential S0. Hence, the input of the analytic mapping procedure
consists of a set of electronic structure data points, as indicated in figure 6.4b. The
procedure returns the monomer potentials and coupling that are subsequently fitted
to a suitable functional form. No a priori assumption is made about the specific
functional form of the potentials, and the characteristic scaling behavior of oligomer
potentials as a function of system size is automatically accounted for.

This method, which can be understood as a diabatization-by-ansatz, illustrates
that it is highly desirable to directly encode PES information into a vibronic lattice
Hamiltonian whose diagonal and off-diagonal elements are flexible functions of all
coordinates. Future work in this direction would likely draw on machine learning
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approaches, e.g., neural network schemes, that perform a more general and robust
mapping onto the desired form of the Hamiltonian.

6.3.3 Multiconfigurational Quantum Dynamics

While numerically exact quantum dynamical treatments often turn out prohibitive
for the relevant system sizes, recent advances in quantum dynamical simulations
based on tensor network schemes have enabled significant progress, notably using
efficient multiconfigurational methods of the Multiconfiguration Time-Dependent
Hartree (MCTDH) [25, 70, 71] family. In particular, the hierarchical multi-layer
(ML-MCTDH) approach [26, 72–74] permits the treatment of tens to hundreds of
electronic states and vibrational degrees of freedom. Matrix Product States
(MPS) are another type of tensor network scheme that is rising in popularity
[75, 76]. Based on these methods, ensembles of wavefunction realizations in the full
electronic-vibrational space can be obtained, which are subsequently used to derive
observable properties.

Details of these methods are presented in chapters 2 and 7. In the simulations
reported in section 6.4, the ML-MCTDH approach was used throughout. We refer to
the original publications for details of the numerical applications.

6.4 Coherent Effects in Exciton Dynamics: Case Studies
In this section, two case studies are considered: First, exciton dissociation at a
regioregular donor-acceptor interface of P3HT:PCBM type (section 6.4.1), and
second, exciton transport in a P3HT donor domain (section 6.4.2).

6.4.1 Exciton Dissociation at Donor-Acceptor Interfaces

Here, we consider a lattice Hamiltonian describing exciton dissociation at a typical
polymer: fullerene heterojunction [77, 78], by combining a stacked OTassembly with
a fullerene-type acceptor moiety placed in a face-on position, as shown in figure 6.2c.
Within a minimal set-up, a single coarse-grained acceptor site is included, sub-
suming the effect of multiple fullerene species [20, 21, 79]. As a result, the Coulomb
barrier to charge separation is reduced, facilitating free carrier generation [21, 80].

Within the e-h basis introduced above, Frenkel excitonic configurations arise,
jXTni, n ¼ 1; . . .;N , along with charge separated (CS) configurations,
jCSni ¼ jm; l ¼ mþ ni, where the e-h separation is given as jm� lj ¼ n. With a single
effective acceptor site that is assigned the position m ¼ 0, the hole position varies
between l ¼ 1 and l ¼ N . The jCS1i state corresponds to the interfacial
charge-transfer state (often denoted jCTi state), whereas the remaining jCSni states
feature an increasing e-h distance n. With N ¼ 13, the system comprises 26 elec-
tronic states, along with 108 effective phonon modes that were constructed as
detailed in section 6.3.2.1.
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In the Hamiltonian bH ¼ bH el þ bH e-ph þ bH ph, the electronic part reads as follows,

bH el ¼ bH on-site þ bH coup
XT þ bH coup

XT;CS þ bH coup
CS ð15Þ

where the on-site Hamiltonian bH on-site is given as

bH on-site ¼
XN
n¼1

�XTjXTnihXTnj þ �CSn jCSnihCSnj
� � ð16Þ

The on-site energies of the Frenkel excitonic states jXTni, denoted �XT, are identical
(in the absence of disorder), while the on-site energies of the charge-separated states,
�CSn , are determined by an effective Coulomb barrier [20, 21]. The coupling part of
the Hamiltonian, in turn, comprises the conventional Frenkel-type coupling between
neighboring jXTni states (here, j ¼ 0:09 eV),

bH coup
XT ¼ j

XN
n¼1

jXTnihXTnþ 1j þ h:c:ð Þ ð17Þ

as well as the coupling between CS states mediated by hole transfer (th ¼ �0:12 eV),

bH coup
CS ¼ th

XN�1

n¼1

jCSnihCSnþ 1j þ h:c:ð Þ ð18Þ

along with the interfacial coupling (k = 0.2 eV) between the jXT1i state and the
interfacial jCS1i state (i.e., the so-called CT state),

bH coup
XT;CS ¼ k jXT1ihCS1j þ h:c:ð Þ ð19Þ

In Ref. [79], this model was expanded such as to include charge-separated jCTXi
states in the donor domain, leading to additional exciton dissociation channels
(similarly to the pathway shown in the lower panel of figure 6.1b).

Figure 6.5 shows the electronic eigenstates obtained for this Hamiltonian at the
Franck–Condon reference geometry (panel a), along with the dynamical evolution
for two different initial conditions, i.e., the initial bright exciton state of the
H-aggregate (panel b) and a localized state at the interface (panel c).

From the eigenstate analysis of figure 6.5a, we can infer that the Frenkel exci-
tonic and charge-separated manifolds predominantly interact through a highly
localized, stable interfacial state, i.e., the jCS1i state (equivalently denoted jCTi).
However, if the initial photoexcitation entails significant excess energy, as is
the case for the high-energetic bright state of the H-aggregate type donor domain
(see figure 6.5a), internal conversion within the excitonic manifolds also entails
partial mixing with delocalized charge-separated states.

These observations are borne out in the quantum dynamical simulations shown
in figure 6.5b and c. Two different initial conditions are considered, i.e., an initial
bright exciton state at the upper band edge of the Frenkel manifold (figure 6.5b) and
an initial localized state at the interface (figure 6.5c). The time evolution starting
from the bright exciton state reflects the progressive energy loss due to internal
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conversion, leading to a predominant population of the interfacial jCS1i state as
time proceeds. In the case of the localized initial condition, the interfacial state is
immediately populated. In both cases, long-range charge separated states arise to a
significant extent, which is due to the reduced barrier height (around 0.28 eV, due to
delocalization effects as explained in Ref. [21]).

FIG. 6.5 – (a) Electronic eigenstate analysis based upon bH el of equation (15), at the ground
state reference geometry. The effective barrier [20, 21] exhibits a height of around 0.28 eV.
The resulting eigenvalues are indicated along the ordinate. The abscissa defines a series of
N ¼ 26 e-h basis state pertaining to the CS manifold (i.e., CSn, n ¼ 2; . . .; 13 from left to
right, shown in blue), the subset of interfacial states (i.e., CS1 � CT and XT1, shown in
green), and the XT manifold (i.e., XTn, n ¼ 2; . . .; 13, from left to right, shown in red). The
squared eigenvector coefficients are represented as a density profile. The low-energy interfacial
state mainly corresponds to a superposition of CS1 and XT1 states, while higher-energy CS
and XT states also mix to some extent. The bright XT state of the donor H aggregate is found
at the upper band edge around 0.3 eV, while the lowest-energy dark XT state is found at
−0.09 eV. For a bright-state initial condition, internal conversion within the donor excitonic
manifold followed by relaxation to the interfacial states occurs, along with partial conversion
into CS states (see arrows indicating these pathways). (b) Dynamical evolution starting from
the delocalized bright exciton state, showing that a build-up of the interfacial
charge-separated state (CS1 � CT) occurs, along with a gradual population of long-range
charge-separated states. (c) Dynamical evolution starting from the localized interfacial
exciton XT1, giving rise to an immediate population of the interfacial charge-separated state
and a larger population of long-range charge-separated states. Adapted with permission from
Ref. [20]. Copyright 2015 American Chemical Society.
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The above analysis shows that delocalization and internal conversion within the
coupled excitonic and charge-separated manifolds can tune ultrafast charge sepa-
ration at a typical donor-acceptor interface, especially if vibronic excess energy is
present. This is in line with experimental observations, e.g., for P3HT:PCBM,
showing that charge-separated states can be generated on ultrafast time scales.
However, other materials exhibit slow and “cold” charge separation, exemplified by
the highly ordered DA material that we investigated in Refs. [81, 82] by a combi-
nation of quantum dynamical and KMC simulations. The different regimes of
interfacial charge separation and their relation to the PCE have been extensively
and controversially discussed in the literature [6, 21, 83–88].

6.4.2 Intra-Chain Exciton Diffusion

Complementary to the previous section, where it was assumed that the initial
exciton was localized close to the interface, we now consider a quantum dynamical
description of exciton diffusion in a regioregular P3HT-type system. In Refs. [50, 62,
89], we considered both intra-chain and inter-chain diffusion, and we focus on the
former case here. Since the intra-chain diffusion process depends strongly on the
low-frequency torsional modes that generate thermal fluctuations, the description of
the vibronic coupling part of the Hamiltonian has to be refined such as to include
anharmonic potentials, as shown in figure 6.4b. To this end, the mapping procedure
described in section 6.3.2.3 is employed. Furthermore, thermal fluctuations have
to be included explicitly in the dynamical treatment, which was realized in Refs.
[50, 62, 89] by a stochastic mean-field approach such as to generate an ensemble of
wavefunction realizations. Initial conditions of a set of bath oscillators at finite
temperatures are sampled by a Monte Carlo procedure over a thermal Wigner
distribution.

The Hamiltonian takes the form of equation (9) on the basis of Frenkel configu-
rations, jXTni, n ¼ 1; . . .;N , with N ¼ 20 monomer sites,

bH ðbx; by; bhÞ ¼ XN
n;n0¼1

bH n;n0 ðbx; by; bhÞjXTnihXTn0 j þ bH bathðbbÞb1 ð20Þ

where an external bath Hamiltonian, represented by a finite set of bath oscillatorsbb ¼ fbbjg, acts on the torsional mode(s). The elements of the excitonic Hamiltonian
read as follows (see equation (10)),

bH n;n0 ðbx; by; bhÞ ¼ dn;n0 bT ðbpx ; bpy; bphÞþ bH on-site
n ðbx; by; bhÞ� �

þðdn0;nþ 1 þ dn0;n�1Þ bH coup
n;n0 ðbx; by; bhÞ ð21Þ

where the kinetic energy operator bT ¼ bpTGbp with the metric tensor G is computed

in curvilinear coordinates [53], and the on-site and coupling Hamiltonians, bH on-site
n

and bH coup
n;n0 , are defined as in equations (11) and (14). As explained in section 6.3.2.3,

all components of the Hamiltonian are expressed in terms of monomer potentials
and couplings that fully account for anharmonicities, as illustrated in figure 6.4b.
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In figure 6.6, individual realizations of stochastic exciton motion at T = 300 K
for a N = 20 site oligomer under the above Hamiltonian are illustrated. The
exciton is seen to move as an exciton-polaron, dressed by local-mode displacements
that arise within the first tens of femtoseconds [53]. This polaronic state remains in
a coherent superposition, despite the vibronic interactions. Torsional motions

FIG. 6.6 – ML-MCTDH simulation results for an OT-20 system at finite temperature. (a) A
single realization is shown at T = 300 K. Top to bottom: excitonic site populations qn ;
bipartite entanglement En;nþ 1, expectation values of the high-frequency modes relative to
their ground-state equilibrium positions hDxni; expectation values of the torsions hhn;nþ 1i
with mean position of the exciton overlaid in red; torsional contribution to the on-site energies
En with mean position of the exciton overlaid in red; inverse participation ratio; adiabatic
populations of the Sn , n ¼ 1,…, 3, states. (b) MSDs obtained for the OT-20 system at
different temperatures, i.e., T = 100 K, 200 K, 300 K, with PBCs (full lines) and without
PBCs (dashed lines). Upper panel: ML-MCTDH results on a time scale of 1.25 ps, lower
panel: mean-field Ehrenfest dynamics results on a time scale of 50 ps. Adapted from Ref. [15]
with permission from Annual Reviews.
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trigger an exciton displacement because the spatial extension of the exciton
depends sensitively on these soft modes, which can induce and remove conjugation
breaks (see figure 6.3a). Therefore, the torsional dynamics act as a dynamical
barrier to exciton displacement. In turn, the presence of the exciton induces pla-
narization of the torsions in the excited state. This process proceeds nearly adi-
abatically in the oligothiophene chain shown here, but significant non-adiabatic
effects can be observed in systems that exhibit weaker excitonic coupling and
polaronic effects [60, 90]. This also includes the case of interchain exciton trans-
port, where a transient localization mechanism is prevalent [50, 62].

As also demonstrated in figure 6.6, diffusion coefficients are computed based on
the mean-squared displacement (MSD). In general, the following expression applies
[50, 91],

hDn2iðDtÞ ¼ ðMNDtÞ�1
Xtf�Dt

t¼0

X
n;n0

qnðtÞqn0 ðtþDtÞðn0 � nÞ2
* +

ð22Þ

where a combined time and ensemble average are considered. The above expression
takes into account the delocalized nature of the excitonic wave function. A simplified
form of this expression, which was employed in figure 6.6b, results when referring to
the mean exciton position,

hD�n2iðDtÞ ¼ ðMNDtÞ�1
Xtf�Dt

t¼0

ð�nðtþDtÞ � �nðtÞÞ2
* +

ð23Þ

In general, the MSD relates to the diffusion coefficient as D via hDn2iðDtÞ ¼ 2DDta

for a one-dimensional system, where a ¼ 1 for normal diffusion, a\1 for subdiffusive
processes, and a[ 1 for superdiffusive processes. In the simulations shown in
figure 6.6, diffusive behavior is observed for periodic boundary conditions, while
subdiffusive behavior appears for a confined lattice. Diffusion coefficients of the
order of D� 10�2 cm2 s−1 are observed, in comparison to typical experimental
values around D� 10�3 cm2 s−1, mainly due to the neglect of static disorder.

6.5 Brief Excursion to 2D Electronic Spectroscopy
Regarding the spectroscopic observation of the elementary steps discussed above,
2DES has taken a prominent role in recent years (see chapter 4). In line with
experimental observations of coherent exciton transport, we have examined in
Ref. [92] how the vibronic signatures of exciton migration translate to 2DES
signals [93–98]. In the implementation of Ref. [92], we simplified the treatment of the
previous section such as to account for an individual “fluctuation event” induced by
a single torsional mode, similar to Ref. [53].

As further detailed in chapters 4 and 8, the 2DES pulse sequence describes a
third-order, or four-wave mixing (4WM) experiment, like the simpler two-pulse
pump-probe (PP) experiment. In 2DES, the first pulse of the PP experiment is
essentially replaced by two pulses with a time delay s, denoted coherence time, which

192 Quantum Dynamics and Spectroscopy of Functional Molecular Materials...

http://dx.doi.org/10.1051/978-2-7598-3760-1.c008


enables frequency resolution of the excitation. Similar to the PP experiment, this is
followed by the waiting (or population) time T , placed between the second and third
pulse in the 2DES experiment. Signal detection occurs in the time t following the
third pulse. For a single spectrum, the signal is detected for a fixed waiting time T
and varying coherence time s. Fourier transformation in the s and t domains leads to
a two-dimensional frequency-frequency correlation map. This map yields informa-
tion on couplings between different electronic states, through the emergence of cross
peaks, as well as their optical accessibility through the relative intensities of the
peaks. Spectra recorded for different waiting times T reveal characteristic beatings
of the signals.

In our implementation of Ref. [92], we used the Equation-of-Motion
Phase-Matching Approach (EOM-PMA) [99], where the relevant third-order
polarization is obtained from a set of auxiliary wavefunctions which are propa-
gated in parallel and yield the polarization in the following form [99],

Pð3ÞðtÞ ¼ h�w12y3y ðtÞjbljw12y3y ðtÞi
�h�w12y ðtÞjbljw12y ðtÞi � h�w13y ðtÞjbljw13y ðtÞi

ð24Þ

where the subscript indices of the ket and bra wavefunctions indicate which pulses
these auxiliary wavefunctions experience. The bra wavefunctions are marked by an
overbar for clarity.

Figure 6.7 reports on 2DES maps that illustrate the effect of torsional
excited-state reorganization at T = 0 K, for a single active torsion [92]. For
reference, figure 6.7a illustrates the adiabatic energies relative to the ground state
as a function of time, showing that energy relaxation takes place due to torsional
planarization. The time scale of planarization, around 400–600 fs, is consistent with
experimental observations. Figure 6.7b shows 2DES maps for the indicated values
of the mixing time T . At T = 0, a prominent diagonal peak is visible, whose
position corresponds to the S1 (and S2) states at the initial, twisted geometry of an
OT-20 oligomer. This peak shows a deformation which indicates that a frequency
change as a function of the torsional evolution is taking place during the detection
interval (see panel a). Moving to the final panel, at T = 350 fs, we discern a
cross-peak whose frequency corresponds to (xs ¼ 1:88 eV, xt ¼ 1:79 eV), such that
the S1 (and S2) frequency during the coherence time is correlated with the S1

frequency of the planarized system during the detection time. The vertical distance
between the diagonal peak at T = 0 fs and the off-diagonal cross-peak at T = 350 fs
corresponds to the torsional reorganization energy indicated by an arrow,
generating a spectral red shift around 0.08 eV. In a realistic system, a number of
torsional modes act in a concerted fashion, giving rise to a significant value of the
reorganization energy.

Figure 6.7c-d show integrated absorption and emission spectra which have been
obtained by integration over the xt domain (in the case of the absorption spectrum)
and by integration over the xs domain (in the case of the emission spectrum). Here,
the red shift due to torsional planarization, and its gradual emergence between
T = 0 fs and T = 350 fs is clearly visible.
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In the full model system studied in Ref. [92], we further included an effective
high-frequency mode, i.e., a “polaronic” mode that dynamically adapts to the
time-evolving (de)localization of the exciton. Similarly to the experimental obser-
vations Refs. [96, 100, 101], a prominent vibronic fine structure is observed,
underscoring that the exciton undergoes non-stationary trapping. Remarkably, due
to the weak temperature dependence of the relevant polaronic mode(s),
high-frequency oscillatory signatures persist even in thin films of P3HT [96, 100].
Hence, while the study of Ref. [92] addresses a minimal model, it reflects nonetheless
the key features of the dynamical process in a realistic system.

FIG. 6.7 – 2D electronic spectra for exciton dynamics of an OT-20 model system including a
single torsional mode [92]; absolute values are shown. The carrier frequencies of all pulses were
fixed at xj ¼ 1.87 eV, j ¼ 1; . . .; 3. (a) Evolution of the adiabatic energies of the Sn , n ¼
1; . . .; 7; states relative to the ground state (S0), i.e., DE ¼ ESn � ES0 , during the coherence
time (s ¼ 250 fs), variable mixing times (T) and the detection time (t ¼ 250 fs) whose start is
shifted depending on T , as indicated by the yellow-shaded areas. The vertical arrow indicates
the reorganization energy of the torsional mode, around D = 0.08 eV. (b) 2DES signals for
different waiting times, see the discussion in the text. At T ¼ 350 fs, planarisation has
occurred, and a cross-peak exhibits a redshift consistent with the reorganisation energy shown
in (a). (c) Absorption spectrum obtained by integration over the xt domain. (d) Emission
spectrum obtained by integration over the xs domain, highlighting the red shift shown in (b).
Reproduced from Ref. [92] with permission from the Royal Society.
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6.6 Discussion and Outlook
The theoretical and computational treatment of elementary events in organic
photovoltaics is challenging, due to the intricate interplay among site-to-site elec-
tronic couplings, exciton and charge delocalization, and vibronic coupling effects,
along with the local nanostructure and molecular packing. Time-resolved spectro-
scopies have shown that coherent effects can play a significant role in these molecular
materials, despite the large number of degrees of freedom. As a result, standard
kinetic treatments are not applicable on the shortest time scales, and quantum
dynamical approaches are called for.

In this chapter, we have illustrated that first-principles parametrized lattice
Hamiltonians, together with efficient quantum dynamics in many dimensions, pro-
vide a viable route to describe charge separation at donor-acceptor junctions as well
as exciton transport. Electron-hole lattice models, including vibronic interactions,
encompass a range of transfer phenomena, from exciton transport represented by
the Frenkel–Holstein Hamiltonian to multi-state models for exciton dissociation at
donor-acceptor junctions.

Multiconfigurational methods of the MCTDH type are especially well suited to
treat highly correlated exciton dynamics in the presence of strong vibronic couplings
and anharmonic vibrations. This includes temperature-dependent effects, notably
exciton diffusion driven by fluctuations of low-frequency soft modes, e.g.,
ring-torsions. Related methods like matrix product states and non-Markovian
reduced-dynamics approaches like the HEOM scheme provide alternative routes and
are discussed in several chapters of this volume (see chapters 2 and 3).

The sequential exciton migration and exciton dissociation steps in OPVs are
obviously analogous to similar processes in biological light harvesting systems (see
chapter 5). This raises the intriguing possibility of designing bio-inspired OPV
materials that would benefit from the outstanding efficiency of their biological
counterparts. While this concept is not straightforward to put into practice because
of the limited stability of the relevant building blocks – e.g., chlorophylls – outside of
their native environment [16], future developments in this direction are obviously
expected.

As for exciton transport, very recent experiments have shown that highly effi-
cient exciton diffusion can be achieved in nanofiber materials [63, 102], possibly
opening an avenue towards tailored energy flow. At the same time, it is interesting to
note that nature has found many ways to collect light energy, as demonstrated by
the large variety of light-harvesting antennae. In contrast, all known photosynthetic
reaction centers are structurally very similar. In photosynthetic systems, the key
apparently lies in the fine tuning of redox properties and intermolecular couplings
for the electron transfer step. Similar optimization strategies might apply to OPV
materials.

Regarding the recent improvements in OPVs, largely due to NFA materials,
many issues regarding the elementary conversion steps remain open [6]. Notably, the
fact that the most efficient materials necessitate a negligible driving force as com-
pared with the first-generation materials, has not been fully understood. As a result,
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establishing design rules that connect the microscopic level to device performance
remain a major challenge. Once such design rules are established and connected to
recent progress in machine learning [103, 104], exciting prospects can be expected for
the rational design of OPV materials.
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Chapter 7

Computational Exercise: Introduction
to Quantum Dynamical Simulations

Dominik Brey* and James A. Green**

Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt,
Max-von-Laue-Str. 7, Frankfurt, 60438, Germany
*e-mail: brey@theochem.uni-frankfurt.de
**e-mail: green@chemie.uni-frankfurt.de

This chapter serves as an accompaniment to the computational exercises contained
within the Jupyter notebook LesHouches QD:ipynb, aimed at illustrating the
basics of numerical quantum dynamics. The notebook as well as installation
instructions can be found at www.doi.org/10.5281/zenodo.15033674. The compu-
tational exercises rely on Python3:10 but should work with higher versions as well.

The chapter is structured as follows: Section 7.1 introduces conventions used in
this chapter. Section 7.2 shows the theoretical background to solve the time
dependent Schrödinger equation in this chapter. For this, we focus on the
split-operator formalism. Further theoretical background is introduced in subsequent
sections where necessary. Section 7.3 introduces the first system: a one-dimensional
system with a single electronic state that models a carbonyl vibration. Section 7.4
continues with a similar system to illustrate imaginary time propagation as a means
to obtain suitable initial conditions. Section 7.5 extends the theory to multiple
electronic states and introduces the concept of density matrices. Section 7.6
introduces autocorrelation functions as an intermediate to power spectra.
Section 7.7 applies the theory for multi-state systems to an excitonic dimer, and
finally, section 7.8 concludes.

7.1 Conventions in this Chapter
While all necessary code can be found in the accompanying Jupyter notebook, this
chapter also contains code snippets for illustration. These are marked as follows:

DOI: 10.1051/978-2-7598-3760-1.c007
� The author 5s, 202

www.doi.org/10.5281/zenodo.15033674


1 #This is a code snippet
2 n = 5
3 for i in range(n):
4 print(i)

Also mirroring the notebook, various boxes can be found in the chapter: Throughout
the text, questions to you can be found as:

These are meant for you to pause and ponder before proceeding. In contrast to the
notebook, the answers are given right after.

At the end of sections, tasks are given in these boxes:

where, as for the questions, the solution is given right after. You are nevertheless
encouraged to try the tasks yourself in the notebook.

The answers to questions and solutions to tasks are given in boxes like this:

Finally, at the end of sections, there is a conclusion box that summarizes the most
important findings:

7.1.1 Initial Conditions

While all simulations will, in principle, take place right after a photo-excitation, we
will not model the excitation itself. Rather, we assume an instantaneous
Franck-Condon excitation to create a “doorway state”.1 Formally, we create this

1A doorway state is, in general, a state that connects a small manifold of simple states (here the
ground state) with a large manifold of complex states (here the excited states), see, e.g., Ref. [1].
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“doorway state” via an instantaneous electric dipole interaction of the ground state
wave function with an electric field as l̂W0, where W0 is the lowest ground state
eigenfunction and l̂ is the transition dipole moment operator [2].

In practice, this means that we will construct ground-state wave functions and
put them in excited state potentials.

7.1.2 Atomic Units

For all simulations it is important to take care of unit consistency. This reduces the
risk of neglecting conversion factors.

In quantum dynamical simulations, it is common to work in atomic units, and we
will do the same in this chapter. Atomic units are built relative to the following four
physical constants [3, 4]:

� elementary charge: e
� electron mass: me

� Planck constant/2p: �h
� Coulomb constant: 4p�0

which are all set to have a value of 1. Analytical expressions will still show the �h.
Important derived units are then the units of

� energy: mee4= ð4p�0Þ2�h2
� �

in “Hartree” (Eh)

� distance: ð4p�0Þ�h2= mee2ð Þ in “bohr” (a0)
� time: �h3ð4p�0Þ2= mee4

� � ¼ �h=Eh in “atomic time units” (atu)

Conversion factors from

� femtoseconds to atomic time units (1 fs � 41:341 atu)
� wavenumbers to electron volt (1 cm�1 � 1=8065:5 eV)
� electron volt to Hartree (1eV � 1=27:2114 Eh)
� Angstrom to Bohr (1 Å � 1:889 a0)

are declared as variables to make conversion easier.

1 fs2atu = 41.341374575751
2 invcm2eV = 1.0/8065.5
3 eV2Eh = 1.0/27.2114
4 A2a0 = 1.88973

7.1.3 Python Packages

A few external Python packages are imported to help with the calculations. These
are numpy for general calculations and Fourier transformation, matplotlib for
plotting and scipy for matrix diagonalization and integration.
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1 # import the relevant python packages
2 import numpy as np # for general math and FT
3 import scipy.linalg as scla # for matrix diagonalization
4 import scipy.integrate as scpi # for integration
5 import scipy.special as scps # for Hermite polynomials
6 import matplotlib.pyplot as plt # for plotting

7.2 Solving the Time-Dependent Schrödinger Equation
At the center of quantum dynamics lies the time-dependent Schrödinger equation

i�h
@

@t
wðtÞ ¼ Ĥ ðtÞwðtÞ ð1Þ

where we have the time derivative of the wave function on the left-hand side and the
Hamiltonian acting on the wave function on the right-hand side. Solving this
equation for a given Hamiltonian Ĥ and given initial condition wðt0Þ yields the time
evolution of the corresponding system.

The formal solution of the time-dependent Schrödinger equation is [5–7]

wðtÞ ¼ Û ðt; t0Þwðt0Þ ð2Þ
with the time evolution operator (or propagator)Û ðt; t0Þ that propagates the initial
wave function at time t0 up to time t. When equation (2) is inserted into the
time-dependent Schrödinger equation (equation (1)), we get

i�h
@

@t
Û ðt; t0Þwðt0Þ ¼ Ĥ ðtÞÛ ðt; t0Þwðt0Þ: ð3Þ

And since this equation needs to hold for any initial wave function wðt0Þ, the
propagator itself must satisfy it as well

i�h
@

@t
Û ðt; t0Þ ¼ Ĥ ðtÞÛ ðt; t0Þ: ð4Þ

Integrating both sides from t0 to t gives

Û ðt; t0Þ �Û ðt0; t0Þ ¼ � i
�h

Z t

t0
Ĥ ðsÞÛ ðs; t0Þds ð5Þ

which, upon noting that Û ðt0; t0Þ has to be the identity operator 1̂, finally gives an
equation for the propagator

Û ðt; t0Þ ¼ 1̂� i
�h

Z t

t0
Ĥ ðsÞÛ ðs; t0Þds: ð6Þ

This equation can be solved iteratively by plugging it into itself to give

Û ðt; t0Þ ¼ 1̂þ
X1
n¼1

� i
�h

� �nZ t

t0
dsn

Z sn

t0
dsn�1 � � �

Z s2

t0
ds1Ĥ ðsnÞĤ ðsn�1Þ. . .Ĥ ðs1Þ ð7Þ
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which is also called positive time-ordered exponential and denoted

Û ðt; t0Þ ¼ expþ � i
�h

Z t

t0
Ĥ ðsÞds

� �
: ð8Þ

7.2.1 Numerical Perspective

Since we will perform numerical propagations of wave functions, it might be more
instructive to look at the propagator as a series of small time steps, i.e., we divide
our time interval from t0 to t into N equal segments dt ¼ tn � tn�1, so that
Ndt ¼ t � t0. Equation (2) can then be rewritten as

wðtÞ ¼ Û ðt; tnÞÛ ðtn; tn�1Þ. . .Û ðt1; t0Þwðt0Þ ð9Þ
and the propagator from tn�1 to tn can be approximated from equation (7), with a
sufficiently small dt, as

Û ðtn; tn�1Þ � 1̂� i
�h
Ĥ ðtnÞdt: ð10Þ

This is the infinitesimal evolution operator. The total evolution operator is then the
product of those infinitesimal operators.

We will focus on time-independent Hamiltonians in this chapter, for which we
can then write

Û ðt; t0Þ ¼
YN
n¼1

Û ðtn; tn�1Þ ¼ 1� i
�h
Ĥdt

� �N

ð11Þ

and, since

lim
N!1

1þ a
N

� �N
¼ expðaÞ; ð12Þ

we have

Û ðt; t0Þ ¼ exp � i
�h
Ĥ ðt � t0Þ

� �
ð13Þ

as the final result for the propagator. Note that you can, in practice, approximate
the propagator of a time-dependent Hamiltonian as a series of short time-step
propagations of time-independent Hamiltonians as long as the time dependence of
the Hamiltonian is sufficiently small in the given time step.

7.2.1.1 Split Operator Formalism

Equation (13) can be used to construct the propagator for any given
(time-independent) Hamiltonian to then propagate an initial wave function of
choice. An advantage of this approach is that, in principle, the propagator of a
Hamiltonian can be constructed once and then applied to any initial condition.
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Our simulations will occur in time steps Dt ¼ t � t0. To simplify the construction
of the propagator, we will partition the Hamiltonian into a kinetic and potential
part, Ĥ ¼ T̂ þV̂ , so that

Û ðDtÞ � Û ðt; t0Þ ¼ exp �iðT̂ þV̂ ÞDt
�h

� �
: ð14Þ

We will use a grid representation [8, 9] of the Hamiltonian and wave function so that

Û ðDtÞ � exp �i � �h
2m

@2

@x2
þV ðxÞ

� �
Dt
�h

� �

¼ exp �i p2

2m
þV ðxÞ

� �
Dt
�h

� �
:

ð15Þ

The potential part is, in all cases in this chapter, multiplicative. The kinetic part,
however, would require us to calculate the second-order derivative of the wave
function. To avoid this, we exploit that the kinetic part is multiplicative in
momentum space and that position and momentum are a Fourier pair so that it is
easy to switch between the two.

The idea is then to separate the propagation of the potential energy and kinetic
energy. The potential energy will be propagated in position space. For the propa-
gation of the kinetic energy, we transform to momentum space. A first idea might be
to do the separation with a perturbative approach like

Û ðDtÞ � 1̂� i
Dt
�h

T̂ þV̂� �
: ð16Þ

With this, however, Û is no longer a unitary operator. We would like to retain the
unitary nature of Û since then, the norm of the wave function is conserved as

hwðDtÞjwðDtÞi ¼ hwð0ÞjÛ yðDtÞÛ ðDtÞjwð0Þi ¼ hwð0Þjwð0Þi: ð17Þ
A way to separate the propagator into parts while retaining its nature of a unitary
transformation is in analogy to the classical exponential law

Û ðDtÞ ¼ exp �iT̂ Dt
�h

� �
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

ÛT ðDtÞ

exp �iV̂ Dt
�h

� �
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

ÛV ðDtÞ

þOðDt2Þ: ð18Þ

This is the Lie-Trotter splitting [10] and it is only exact if the two operators
commute. The operators for kinetic and potential energy, in general, do not
commute so that an error proportional to the square of the time step accrues.

Another approach compared to equation (18) is the so-called Strang
splitting [11]:

Û ðDtÞ ¼ exp �iV̂ Dt
2�h

� �
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

ÛV ðDt=2Þ

exp �iT̂ Dt
�h

� �
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

ÛT ðDtÞ

exp �iV̂ Dt
2�h

� �
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

ÛV ðDt=2Þ

þOðDt3Þ ð19Þ
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which only accrues an error proportional to the cube of the time step. At first glance,
this is more costly compared to equation (18) since the potential part needs to be
propagated twice. This is, however, offset since we can choose a larger time step to
achieve the same accuracy.

Both equations (18) and (19) are special cases of the Lie-Suzuki-Trotter
decomposition [12, 13] (first and second order, respectively). For higher numerical
accuracy, one can either go to higher orders or use a smaller time step. If the (nested)
commutators between operators are easily accessible, one can also employ the
Baker-Campbell-Hausdorff formula [14–16], but this is out of scope for this chapter.

By comparing equations (13) and (18) or (19), we can see that the propagator for
the Hamiltonian is now successfully rewritten in terms of propagators for the
potential and kinetic energy, ÛV and ÛT respectively.

With the propagator of equation (19), the algorithm for the propagation is then

1. Define the position grid x � xif g and corresponding momentum grid
p � pif g

2. Construct the kinetic energy T̂ � TðpÞ, the potential energy V̂ � V ðxÞ and
the initial wavefunction w0

3. Choose the final time tf and a sufficiently small time step Dt
4. Construct the propagators for kinetic energy ÛT and potential energy ÛV

5. Propagate the wave function with ÛV ðDt=2Þ
6. Perform a Fourier transformation to momentum space
7. Propagate the wave function with ÛT ðDtÞ
8. Back-transform to position space
9. Propagate the wave function with ÛV ðDt=2Þ

10. Repeat steps 5–9 until the final time is reached

Of course, we can already calculate expectation values with the wave functions
during the propagation.

Keep in mind that this is by far not the only way to solve the time-dependent
Schrödinger equation. The split operator formalism is a flexible tool but is limited
in terms of system size. For simulations with more than a few degrees of freedom,
one would employ algorithms like the Multiconfiguration Time-Dependent
Hartree (MCTDH) method [17]. More details on these methods can be found
in chapter 2.

7.3 Single-State Systems
We will start with a simple one-dimensional model system with a single electronic
state. Be warned that some parameters are chosen poorly at first to illustrate
problems that might occur in larger simulations, where checking everything is not as
straightforward anymore.

In this first model, we simulate the dynamics of an isolated carbonyl (C=O)
vibration upon photo-excitation. The model features a harmonic potential
with a frequency x ¼ 1750:0 cm�1 and reduced mass m ¼ 37000:0me. The active
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coordinate x is the change in distance between the carbon and oxygen atoms, hence
the ground state equilibrium position is set to x ¼ 0:0 as reference. With the given
frequency x, we can expect a periodicity T � 19 fs.

In the calculation, we only simulate the excited state and assume a
Franck-Condon excitation, i.e., we put the ground state wave packet in the excited
state potential without an explicit interaction with any electric field. Furthermore,
we assume that the frequency of oscillation does not change in the excited state,
whereas the equilibrium position is shifted to x0 ¼ 0:2 a0. Our Hamiltonian is thus

H ¼ p2

2m
þ 1

2
mx2ðx � x0Þ2 ¼ p2

2m
þ 1

2
mx2ðx � 0:2Þ2: ð20Þ

The situation is sketched in figure 7.1.

To prepare the system for numerical simulations, we define the key parameters
for the potential:

1 # define the parameters as given in the text and convert to atomic units
2 w = 1750.0*invcm2eV*eV2Eh
3 m = 37000.0

and create a discretized grid x � x1; x2; . . .; xNf g of the position space:

1 # define the position grid of the simulation
2 N = 128 # number of grid points
3 x = np.linspace(−0.2, 0.4, N) # grid
4 dx = np.abs(x[1]−x[0]) # grid spacing

FIG. 7.1 – Sketch of the 1D model. The box marks the active part of the system that is
simulated. The initial photoexcitation is indicated but not part of the simulation.
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Position and momentum are a Fourier pair. With this in mind, we can construct our
momentum grid via Fourier transformation from our position grid.

1 # define the corresponding momentum grid via Fourier transformation
2 p = np.fft.fftfreq(N, dx) * 2 * np.pi

We should keep in mind that the grid spacing in position space defines the maximum
value in the momentum grid. In turn, the maximum value in the position grid defines
the grid spacing in momentum space. Especially the first relation is important and
can be written as

pmax ¼
�h

2Dx
: ð21Þ

If the resolution in position space is not high enough, we cannot represent the
momentum, and hence the kinetic energy, adequately.

With the previously defined parameters m and x as well as the position grid x,
we can define the potential:

1 # define the excited state potential: a shifted harmonic oscillator
2 V = 0.5*m*w**2*(x-0.2)**2

Now, we define the initial wave function, centered at 0, as the (analytic) first
eigenfunction of a quantum harmonic oscillator. With mass m, frequency x, and
a ¼ mx=2, this is

w0ðxÞ ¼ 4

ffiffiffiffiffiffiffiffi
mx
p

r
exp �mx

2
x2

� �
¼ 4

ffiffiffiffiffi
2a
p

r
exp �ax2� �

: ð22Þ

We will learn a way to get the non-analytic lowest eigenfunction of an arbitrary
potential in the next section.
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1 # prepare array of complex numbers
2 psi = np.zeros((len(x)), dtype=np.complex_)
3
4 alpha = m*w/2.0
5 # fill the array with the lowest analytical eigenfunction
6 psi[:] = np.sqrt(np.sqrt(2.0*alpha/np.pi))*np.exp(-alpha*x**2)

After defining the potential and initial wave function, it is a good idea to plot
both. The result is shown in figure 7.2 and as expected.

Next, we define our simulation time. We want to simulate 60 fs, i.e., a little over
three periods, with a time step of 0.005 fs.

1 t_f = 60 # final time in fs
2 dt = 0.005 # time step in fs
3 # number of timesteps is final time/timestep
4 # +1 because we want to include the first timestep (0)
5 timesteps = int(np.ceil(t_f/dt))+1
6
7 # and convert to atomic time units for the propagators
8 dt *= fs2atu

We also need to define our propagator for the potential energy in position space

1 U_V = np.exp(−1j*V*dt/2.0)

FIG. 7.2 – The harmonic potential and initial wave function on the discretized grid for the
C=O model are shown in black and blue, respectively.
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and for the kinetic energy in momentum space

1 U_T = np.exp(−1j*(p**2/(2*m))*dt)

And finally, we write our propagation routine

1 for step in range(timesteps):
2 psi[:] = U_V[:]*psi[:] # propagate potential energy
3
4 psi[:] = np.fft.fft(psi[:]) # transform to momentum space
5 psi[:] = U_T[:]*psi[:] # propagate kinetic energy
6 psi[:] = np.fft.ifft(psi[:]) # transform back to position space
7
8 psi[:] = U_V[:]*psi[:] # propagate potential energy

We should take a look at a few parameters to gauge the reliability of the cal-
culation. These include the norm (or the squared norm) and the total energy of the
system. Both should be conserved since we are dealing with a time-independent
Hamiltonian and a closed quantum system. Furthermore, the wave function has to
be contained in the pre-defined grid at all times. To test this, we can take a look at
the grid end populations, i.e., the density of the wave function on the first and last
grid points. These grid ends should not (or only marginally) be populated. Other-
wise, we might experience an unphysical momentum reversal at the end of the grid.
Lastly, it might be a good idea to take a look at the position expectation value.

To understand how we calculate these values, let us recall what to do with a wave
function in continuous position space. The density distribution function PqðxÞ is
given as

PqðxÞ ¼ w�ðxÞwðxÞ � jwihwj ð23Þ
and the position expectation value can be calculated with PqðxÞ as

hxi ¼
Z 1
�1

xPqðxÞdx: ð24Þ

Similarly, the squared norm q is the integral over PqðxÞ

q ¼
Z 1
�1

PqðxÞdx: ð25Þ

The total energy is the expectation value of the Hamiltonian.

E ¼ hH i ¼
Z 1
�1

w�ðxÞH ðxÞwðxÞdx

¼
Z 1
�1

w�ðxÞTðxÞwðxÞdx þ
Z 1
�1

w�ðxÞV ðxÞwðxÞdx

¼
Z 1
�1

w�ðxÞTðxÞwðxÞdx þ
Z 1
�1

V ðxÞPqðxÞdx

¼
Z 1
�1

/�ðpÞ/ðpÞdp
� ��1Z 1

�1
/�ðpÞ p

2

2m
/ðpÞdpþhV i

ð26Þ

where /ðpÞ is the wave function in momentum space.
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We can now rewrite equations (23)–(26) for a discretized grid x � x1; x2; . . .; xNf g.
For this, we introduce the grid density

qðxiÞ ¼ w�ðxiÞwðxiÞDx ð27Þ
to replace the density distribution function. qðx1Þ and qðxN Þ are then the grid-end
populations.

The position expectation value, equation (24), is written as

hxi ¼
XN
i¼1

xiqðxiÞ ð28Þ

and the squared norm, equation (25), is

q ¼
XN
i¼1

qðxiÞ: ð29Þ

Finally, the energy expectation value, equation (26), becomes

E ¼ hH i ¼
XN
i¼1

/�ðpiÞ/ðpiÞ
 !�1XN

i¼1

p2i
2m

/�ðpiÞ/ðpiÞþ
XN
i¼1

V ðxiÞqðxiÞ: ð30Þ

The results from employing equations (27)–(30) are shown in figure 7.3. Since we
are not interested in the total energy at this point but in the energy
conservation, we plot the difference to the initial value in μeV. As a rule of
thumb, this should be no larger than about 0.01 μeV but this depends on the
system under study.

From figure 7.3, we can see problems with the simulation. As mentioned
earlier, in “exact” quantum dynamics for closed systems and a time-independent
Hamiltonian, both the squared norm and total energy should be conserved.
While the squared norm is conserved, the total energy has excursions in regular
intervals. The grid ends are also highly populated and indicate that the chosen
grid is too small. Lastly, the position expectation value looks regular but has
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(i) the wrong periodicity and (ii) experiences damping, which should not happen
in the current model.

For this one-dimensional system, we can also plot the wave function at different
points in the dynamics. These are shown in figure 7.4. At t ¼ T=3, the wave packet
reaches the end of the grid and starts to get compressed. Part of the wave packet is
wrapped around to the other side of the grid. This is connected to the Fourier
transformations that are used during the propagation. From this point on, the wave
packet starts to behave unphysically. One would expect that the absolute value of
the wave packet is identical to the initial wave packet at integer multiples of the
period for an unperturbed harmonic oscillator. With the current grid, however, the
system is not in an unperturbed harmonic potential but a harmonic potential
augmented by an infinitely high barrier at the grid edges. This effective potential,
together with the potential that was supposed to describe the system, is shown in
figure 7.5.

Of course, the parameters were chosen in a way to illustrate the problems that
can arise when defining a system for numerical simulations. Larger grids, both in
terms of higher grid ends and lower grid spacing, can improve the numerical accu-
racy but also take more computational effort so that a balance has to be found. In
the task, you can repeat the simulations with parameters that are better suited for
the system.

FIG. 7.3 – Different values can be used to gauge the reliability of a simulation. Top left:
change in total energy compared to the initial time. Top right: the squared norm of the wave
function. Bottom left: population of the first (blue line) and last (orange line) grid point.
Bottom right: position expectation value (blue line) and expected result for a regular oscil-
lation (black line).
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FIG. 7.4 – Real and imaginary parts as well as absolute value of the wave function for the
C=O model with the initial grid definition at different times during the dynamics. At
t ¼ T=3, the wave packet reaches the grid end.
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7.4 Imaginary Time Propagation
In the calculations up to this point, and for the following calculations as well, we
assume an instantaneous Franck-Condon excitation. That is, we set the lowest
electronic ground state eigenfunction (ground state equilibrium) in the electronic
excited state potential(s). So far, we manually set the initial wave function to be the
lowest ground state eigenfunction. For a harmonic potential, this is easy to do: the
analytic eigenfunctions are known. For potentials that are obtained from electronic
structure calculations and fitted to a different functional form, this might not be the
case. One possibility is to numerically calculate the eigenfunctions, choose the lowest
one, and set it as the initial condition. An alternative approach is imaginary time
propagation (ITP). In this approach, an initial guess for the eigenfunction is taken
and then propagated in negative imaginary time [17, 18]. This is convenient to set up

FIG. 7.5 – The dashed black line shows the harmonic potential that was supposed to describe
the system. The blue line shows the effective potential that is implemented due to the finite
grid.
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with the propagation routines that are used here since it only requires two
modifications.

Let us recall the time-dependent Schrödinger equation

i�h
@

@t
wðtÞ ¼ ĤwðtÞ ð1 revisitedÞ

and let us further recall that the formal solution of this equation is

wðtÞ ¼ Û ðt; t0Þwðt0Þ ð2 revisitedÞ

and with a time-independent Hamiltonian the time evolution operator (propa-
gator) is

Û ðt; t0Þ ¼ exp � i
�h
Ĥ ðt � t0Þ

� �
: ð13 revisitedÞ

We now express our initial wave function wðt0Þ in the basis of the
(time-independent) eigenfunctions un of the Hamiltonian Ĥ with Ĥun ¼ Enun:

wðt0Þ ¼
X
n

cnun ð31Þ

so that

wðtÞ ¼ Û ðt; t0Þwðt0Þ ¼
X
n

cnexp � iðt � t0Þ
�h

En

� �
un: ð32Þ

By setting t0 ¼ 0 and substituting t ¼ �is, we get

~wðsÞ ¼
X
n

cnexp � s
�h
En

� �
un: ð33Þ

The coefficients of the eigenfunctions are subject to an exponential decay, and the
decay constant is the associated eigenenergy. That is, the higher the energy of the
eigenfunction, the faster the contribution disappears.

Two points become immediately clear from this:

1. Since we actively remove components from the wave function, we need to
re-normalize regularly

2. In the limit of infinite time, we arrive at the lowest eigenstate that is part of
the initial wave function

The first point can be avoided by introducing the (now time-dependent) energy
expectation value as a Lagrange parameter in the time-dependent Schrödinger
equation [17], but we will not do this in this chapter.

Following the second point, we will only arrive at the lowest eigenfunction if it
is not orthogonal to the initial guess. Most likely, the initial wave function will
have at least some contribution of the lowest eigenfunction (if not by design or
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chance, then by numerical inaccuracies!) so that this is the wave function obtained
after the ITP.

A more practical concern is that the ITP could take a long time in cases where
the two lowest eigenstates are close in energy. Let us assume that all population is
initially distributed in the lowest two eigenfunctions. We further assume that the
lowest eigenstate has a reference energy E0 ¼ 0 and the second eigenstate has an
energy E1 ¼ DE, so that the wave function is

wðsÞ ¼ c0u0þ c1exp � s
�h
DE

� �
u1: ð34Þ

For a normalized wave function, we have c1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c20

p
. The (re-normalized) density

in the lowest eigenfunction is then

q0ðc20; sDE=�hÞ �
c20

c20þð1� c20Þexpð�2 s
�hDEÞ

ð35Þ

and depends on c20 and sDE=�h. Plotting this shows that sDE=�h � 10 is a good rule of
thumb so that the wave function is almost completely the lowest eigenfunction, see
figure 7.6.

To test the ITP, we now want to describe the carbonyl vibration from the
previous section with an anharmonic potential. Following a Taylor expansion of an
arbitrary anharmonic potential, this can be done by adding a cubic term (or even
higher orders) as an anharmonic correction.

V ðxÞ ¼ 1
2
kx2þ cx3: ð36Þ

FIG. 7.6 – Population of the lowest eigenfunction for different initial partitions of the two
lowest eigenfunctions and different relaxation lengths, following equation (35). The solid black
line indicates a 99.999% population of the lowest eigenfunction.
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This anharmonic correction can be obtained from electronic structure calculations.
For demonstration purposes, we will obtain c from a third-order Taylor expansion of
a Morse potential

VMorseðxÞ ¼ D 1� exp �
ffiffiffiffiffiffiffi
k
2D

r
x

 ! !2

ð37Þ

with the same harmonic force constant k as in section 7.3 and a dissociation energy
D of 743 kJ mol�1, representative of a carbonyl bond. Note that we could also use
the Morse potential directly.

The Morse potential, third-order Taylor expansion, and the harmonic potential
from section 7.3 are shown in figure 7.7. As expected, the difference is larger at
greater distances from the minimum position.

We do not know the analytical eigenfunctions for the anharmonic potential we
have created. Given the similarity around the minimum, it is probably similar to the
harmonic eigenfunction, and this would be a reasonable initial condition for the ITP.
We can assume that the lowest vibrational eigenstates are close to the harmonic
states so that the energetic difference between the two lowest eigenstates is
DE � 1750 cm�1. Following our rule of thumb, we should thus propagate for 30 fs to
ensure that we end in the lowest eigenfunction.

For demonstration and to emphasize the application of ITP to create the lowest
eigenfunction of a potential from any guess (as long as it fits on the grid), we will
start with a guess that is not close to the lowest eigenfunction. Namely,
wðx; t0Þ ¼ 2 expð�0:5ajx � 0:2jÞ. Note that this wave function is neither centered at
the minimum of the potential nor is it normalized.

FIG. 7.7 – Harmonic potential from section 7.3 (black dashed line), Morse potential (grey
dotted line), and the resulting third-order Taylor expansion (solid line).
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Setting up the numerical propagation is identical to the previous section. The
only differences, besides the changed potential and initial wave function, are that the
time step is now a negative imaginary number and that during the propagation, the
wave function needs to be renormalized:

1 for step in range(timesteps):
2 # calculate norm
3 norm = np.dot(np.conj(psi),psi)*dx
4 # renormalize
5 psi[:] /= np.sqrt(norm)
6
7 psi[:] = U_V[:]*psi[:] # propagate potential energy
8
9 psi[:] = np.fft.fft(psi[:]) # transform to momentum space

10 psi[:] = U_T[:]*psi[:] # propagate kinetic energy
11 psi[:] = np.fft.ifft(psi[:]) # transform back to position space
12
13 psi[:] = U_V[:]*psi[:] # propagate potential energy

Here, the renormalization is done in every time step, but this could also only be
done every nth step to save on computational costs.

The initial wave function, the anharmonic potential, and the resulting wave
function after ITP are shown in figure 7.8. This wave function could now be used to
create a doorway state, like in the previous section.

ITP can also be used for other applications. It can be used as part of the cal-
culation of thermalized systems, where an ensemble of initial wave functions with
random phases is first propagated in imaginary time for s ¼ �h=ð2kBTÞ to create
initial states for the dynamics [19, 20]. Another application is in the simulation of
solids via the quantum diffusion Monte Carlo approach [21].

FIG. 7.8 – Anharmonic potential (black), initial guess for the wave function (blue), and
eigenfunction after ITP (orange).
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7.5 Multiple Electronic States
So far, we have been looking at systems with only one electronic state. Often, when
going to larger molecules or materials, multiple electronic states are of interest, so we
want to extend our computational treatment to reflect this. Adding more electronic
states makes the propagation more demanding, both in terms of setting up the
calculations as well as running them.
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For calculations with multiple electronic states, the system can be described in
an adiabatic or (quasi-)diabatic basis. For this chapter, it is sufficient to distinguish
the two by the type of coupling between the electronic states (assuming that the
states are coupled):

� in the adiabatic basis, the matrix description ofV̂ is diagonal; that ofT̂ is not
� in the diabatic basis, the matrix description of T̂ is diagonal; that of V̂ is not

In practice, one often favours the diabatic basis for quantum dynamical
simulations as the adiabatic representation can become numerically unstable for
high-dimensional non-adiabatic quantum dynamics. A reason for this is the
divergence of the derivative (kinematic) type couplings when the potential energy
surfaces of different states come close. Another advantage of the diabatic repre-
sentation is that the states have a well-defined electronic character. With this in
mind, we will also use the diabatic representation in this chapter. The adiabatic
and diabatic representation are more extensively discussed in chapter 2.

To set up a simulation with multiple electronic states, the potential on each grid
point needs to be described by a matrix rather than a single point. For the propa-
gators this means that we need to calculate the exponential of a matrix. For this, we
can either use a perturbative approach (cf. equation (16)), or we can transform to
the eigenbasis, calculate the exponential and transform back. For accuracy and since
we will need the eigenbasis for other things as well, we will use the latter approach in
this chapter.

7.5.1 Density Matrix

When dealing with multiple electronic states, the wave function can be written as
the sum of products of a vibrational and an electronic part

WðxÞ ¼
XM
n¼1

cnwnðxÞjni ð38Þ

where jni denotes the electronic state and cn is an expansion coefficient. From
equation (38), we can, in analogy to equation (23) for single-state wave functions,
write the density distribution function for this multi-state wave function as the
density tensor

Pq xð Þ ¼ WihWj j ¼
XM
n;m

cnwn xð Þjnihmjc�mw�mðxÞ ¼
XM
n;m

w�mðxÞwnðxÞc�mcnjnihmj: ð39Þ

We can obtain the reduced electronic density matrix from the density tensor as

q ¼ Trx PqðxÞ

 � ¼X

n;m

c�mcnjnihmj ¼
X
n;m

qnmjnihmj ð40Þ

where Trx is the trace over the vibrational part. The trace of q is the squared norm.
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So far, we have been looking at the density matrix for a single multi-state
wave function, i.e., a pure state. It is straightforward to extend the density
matrix picture to an ensemble of N multi-state wave functions, a so-called mixed
state, as

Pmixed
q ¼

XN
n¼1

pnjWnihWnj ¼
XN
n¼1

pnPq;n ð41Þ

where pn is the probability that the system is in the state described by wave function
jWni. This extension makes it convenient to use the density matrix picture to
describe ensembles, e.g., to account for inhomogeneous broadening, dephasing, or
temperature effects. The main drawback of density matrices is that the propagation
is more cumbersome than the propagation of wave functions. An easy way to think
about this is with the number of elements in a matrix. An electronic wave function
with 20 states would have 20 entries in the vector representation. The corresponding
density matrix has 400 elements. This enables the use of computationally more
demanding Hamiltonians or the treatment of larger systems within the wave
function picture.

For this chapter, we will stay in the wave function picture for the calculation of
dynamics but use the reduced electronic density matrix to analyse the results.
Complementary, chapter 8 uses the density matrix picture for the calculation of
(non-linear) spectroscopic signals.

Taking a closer look at the reduced electronic density matrix (equation (40)) for
a two-state system

q ¼
X2
n;m

c�mcnjnihmj ¼ jc1j2 c1c�2
c�1c2 jc2j2

� �
ð42Þ

we can identify the diagonal elements as the state populations. The off-diagonal
elements are coherences and can be used to differentiate a coherent superposition
from a statistical mixture. To illustrate this point, let us take a look at the difference
between the reduced electronic density matrix for a coherent superposition of purely
electronic wave functions and the one for a corresponding mixed state. We start with
the coherent superposition

jWi ¼ 1ffiffiffi
2
p j1iþ j2ið Þ: ð43Þ

By employing equation (40), we can calculate the reduced electronic density
matrix as

q ¼
X2
n;m

1
2
jnihmj ¼ 0:5 0:5

0:5 0:5

� �
; ð44Þ

where we can see the coherent nature reflected in the non-zero off-diagonal elements.
Conversely, the mixed state is a 1:1 mixture of wave functions that are

completely located on either state j1i or state j2i, i.e., we have jW1i ¼ j1i and
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jW2i ¼ j2i with p1 ¼ p2 ¼ 0:5. Following equations (40) and (41), the density
matrices are

q1 ¼ 1:0 0:0
0:0 0:0

� �
; q2 ¼ 0:0 0:0

0:0 1:0

� �
) qmixed ¼ 0:5 0:0

0:0 0:5

� �
: ð45Þ

As we can see, the off-diagonal elements are strictly zero for a statistical mixture. As
a side note, the coherence of a pure state also vanishes when all population is in one
state; since then, it is no longer a coherent superposition of states.

7.6 Autocorrelation Function
The autocorrelation function C ðtÞ of the excited state wave function jWi is given as

C ðtÞ ¼ hWð0ÞjWðtÞi ð46Þ
and is related to the first-order polarization and thus the linear absorption
spectrum.

To understand this relation, we will start with the power spectrum rðEÞ of the
system:

rðEÞ ¼ W dðE � Ĥ Þ�� ��W
 �
: ð47Þ

If the eigenfunctions un of the system Hamiltonian Ĥ and the corresponding
energies En (Ĥun ¼ Enun) are known, they can be used as a basis, so that

jWi ¼
X
n

cnjuni ð48Þ

with cn ¼ hunjWi. With the basis of eigenfunctions, we also have the completeness
relation

1̂ ¼
X
n

junihunj ð49Þ

and the power spectrum of the system can be obtained by inserting equation (49)
into equation (47):

rðEÞ ¼
X
n;m

hWjunihunjdðE �Ĥ ÞjumihumjWi

¼
X
n;m

c�ncmdðE � EmÞdn;m

¼
X
n

jcnj2dðE � EnÞ:
ð50Þ

The power spectrum is thus peaked at the eigenenergies of the system. The peaks are
weighted by the contribution of the corresponding eigenfunction to the total wave
function.

Rather than projecting onto all eigenfunctions and calculating the corresponding
eigenenergies, we can employ the Fourier representation of the d function

dðE �Ĥ Þ ¼ 1
2p

Z 1
�1

exp
i
�h
ðE �Ĥ Þt

� �
dt ð51Þ

222 Quantum Dynamics and Spectroscopy of Functional Molecular Materials...



to get

rðEÞ ¼ 1
2p

Z 1
�1

�
W exp

i
�h
ðE � Ĥ Þt

� �����
����W
�
dt

¼ 1
2p

Z 1
�1

exp
i
�h
Et

� ��
W exp � i

�h
Ĥ t

� �����
����W
�
dt

¼ 1
2p

Z 1
�1

exp
i
�h
Et

� ��
W Û ðt; 0Þ�� ��W�dt

¼ 1
2p

Z 1
�1

exp
i
�h
Et

� �
hWð0ÞjWðtÞidt

¼ 1
2p

Z 1
�1

exp
i
�h
Et

� �
C ðtÞdt:

ð52Þ

The power spectrum can thus also be obtained from a Fourier transformation of the
autocorrelation function [2, 17, 22].

We can exploit some properties of the Hamiltonian and initial wave function to
facilitate some calculations.

For a hermitian Hamiltonian, integration over negative time can be avoided
since [17]

C ð�tÞ ¼ W exp i
�h Ĥ t
� ���� ���WD E

¼ exp � i
�h Ĥ t

� �
W
���WD E

¼ W exp � i
�h Ĥ t

� ���� ���WD E�
¼ C �ðtÞ

ð53Þ

and thusZ 0

�1
exp

i
�h
Et

� �
C ðtÞdt ¼

Z 1
0

exp � i
�h
Et

� �
C ð�tÞdt ¼

Z 1
0

exp
i
�h
Et

� �
C ðtÞ

� ��
dt

ð54Þ
so that

rðEÞ ¼ 1
2p

Z 0

�1
exp

i
�h
Et

� �
C ðtÞdtþ 1

2p

Z 1
0
exp

i
�h
Et

� �
C ðtÞdt

¼ 1
2p

Z 1
0

exp
i
�h
Et

� �
C ðtÞ

� ��
þ exp

i
�h
Et

� �
C ðtÞ

� �
dt

¼ 1
p
Re
Z 1
0

exp
i
�h
Et

� �
C ðtÞdt:

ð55Þ

Since we write r as a function of the energy E in equation (55) it might seem like we
can arbitrarily choose the energy resolution of the power spectrum. This is, however,
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not true as the autocorrelation function and the power spectrum are linked with a
Fourier transformation. Because of this, the resolution (energy spacing) in the power
spectrum is defined via the highest time in the autocorrelation function and the
highest energy via the time step. Usually, we want a small energy spacing to better
resolve the spectrum, but this would require a longer simulation to get to higher
times for the autocorrelation function. However, we can exploit some properties of
the autocorrelation function to trade a higher time (better energy resolution) for a
higher time step (lower maximal energy):

C ðtÞ ¼ hWð0ÞjWðtÞi

¼ Wð0Þ exp � i
�h
Ĥ t

� �����
����Wð0Þ

� �

¼
D�

exp
�
� i
�h
Ĥ
y� t
2

�
W�ð0Þ

�����exp�� i
�h
Ĥ

t
2

�
Wð0Þ

E
:

ð56Þ

If the initial state Wð0Þ is real and the Hamiltonian is symmetric, then it follows that
[17, 23, 24]

C ðtÞ ¼ hW�ðt=2ÞjWðt=2Þi: ð57Þ
With this, we can double our maximal time but also double our time step in the
autocorrelation function. Equation (57) is the one that is used in this chapter to
calculate the autocorrelation function.

There are two things that we still need to consider:

1. From the Fourier transformation, we would get a stick spectrum (assuming
C ðtÞ is known for every possible time)

2. Unless we have a dissociating state where the autocorrelation function decays
to zero at finite time, we introduce artifacts if we do not propagate for
infinitely long times

Let us start with the first point. A more realistic line shape, rather than a stick
spectrum, can be obtained by taking the finite lifetime of excited states into account.
Rather than modelling this lifetime explicitly, we multiply the autocorrelation func-
tion with an exponential decay function f ðtÞ. The Fourier transformation turns this
into a convolution of the power spectrum with a Lorentzian. In this chapter, we use

f ðtÞ ¼ exp � t
s

� �
ð58Þ

where s is the chosen lifetime of the excited state.
As for the second point, we would need to propagate to infinity, following equa-

tion (55). If we have a dissociating state, the autocorrelation function will decrease to
zero over time and stay there. As such, the autocorrelation function does not change
anymore after this point and we do not introduce any errors by stopping the calcu-
lation at this point. In a bound state, however, we will have recurrences of the
autocorrelation function. If we arbitrarily stop the propagation at some point ts
(other than infinity) we convolute the power spectrumwith a resolution function [17].

224 Quantum Dynamics and Spectroscopy of Functional Molecular Materials...



This leads to a broadening of the signal and spurious oscillating structures in the
spectrum (Gibbs phenomenon).

To remedy this, we can multiply our autocorrelation function with a window or
filter function gðtÞ. We require for this function that

i. 0� gðtÞ� 1
ii. gð0Þ ¼ 1
iii. gðtsÞ ¼ 0

There are numerous window functions available, but in this chapter, we will stick to
the cosine window function

gðtÞ ¼ cos
pt
2ts

� �
: ð59Þ

FIG. 7.9 – The left-hand side shows the autocorrelation function, and the right-hand side
shows the corresponding normalized power spectrum. (a) and (b) directly from the dynamics
until 200 fs. Stopping at this arbitrary point leads to Fourier artifacts in the spectrum.
Stopping closer to a multiple of the apparent period of the autocorrelation function (red box
in (a)) leads to a spectrum with less artefacts (red line in (b)). (c) and (d) when employing an
exponential damping with s ¼ 50 fs and cosine window function. (e) and (f) with added
zero-padding after 200 fs until 2 ps.

Computational Exercise: Introduction to Quantum Dynamical Simulations 225



For this function, we take advantage of the fact that t 2 ½0; ts	. In general, one would
need to take care of the sign of t and values outside this interval. This can be done
by, e.g., taking the absolute value of t or using a Heaviside stepfunction.

Employing such a window function also leads to a line broadening in the spec-
trum and in turn f ðtÞ can also be seen as a window function.

After employing the window function, we can employ another technique for
discrete Fourier transformations: zero-padding. The resolution (energy spacing) in
the power spectrum is defined by the maximum time in the autocorrelation function
due to the Fourier relation. To increase this resolution, we would need to calculate
the dynamics for longer times, which can be prohibitive for demanding calculations.
By employing a window function, we ensure that the autocorrelation function is zero
at the final time. A common technique is then to add zeros to the end to increase the
final time. This padding with zeros leads to an increased resolution but should only
be applied when the spectrum is reasonably well-defined without zero-padding.
When solving equation (55), this zero-padding can be done by adding zeros to the
end of the autocorrelation function or simply by defining the energy axis indepen-
dently of the underlying Fourier relation to the time axis. A comparison of the
autocorrelation functions and corresponding spectra directly from the dynamics,
with line broadening and window function applied and with added zero-padding, is
shown in figure 7.9.

7.7 Excitonic Dimer
To illustrate the application of reduced electronic density matrices and autocorre-
lation functions, we will take a look at an excitonic dimer. The system, which is also
discussed in chapters 4 and 8, is based on the squaraine dimers studied in Ref. [25].
Figure 7.10 shows the monomers and connectors that are used in this chapter. At
first, connector I will be considered, i.e., two uncoupled monomers. Following that,
the two monomers will be coupled via connector II. In the excitonic dimer model, the
connector is realized by the strength of the electronic coupling.

The excitonic dimer model features two singly excited electronic states corre-
sponding to electronic excitations localized on monomer A or B. The excitation
energies of the monomers are EA ¼ 15240 cm�1 and EB ¼ 13950 cm�1, respectively.
Between the two electronic states is a constant coupling V 1, which depends on how
the two monomers are connected.

A single vibrational degree of freedom with a frequency x ¼ 1220 cm�1 is coupled
to both states in the same way. The excited state potential of this vibrational degree
of freedom has a Huang-Rhys factor S ¼ 0:15 from which the horizontal shift x0 can
be calculated.

The total Hamiltonian is then

H ¼
X
n

� p2

2m
þ 1

2
mx2ðx � x0Þ2þEn

� �
jnihnj þ

X
n 6¼m

V 1jnihmj ð60Þ
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or explicitly in matrix notation

H ¼ � p2

2m
þ 1

2
mx2ðx � x0Þ2

� �
1 0
0 1

� �
þ EB V 1

V 1 EA

� �
ð61Þ

where we sorted the diabatic states by energy. Note that we only use the notion of
coupled diabatic states for convenience, as it makes it easy to define the system in
terms of monomers and a (swappable) linker. In fact, the diabatic states can be
transformed into adiabatic states that are uncoupled exactly independently of the
coordinate x so that there is no need to work with coupled electronic states. As this is
not usually the case, we will continue with the diabatic description for demonstration.

Equation (60) can be rewritten with creation and annihilation operators for the
electronic part with

aynan � jnihnj
aynam � jnihmj

ð62Þ

where ayn is the creation operator of the excited state jni and an the corresponding
annihilation operator. Inserting this into equation (60) gives

H ¼
X
n

� p2

2m
þ 1

2
mx2ðx � x0Þ2þEn

� �
aynan þ

X
n 6¼m

V 1aynam ð63Þ

FIG. 7.10 – Monomers A and B form the squaraine dimer with one of the three connectors I,
II, or III. The connection point is indicated by squiggly lines. With connector I, the two
monomers are uncoupled.
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which can be further rewritten into

H ¼
X
n

� p2

2m
þ 1

2
mx2x2þ dx2x þEoff

� �
aynan þ

X
n 6¼m

V 1aynam ð64Þ

with d ¼ �mx0 and Eoff ¼ 0:5mx2x20þEn. Equation (64) is the form used in
chapter 8. The model is sketched in figure 7.11.

To implement the Hamiltonian, we need to connect the Huang-Rhys factor S to
the horizontal shift x0. For this, we use that both are connected to the reorgani-
zation energy k. The reorganization energy is the difference in energy between the
initial energy after Franck-Condon excitation and the minimum of the potential. For
our Hamiltonian, this is

k ¼ 1
2
mx2ð0� x0Þ2 � 1

2
mx2ðx0 � x0Þ ¼ 1

2
mx2x20: ð65Þ

The Huang-Rhys factor is connected to the reorganization energy as k ¼ xS , in
atomic units. With this,

x0 ¼
ffiffiffiffiffiffiffiffi
2S
mx

r
: ð66Þ

The only thing left to define is the mass m, which is unknown. We can estimate the
mass or circumvent this by going to mass-weighted coordinates. We will do the latter

FIG. 7.11 – Sketch of the excitonic dimer model. The box marks the active part of the system
that is simulated. The initial photoexcitation is indicated but not part of the simulation. The
dotted line shows a potential coupling between the two surfaces for monomers A and B. The
excitation energies of the monomers are indicated by black arrows.
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in this chapter. For this, we substitute
ffiffiffiffiffi
m
p

x ! x. In practice, this is equivalent to
setting m ¼ 1:0 in atomic units.

7.7.1 Uncoupled Dimer

For the implementation, we will first use connector I, i.e., the monomers are
uncoupled. This corresponds to V 1 ¼ 0:0.

1 # define the parameters as given in the text and convert to atomic
units

2 w = 1220.0*invcm2eV*eV2Eh # frequency of vibrational mode
3 eA = 15240.0*invcm2eV*eV2Eh # excitation energy monomer A
4 eB = 13950.0*invcm2eV*eV2Eh # excitation energy monomer B
5 m = 1.0 # mass weighted coordinates -> mass is 1
6 S = 0.15 # Huang-Rhys factor
7 x0 = np.sqrt(2.0*S/(m*w)) # horizontal shift
8 V1 = 0.0 # electronic coupling -> uncoupled monomers
9

10 # also define the number of states
11 num_states = 2

The grid points will take on large values, since we are in mass-weighted coordinates.

1 # define the position grid of the simulation
2 N = 256 # number of grid points
3 x = np.linspace(−120.0, 120.0, N) # grid
4 dx = np.abs(x[1]-x[0]) # grid spacing

The momentum grid is again the Fourier transform of the position grid.

1 # define the corresponding momentum grid via Fourier transformation
2 p = np.fft.fftfreq(N, dx) * 2 * np.pi

So far this is the same as for a one-state system. The first change comes with the
definition of the system potential. Rather than single points, we need to define a
potential matrix for each grid point. Furthermore, we also want to calculate the
eigenvalues and eigenvectors of these matrices to later build the propagator of the
potential.

1 # define the excited state potential:
2 # a num_states X num_states matrix for each point in x
3 V = np.zeros((len(x), num_states, num_states))
4
5 # make empty lists for eigenvalues (from _D_iagonalization)
6 D = np.zeros((len(x), num_states), dtype=np.complex_)
7 # and eigenvectors (_U_nitary transformation matrix)

8 U = np.zeros((len(x), num_states, num_states), dtype=np.complex_)
9
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10 # since it is a 2x2 matrix, define all elements by hand
11 # sort by energy, i.e., first monomer B, then A
12 pot[:,0,0] = 0.5*m*w**2*(x-x0)**2 + eB
13 pot[:,1,1] = 0.5*m*w**2*(x-x0)**2 + eA
14 pot[:,0,1] = pot[:,1,0] = V1
15
16 # calculate eigenvalues and eigenvectors for every grid point
17 for grid_idx in range(len(x)):
18 D[grid_idx], U[grid_idx] = scla.eigh(V[grid_idx,:,:])

Remember that the coupling V 1 is currently set to zero. This essentially means that
we propagate two independent states that are still described by one wave function.

Now we define the initial wave function, centered at 0, as the analytic first
eigenfunction of a quantum harmonic oscillator with correct mass and frequency
(equation (22)). We also need to define the initial populations, from which we
calculate the expansion coefficients of the wave function, cf. equation (38).

1 # prepare array of complex numbers
2 # now a vector for each grid point
3 psi = np.zeros((len(x), num_states), dtype=np.complex_)
4
5 alpha = m*w/2.0
6 # create ground state wave function
7 # this is the lowest analytical eigenfunction of the HO
8 psi_0 = np.sqrt(np.sqrt(2.0*alpha/np.pi))*np.exp(-alpha*(x)**2)
9

10 # create array of initial populations
11 pop_0 = np.zeros(num_states)
12 # set first population to 50%
13 pop_0[0] = 0.5
14 # second population is 100% minus first population
15 pop_0[1] = 1.0-pop_0[0] #0.5
16
17 # make sure that populations are normalized
18 pop_0 /= np.sum(pop_0)
19
20 # set initial wavefunction as ground state wave function
21 # weighted by square root of initial population of states
22 psi[:,0] = psi_0.copy()*np.sqrt(pop_0[0])
23 psi[:,1] = psi_0.copy()*np.sqrt(pop_0[1])

Next, we define our simulation time. We want to simulate 100 fs with a time step
of 0.005 fs.

1 t_f = 100 # final time in fs
2 dt = 0.005 # time step in fs
3 # number of timesteps is final time/timestep
4 # +1 because we want to include the first timestep (0)
5 timesteps = int(np.ceil(t_f/dt))+1
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6
7 # and convert to atomic time units for the propagators
8 dt *= fs2atu

We also want to calculate the reduced electronic density matrix and the autocor-
relation function. To reduce the computational cost, we only do so every 20th time
step, i.e., every 0.1 fs.

1 # every 20th step, to store results
2 writeInterval = 20
3
4 # define a ’time grid’ for the timesteps when we store results
5 # this is useful for plotting
6 t_axis = np.arange(0, timesteps*np.abs(dt), np.abs(dt)*

writeInterval)
7 # number of times we store results; to create lists of values to store
8 tpoints = len(t_axis)
9

10 # define empty lists for reduced electronic density matrix
11 densmat = np.zeros((tpoints, num_states, num_states), dtype=np.

complex_)
12 # and for autocorrelation function
13 auto = np.zeros((tpoints, num_states), dtype=np.complex_)

To define the propagator for the potential energy, we calculate the exponential of
the matrix in the eigenbasis and transform it back. Note that this is not strictly
necessary right now, since the electronic coupling is set to zero. We are thus already in
the eigenbasis. But since we will include electronic coupling later on, it makes sense to
write the propagator with the transformation in mind. The propagator is thus

ÛV ðDt=2Þ ¼ Uexp �iD Dt
2�h

� �
U y ð67Þ

with
VU ¼ UD: ð68Þ

D is a matrix that has the eigenvalues of the potential matrix V as diagonal entries.
U is the corresponding eigenvector matrix and describes the unitary transformation
to the eigenbasis. For the implementation, we need to do this for every grid point.

1 # prepare an array for the potential energy propagator.
2 # dimensions are: 1. number of grid points, 2./3. number of states
3 # data type should be complex
4 U_V = np.zeros((len(x), len(D[0]), len(D[0])), dtype=np.complex_)
5
6 # loop over all grid points
7 for grid_idx in range(len(x)):
8 # exponential of potential energy matrix in eigenbasis
9 diag_pot = np.diag(np.exp(-1.0j*D[grid_idx]*dt/2.0))
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10 # transform back to get propagator
11 U_V[grid_idx ,:,:] = np.matmul(U[grid_idx], np.matmul

(diag_pot, np.conj(U[grid_idx]).T))

The propagator for the kinetic energy is unchanged compared to the case with only
one electronic state since the kinetic energy operator is identical for all electronic
states.

1 U_T = np.exp(-1j*(p**2/(2*m))*dt)

Finally, we write our propagation routine

1 for step in range(timesteps):
2 # every nth step, store results
3 if step%writeInternal==0:
4 # print out progress
5 print(”Step {:d} of {:d}”.format(step, timesteps), end=”\r”)
6 # calculate relative time step for storing results
7 rel_step = step//writeInterval
8
9 # prepare list for density tensor

10 densTensor = np.zeros((len(x), num_states, num_states),
dtype=np.complex_)

11 # go through all grid points and calculate outer product of psi
12 for grid_idx in range(len(x)):
13 densTensor[grid_idx] = np.outer(np.conj(psi[grid_idx]),

psi[grid_idx])
14 # trace out grid for reduced electronic density matrix
15 densmat[rel_step] = np.sum(densTensor, axis=0)*dx
16
17 # go through all states and calculate autocorrelation function
18 for n in range(num_states):
19 auto[rel_step, n] = np.dot(psi[:,n], psi[:,n])*dx
20
21 # on each grid point, matrix product for potential energy

propagator
22 for grid_idx in range(len(x)):
23 psi[grid_idx,:] = np.matmul(U_V[grid_idx ,:,:], psi

[grid_idx,:])
24
25 # element wise multiplication of kinetic energy propagator
26 # for all states identical
27 psi[:,:] = np.fft.fft(psi[:,:], axis=0)
28 psi[:,:] = U_T[:,np.newaxis]*psi[:,:]
29 psi[:,:] = np.fft.ifft(psi[:,:], axis=0)
30
31 # on each grid point, matrix product for potential energy propagator
32 for grid_idx in range(len(x)):
33 psi[grid_idx,:] = np.matmul(U_V[grid_idx,:,:], psi

[grid_idx,:])
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After the propagation, we can take a look at the state populations and coher-
ences. These are shown in figure 7.12. The populations remain constant for both
states, as expected for an uncoupled system. The coherence oscillates with a period
of about 26 fs. To understand this behaviour, we can take a look at the time
evolution of the reduced electronic density matrix.

To this end, we first rewrite the Hamiltonian from equation (60) as

H ¼ H 0þEB 0
0 H 0þEA

� �
ð69Þ

and the wave function as

WðxÞ ¼ wðxÞ cAjAiþ cB jBið Þ ¼
X1
n¼1

dnunðxÞ cAjAiþ cB jBið Þ ð70Þ
with H 0unðxÞ ¼ enunðxÞ. The time-dependent wave function is then

W x; tð Þ ¼
X1
n¼1

dnexp � i
�h
ðen þEAÞt

� �
unðxÞcAjAiþ

X1
n¼1

dnexp � i
�h
ðen þEBÞt

� �
unðxÞcB jBi

¼
X1
n¼1

dnexp � i
�h
ent

� �
un xð Þ exp � i

�h
EAt

� �
cAjAiþ exp � i

�h
EBt

� �
cBjBi

� �
: ð71Þ

FIG. 7.12 – Populations and coherence for the uncoupled dimer. The populations for both
states (blue line for monomer B, orange line for monomer A) remain at their initial value. The
real and imaginary parts of the coherence (green and red line, respectively) oscillate with a
period corresponding to the energetic difference between the two states.

With this and following equations (38)–(40), we can get the time evolution of the
reduced density matrix for our uncoupled system as

q ¼
jcB j2 cBc�A exp � i

�h
ðEB � EAÞt

� �

c�BcA exp � i
�h
ðEA � EBÞt

� �
jcAj2

0
BB@

1
CCA

¼
qB qA;B exp � i

�h
DEt

� �

qA;B exp
i
�h
DEt

� �
qA

0
BB@

1
CCA:

ð72Þ
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We would thus expect that the populations stay constant and the coherence
oscillates with a frequency corresponding to the difference in energy between the two
states, DE ¼ EA � EB ¼ 1290 cm�1, which corresponds to a period of 25.86 fs. This
explains the evolution in figure 7.12.

Next, we take a look at the autocorrelation function and corresponding power
spectrum. During the propagation, we calculated the autocorrelation function of the
individual diabatic states. For the absorption spectrum of the whole system, we first
need to construct the full autocorrelation function. With the way the wave function is
set up, the individual autocorrelation functions are already weighted by the
state populations so that the total autocorrelation function is simply the sum of these
individual components. We also define a time axis that is double that of the wave
function (cf. equation (57)) and a lifetime s. With this, we can also define the damping
function f ðtÞ of equation (58) and the window function gðtÞ of equation (59).

1 auto_tot = np.sum(auto, axis=1) # C(t) as sum of C_n(t)
2 t = t_axis*2.0 # time axis is doubled in comparison to populations etc.
3 dt_auto = 2.0*dt*writeInterval # time step doubled as well
4 t_s = 2.0*(t_f/fs2atu) # final time as well
5 tau = 50.0 # life time of excited state in fs
6
7 f = np.exp(-t/tau) # equation (58)
8 g = np.cos(np.pi*t/(2*t_s)) # equation (59)

Finally, we calculate the power spectrum following equation (55). Since we know
the transition energies and, thus, where signals in the spectrum should appear, we
can choose the energy axis accordingly and also indicate EA and EB .

1 C = auto_tot * f * g # apply windowing and damping
2 E = np.linspace(12000, 20000, 4096)/invcm2eV/eV2Eh # energy axis
3 sigma = np.zeros(len(E))
4 for i in range(len(E)):
5 # equation (55)
6 E[i] = np.real(np.sum(np.exp(1.0j*E[i]*t*fs2atu)*C)*dt_auto)/

np.pi
7 E = E*invcm2eV*eV2Eh # convert energy to cm-1 for plotting

The resulting spectrum is shown in figure 7.13. The signals are, however, not
where we would expect. They are shifted to higher energies by 610 cm−1, the zero
point energy of the vibrational degree of freedom. When calculating the power
spectrum in this way, we implicitly set our reference energy (the (vibronic) ground
state) to 0. When we set the transition energies as the state energies, we did not take
the zero-point energy of the excited state potentials into account. We thus set the
minimum energies to be the transition energies. For the dynamics itself, this does
not make a difference since both states are shifted by the same amount; it is a global
shift in energy. For the power spectrum, however, we have one zero-point energy, or
x=2, too much energy in the transitions. To have the peaks in the spectrum match
the transition energies, we thus need to subtract the zero point energy either by

234 Quantum Dynamics and Spectroscopy of Functional Molecular Materials...



reducing the state energies or just during plotting. All future spectra will have this
correction already applied.

FIG. 7.13 – Power spectrum of the uncoupled dimer. The highest signal is set to 1. The
transition energiesEA andEB are indicated as vertical lines in red and orange, respectively. The
spectrum is shifted by half the vibrational frequency in comparison to the transition energies.
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After understanding the peak positions, we also want to take a closer look at the
peak intensities. We know that they come from different vibrational levels. And we
also know that we can expand our wave function W in the basis of the vibrational
eigenstates un as

WðxÞ ¼ wðxÞ cAjAiþ cBjBið Þ ¼
X1
n¼1

dnunðxÞ cAjAiþ cBjBið Þ ð70 revisitedÞ

The intensity of the peak that corresponds to the vibrational level un should be
linked to the proportion of this vibrational state in the total wave function. So we
need to extract the coefficients of the vibrational eigenstates as

dn ¼ hunjWi ¼
Z 1
�1

unðxÞwðxÞdx ð73Þ

Since we are working with harmonic oscillators, we can use the analytical eigenstates
and calculate the overlaps. For the first four overlaps, we have

1 d = np.zeros(4) # list of coefficients
2 alpha = m*w/2.0 # alpha to construct HO eigenfunctions
3 # reference is unshifted ground state
4 GS = np.sqrt(np.sqrt(2.0*alpha/np.pi))*np.exp(-alpha*x**2)
5
6 for n in range(len(d)):
7 # nth vibrational eigenfunction
8 phi_n = (np.sqrt(np.sqrt(2.0*alpha/np.pi))/
9 np.sqrt(2**n*scps.factorial(n))*

10 scps.eval_hermite(n, np.sqrt(2.0*alpha)*(x-x0))*
11 np.exp(-alpha*(x-x0)**2))
12
13 d[n] = scpi.trapezoid(y=phi_n*GS, x=x, dx=dx) # equation (73)
14 print(d[n]**2) # print squared coefficients: Franck-Condon

factors

The resulting Franck-Condon factors are listed in table 7.1. We can now
approximate the spectrum by adding suitably broadened Lorentz functions centered
at the vibrational energies and scaled by the corresponding Franck-Condon factors.
The result is shown in figure 7.14.

Since we can reconstruct the spectrum, we can explain the peak positions with
the vibrational eigenstates and the peak intensities with the Franck-Condon factors.
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FIG. 7.14 – The power spectrum of the uncoupled dimer (left-hand side) can be reconstructed
from signals at the eigenenergies of the monomers weighted by the Franck-Condon factors of
the corresponding vibrational states (right-hand side).

TAB. 7.1 – Franck-Condon factors for the first four vibrational states in the uncoupled dimer.

0 0 1 0 2 0 3 0

86.07% 12.91% 0.97% 0.05%
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7.8 Coupled Dimer
After the uncoupled dimer, we will briefly take a look at a coupled dimer by adding a
connector between the monomers, starting with connector II. To this end, we set
V 1 ¼ �650:0 cm�1. Besides this change, the code remains the same and we will
directly take a look at the results, starting with the populations and coherence in
figure 7.15. Now that the two states are coupled, we can see a population transfer
between the monomers. The periodicity of this transfer is connected to the difference
in the eigenenergies of the system. Due to the coupling, the difference shifts from
1290 cm−1 to 1831 cm−1, corresponding to a period of 18.2 fs.

In regular intervals, the superposition collapses, and the population can only be
found in monomer B. In contrast to the uncoupled dimer, the coherence also
periodically vanishes at these points.

FIG. 7.15 – Populations and coherence for the coupled dimer with connector II. The popu-
lations for both states (blue line for monomer B, orange line for monomer A) oscillate, and the
superposition periodically collapses to purely monomer B.
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Next, we will take a look at the power spectrum of the coupled dimer, shown in
figure 7.16.

As expected, the peak positions do not match the monomer transition energies
any more but are shifted. To understand the positions, we need to calculate the
(vibrational) eigenenergies of the coupled system. Due to the special case of our
model, we could directly take the analytical eigenenergies of the harmonic potential
and add the electronic eigenenergies to get the vibrational eigenenergies of the whole
system. In a more general case of non-adiabatic dynamics, we would first need to
calculate the adiabatic electronic potentials and then the vibrational eigenstates for
each of these potentials. For illustration purposes, we will pursue this strategy here
as well. Luckily, we already have the adiabatic potentials from the construction of
the propagator of the potential energy. In addition to the potentials, we also need to
define the kinetic energy operator. To do this, we employ finite differencing:

We can think of the wave function on the discretized grid as a vector
wðxÞ ¼ ðwðx1Þ;wðx2Þ; . . .;wðxN ÞÞ. The second-order central difference as an approxi-
mation to the second-order derivative at a grid point xi is then given as

d2

dx2
wðxÞ

����
x¼xi
� wðxi�1Þ � 2wðxiÞþwðxiþ 1Þ

ðDxÞ2 ð74Þ
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so that the kinetic energy operator can be expressed as a matrix:

TðxÞwðxÞ ¼ � �h2

2m
d2

dx2
wðxÞ � � �h2

2mðDxÞ2

�2 1 0 . . . 0
1 �2 1 . . . 0
0 1 �2 . . . 0
..
. ..

. ..
. . .

. ..
.

0 0 . . . 1 �2

0
BBBB@

1
CCCCA

wðx1Þ
wðx2Þ
wðx3Þ

..

.

wðxN Þ

0
BBBBB@

1
CCCCCA:

ð75Þ
A more rigorous and accurate way to represent the kinetic energy operator is via the
“discrete variable representation” that is discussed in chapter 2.

To construct the Hamiltonian matrix, we add the adiabatic potential energy on
each grid point as a diagonal matrix to the kinetic energy matrix. The vibrational
eigenenergies can then be obtained by diagonalizing this total Hamiltonian matrix.

1 # construct finite difference matrix
2 T = (np.eye(len(x))*(-2) # diagonal
3 +np.eye(len(x), k=-1) # first off-diagonal
4 +np.eye(len(x), k=1)) # other first off-diagonal
5
6 # and multiply with prefactor
7 T = (−1.0/(2*m*dx*dx))*T
8

FIG. 7.16 – Power spectrum of the coupled dimer with connector II (blue line). The highest
signal is set to 1. For comparison, the power spectrum of the uncoupled dimer is also shown in
dashed grey lines.
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9 H_1 = T + np.diag(D[:,0]) # add lower adiabatic potential to T
10 eig_1 = scpl.eigvalsh(H_1) # calculate eigenvalues
11
12 H_2 = T + np.diag(D[:,1]) # add upper adiabatic potential to T
13 eig_2 = scpl.eigvalsh(H_2) # calculate eigenvalues

When adding the eigenenergies to the plot of the power spectrum, we can again
assign the peaks to transitions in the system, see figure 7.17.

We can see that the eigenenergies are shifted away from the uncoupled case. The
eigenstates of the lower adiabatic potential are red-shifted in comparison to
monomer B, and the eigenstates of the upper adiabatic state are blue-shifted in
comparison to monomer A.

FIG. 7.17 – Power spectrum of the coupled dimer with connector II (blue line). The highest
signal is set to 1. The energies corresponding to the first three eigenstates of the lower and
upper adiabatic potentials are shown as green and purple lines, respectively. For comparison,
the power spectrum of the uncoupled dimer (dashed grey line), as well as EB (dashed orange
line) and EA (dashed red line) are shown.
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7.9 Final Remarks
This chapter presented the basics of quantum dynamical simulations within the
split-operator formalism. This includes the formal solution of the time-dependent
Schrödinger equation with propagators and setting up a numerical calculation for a
system with one degree of freedom and one or two electronic states. Furthermore,
different parameters to gauge the simulations were introduced: energy and norm
conservation, as well as grid-end populations.

The generation of initial conditions from imaginary time propagations and how
to calculate position expectation values, state populations, coherences, and auto-
correlation functions were covered.

The connection between autocorrelation functions and the power spectrum of
the system, as well as how to modify the autocorrelation function in a sensible way
to get a more realistic and better-resolved spectrum was introduced. The analysis of
the resulting linear spectra in terms of peak positions and intensities was
demonstrated.

Keep in mind that all of these topics were only an introduction to quantum
dynamical simulations. Some details that apply to more complex systems were
intentionally left out for brevity. For quantum dynamical simulations with more
than a few degrees of freedom, you will need to go to other methods, like MCTDH,
but the same principles still apply.

We hope that you enjoyed this brief primer and found value in the numerical
examples. We encourage you to return to the other chapters in the book after
completing the notebook of this chapter. Try to make connections between the more
theoretical aspects and this more practical introduction. Maybe you also know
someone else who might be interested in or benefit from this chapter or the school, in
which case: let them know.
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Spectroscopy of Complex Molecular
Systems
James A. Green* and Dominik Brey**

Institute of Physical and Theoretical Chemistry, Goethe University
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8.1 Introduction
This chapter serves as an accompaniment to the computational exercise contained
within the Jupyter notebook LesHouches Spectroscopy:ipynb, aimed at
illustrating how one can simulate non-linear spectral signals.1 In addition to the aim
of illustrating how these signals are computed, the exercise will also serve to rein-
force the theory, in particular behind 2D electronic spectroscopy, that is contained
within the other chapters and lectures presented at the school.

The practical uses a Python package called the ultrafast spectroscopy suite
(UFSS) [1–5], chosen due to its ease of use and ease of installation, as well as its
speed and instructiveness in performing these calculations, all of which are highly
useful for teaching purposes. We are indebted to the authors for making the software
freely available, as well as providing a number of Jupyter notebooks on the GitHub
page [1], all of which were extremely helpful in creating this practical class. We are in
particular thankful to Peter Rose for answering questions on the usage of UFSS and
providing some alterations to the code for this practical. The notebook and this
chapter can, therefore, also serve as instructions in the use of UFSS, so that you may
afterwards use the code yourself. We also hope that the principles can also be
transferred to using other codes [6–8], or be used if you desire to write one yourself!

1The Jupyter notebook LesHouches Spectroscopy:ipynb, as well as a Jupyter notebook
containing solutions to questions posed in this chapter (LesHouches Spectroscopy
Completed:ipynb), and installation instructions may be found in the supplementary electronic
material, available at: https://doi.org/10.5281/zenodo.14861488.
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The chapter will proceed as follows: in section 8.1 a brief background to the
theory of light-matter interaction will be presented, as well as its computation in an
open-quantum system density matrix based approach. We chose to use density
matrices rather than a wavefunction-based approach, as this is typically more
commonly encountered when theoretically describing non-linear spectroscopy
[9, 10]. Furthermore, this approach allows a more straightforward treatment of
dissipation to an environment (open quantum system) and temperature. We note
that UFSS can also work in a closed system, wavefunction-based approach, but we
do not utilise this in the present chapter or in the practical. Section 8.1 will not be
exhaustive but simply provides some basic background information so that the
content of the practical can be understood. We refer readers to the other chapters of
this volume, and references mentioned in this chapter for further details.

In section 8.2, we describe the numerical setup of themolecular system that we will
simulate spectra of. We chose an excitonic dimer consisting of two different squaraine
monomers (SQA and SQB), studied by one of the other lecturers, Pavel Malý, in
Ref. [11] and discussed in chapter 4. We implement a simplified version of the theo-
retical treatment employed in that work, consisting of a coupled two-level system,
with a ground state jgi and first excited electronic state for each squaraine monomer
jeAi and jeBi, plus a dominant vibrational mode. When both monomers are excited,
we also have the possibility of a doubly excited electronic state jeA; eBi. A schematic of
the electronic energy levels in this site-based, diabatic the basis is shown in figure 8.1,
as well as the diagonlisation into the excitonic, adiabatic basis. In the reference work,
three dimers with different coupling strengths were studied [11]. We choose one for
illustrative purposes, and the goal of the reader is to simulate the spectra of another.
The non-linear spectra will show signals due to ground state bleaching (GSB),
stimulated emission (SE), and excited state absorption (ESA), and this is also
schematically shown in figure 8.1.

FIG. 8.1 – Schematic of the electronic energy levels of the squaraine dimer (SQAB) studied in
this chapter. On the left, the site (diabatic) basis is shown, comprising of a singly excited state
for each squaraine monomer, jeAi and jeBi, as well as a doubly excited state jeA; eBi. On the
right-hand side is the diagonalisation of this site basis to the exciton (adiabatic) basis, dis-
playing the 0, 1, and 2 quantum manifolds. The signals that will be observed in the non-linear
spectra are also shown, namely ground state bleaching (GSB), stimulated emission (SE), and
excited state absorption (ESA).
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In section 8.3, we describe how the electric field of a laser pulse with a Gaussian
envelope may be defined and how the linear absorption spectrum due to interaction
with this Gaussian pulse may be computed. In section 8.4, we illustrate the com-
putation of a signal from perhaps the most commonly encountered non-linear optical
spectroscopy, transient absorption. Then, in section 8.5, we illustrate 2D electronic
spectroscopy (2DES), a powerful technique for elucidating the dynamics of excitonic
systems. Finally, in section 8.6, we demonstrate in more detail the theory of
non-linear spectroscopy, particularly 2DES, through the generation of double-sided
Feynman diagrams and their use in separating components of a theoretically
determined spectral signal.

8.1.1 Background and Theory

When we irradiate a molecular sample, the electric field � of the light will induce a
macroscopic electric dipole moment, known as the polarisation P in the sample. For
a single weak electric field (i.e., weak laser pulse), the induced polarisation will
depend linearly upon the electric field

P ¼ v � � ð1Þ
where v is the susceptibility of the material. The polarization acts as a source to
generate radiation with angular frequency x that can be detected and used to
measure the absorption of a sample. The detected signal is proportional to the
polarization.

For higher electric field strengths, we have a power series expansion of the
polarization in terms of the electric field [10, 12]:

P ¼ vð1Þ � �þ vð2Þ � � � �þ vð3Þ � � � � � �þ . . . ¼ Pð1Þ þPð2Þ þPð3Þ þ . . . ð2Þ
where vð1Þ is the linear susceptibility of the sample, and vðnÞ n[ 1 are higher order
non-linear susceptibilities. In isotropic media, even order susceptibilities vanish,
such that the lowest-order non-linearity is the third order. This third-order
non-linear polarization Pð3Þ is measured by transient absorption and 2D electronic
spectroscopy. In general, these are known as 4 wave mixing techniques, as 3
interactions with the laser electric field are used to generate Pð3Þ that creates a
polarization signal (the fourth wave), which can be detected by another interaction
with an incident laser field known as the local oscillator (heterodyne detection).

In order to calculate the polarization, we can turn to perturbation theory,
describing the interaction of light with molecular systems by

H ¼ H 0 þH 0ðtÞ ð3Þ
where H 0 is the Hamiltonian of the molecular system, and H 0ðtÞ is the interaction
with light. In a dipole approximation, this takes the form of the dipole operator of
the molecule interacting with the time-dependent electric field of the light

H 0ðtÞ ¼ �l � �ðtÞ: ð4Þ
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Within a density matrix based picture, we can calculate the nth order polarization
via [10]

PðnÞðtÞ ¼ � i
�h

� �nZ 1

0
dtn

Z 1

0
dtn�1 � � �

Z 1

0
dt1�ðt � tnÞ�ðt � tn � tn�1Þ � � �

� �ðt � tn � tn�1 � � � � t1Þ
�hlðtn þ tn�1 � � � þ t1Þ � ½lðtn�1 þ � � � t1Þ; � � � ½lðt1Þ; ½lð0Þ; qð�1Þ�� � � ��i

ð5Þ
where the electric fields arrive delayed by times t1;. . .; tn, and the density matrix is
the outer product

qðtÞ ¼
X
m;n

cnðtÞc�mðtÞjnihmj: ð6Þ

The commutators with the dipole operator in equation (5) either raise or lower the
ket or bra side of the density matrix by one quantum.

The time dependence of the density matrix may be calculated by a Liouville-von
Neumann equation

dqðtÞ
dt

¼ �i
�h

L0qðtÞþL0ðtÞqðtÞð Þ ð7Þ

where L0ðtÞ is the Liouvilian superoperator of the interaction with light

L0ðtÞqðtÞ ¼ ½H 0ðtÞ; qðtÞ� ð8Þ
and L0 is the Liouvilian superoperator of the molecular system plus environment

L0qðtÞ ¼ ½H 0; qðtÞ�þ i�hDqðtÞ: ð9Þ
In the above, D is a superoperator that describes dephasing and dissipation to an
environment, which in the practical will be described by Redfield theory [13]. We
note that this is an approximate approach to describe dephasing and dissipation,
and formally exact methods of propagating the density matrix, such as the
Hierarchical Equations of Motion (HEOM) described in chapter 3 are possible. The
environment itself will be described by a bath of harmonic oscillators, whose
frequencies m follow an overdamped Brownian oscillator spectral density

J ðmÞ ¼ 2mk
c

m2 þ c2
: ð10Þ

When the polarization in equation (5) is calculated in the time domain, a Fourier
transformation must be performed in order to obtain it in the frequency domain:

PðnÞðxÞ ¼ 1ffiffiffiffiffiffi
2p

p
Z 1

�1
dteixtPðnÞðtÞ: ð11Þ

For heterodyne detection, the resulting signal can then be given by the interaction of
the polarization with the local oscillator electric field

S ðnÞðxÞ / Im ��LOðxÞ � PðnÞðxÞ
h i

ð12Þ
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The electric field of the jth laser pulse at position r in time t can be expressed by

�jðtÞ ¼ AjðtÞe�ixj tþ ikj �r þ i/j þA�
j ðtÞeixj t�ikj �r�i/j ð13Þ

where AðtÞ is its envelope function, xj is its carrier frequency, kj is its wavevector,
and /j is its phase. We have here both positive and negative carrier frequencies of
the field, however, due to the rotating wave approximation (see chapter 4), we will
only need to consider one of these terms at a time.

When multiple laser pulses interact and produce polarization in a sample, the
direction in which it can be detected ksig will be a function of sums and dif-
ferences of the wavevectors of the laser pulses, e.g. for 3rd order non-linear
polarization

ksig ¼ �k1 � k2 � k3: ð14Þ
This is known as phase matching, and the direction of ksig is specific to different
kinds of non-linear spectroscopy.

The difference between linear absorption and a 4 wave mixing experiment is
shown schematically in figure 8.2. For linear absorption, there is a single probe pulse,
in the direction kpr that generates a first order polarization Pð1Þ which is detected in
the same direction as the probe pulse ksig ¼ kpr. The probe pulse acts as a local
oscillator, known as self-heterodyned detection. For a 4 wave mixing experiment,
three incident beams of light in directions k1, k2, and k3 interact with a sample,
which then generates a third order polarization Pð3Þ in the sample. This third-order
polarization generates an electric field, which is then detected in a direction ksig by a
local oscillator. The direction of detection is specific to different kinds of 4-wave
mixing experiments, such as transient absorption and 2D electronic spectroscopy,
that will be covered in this chapter.

Now that the basic theory is set up, we can proceed with a description of the
Jupyter notebook LesHouches Spectroscopy:ipynb that forms the basis of
the practical.

FIG. 8.2 – Schematic showing (left): a linear absorption experiment, where a single probe
light pulse with wavevector kpr is incident on the sample, which generates a first-order

polarization Pð1Þ, detected in the direction of the probe (ksig ¼ kpr), and (right): a four-wave
mixing experiment where three incident beams of light with wavevectors k1, k2; and k3
interact with a sample, which then produces a third order polarization Pð3Þ in the sample that
emits an electric field and is detected in the direction ksig.
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8.2 Setup of System

8.2.1 Setup Notebook and Python Libraries

First, we set up our Jupyter Notebook and import relevant Python libraries that will
be used in the practical. The environment used in the practical (from the file
les houches:yml as described in the installation instructions document2) relies
on Python 3:10, although in principle, UFSS should work with any version of
Python > 3.5. As well as importing ufss, we import numpy (for numerical oper-
ations and array handling) and matplotlib (for plotting) using the commonly
used aliases np and plt, respectively. We also import the in-built python libraries
os (for operating system functions e.g. folder creation) and math (for basic math
operation). Finally, we import yaml; for creation of human readable input files for
UFSS. You may note that this was also used in the setup of the Python environment
(the file les houches:yml).

#Import the relevant python packages

import ufss

import numpy as np

import matplotlib.pyplot as plt

import os

import yaml

import math

8.2.2 Define Parameters for System

Now that the relevant packages have been loaded, we can proceed with setting up
our molecular Hamiltonian H 0 and dipole operator l. As mentioned in section 8.1,
we consider excitonic dimers consisting of two different squaraine monomers (SQA
and SQB), as studied in Ref. [11]. One dimer (henceforth SQAB1 – dimer 1 in the
reference work) will be used as an example in the notebook. Another dimer with a
different coupling strength will be used in the question set (dimer 3 in the reference
work, which will, however, be referred to as SQAB2 below). The electronic states of
the dimer may be described as a coupled two-level system, with the general elec-
tronic Hamiltonian given by:

H el ¼
Xs

n¼1

enaynan þ
X
m 6¼n

Vmnayman ð15Þ

where s is the total number of coupled two-level systems (s ¼ 2 in our example since
we have a dimer), en is the excitation energy of the monomer, Vmn the excitonic
coupling, ayn the creation operator for an excited electronic state jni (i.e., jni ¼ aynjgi

2The electronic supplementary material is available at https://doi.org/10.5281/zenodo.14861488.

252 Quantum Dynamics and Spectroscopy of Functional Molecular Materials...

https://doi.org/10.5281/zenodo.14861488


where jgi is the ground electronic state), and an the respective annihilation operator.
In the notebook, we need to define the excitation energies of the SQA and SQB
monomers, which in the reference paper [11] are given as 15240 cm−1 for SQA and
13950 cm−1 for SQB. We put these into variables eA and eB, respectively.

#Ground to excited state energies of SQA and SQB
eA = 15240
eB = 13950

The excitonic coupling strength for dimer number 1 is given as −650 cm−1, and we
input this into a variable V1

#Excitonic coupling between excited states of SQA and SQB for dimer 1
V1 = −650

Now that the parameters for the electronic Hamiltonian have been defined, we will
input values for the transition dipole moments connecting the ground state and
excited states of each of the monomers. In principle, these should be vectors with
x, y, and z components; however for simplicity we will just consider that the dipole
moments lie parallel to one another and along the direction of the polarization of the
electric field, such that we only need to give one number for each. These are input
into the variables muA and muB for SQA and SQB, respectively.

#Transition dipole moments for SQA and SQB transitions
#projected along the direction of the polarization of the electric

field
muA = 1.15
muB = 1.0

Next, we will include a dominant, harmonic, vibrational mode into our model. The
Hamiltonian for a set of harmonic vibrations may be given by

H vib ¼ 1
2

Xk
a¼1

p2a þX2
aq

2
a ð16Þ

where k is the number of vibrational modes (k ¼ 1 in our example), with coordinate
qa, momentum pa and vibrational frequency Xa. This harmonic potential appears in
both the ground and excited electronic states. The coupling of the vibrational mode
to the excited electronic states is given by

H el-vib ¼
Xk
a¼1

Xs

n¼1

X2
ada;nqaa

y
nan ð17Þ

where da;n is the coupling of the vibrational mode to each two-level system, related
to the Huang-Rhys factor by

Sa;n ¼ 1
2
Xad2

a;n: ð18Þ

Computational Exercise: Ultrafast Spectroscopy 253



Overall, we have a harmonic potential describing the vibrational mode in the ground
state and a displaced harmonic oscillator describing the vibration in the excited
states. In the notebook, we define the wavenumber of our vibrational mode and the
Huang-Rhys factor in the variables Omega and S and give them values from the
reference paper of 1220 cm−1 and 0.15, respectively.

#Wavenumber of dominant vibrational mode and Huang-Rhys factor
Omega = 1220
S = 0.15

The necessary parameters for our molecular Hamiltonian have now been defined,
with

H 0 ¼ H el þH vib þH el-vib: ð19Þ
Finally, we need to input parameters for the interaction of the molecular system with
the environment, and more specifically, the parameters that describe the spectral
density in equation (10). We need to define two parameters: (i) k, which is the
strength of coupling of our molecular system to the environment, and (ii) c which is a
cutoff frequency, above which vibrational frequencies of the environment are less
important. We choose similar values again to the reference work, of k ¼ 200 cm−1

and c ¼ 666 cm−1, and they are saved into the variables l sb and gamma,
respectively. As lambda is a keyword used for another purpose in Python, we
cannot choose this as a name for our system-bath coupling variable.

l_sb = 200
gamma = 666

8.2.3 Input to UFSS

Now that we have defined the important parameters for our molecular system plus
environment bath, we define a function to input these parameters into a form that
UFSS can read.

8.2.3.1 Units

We first need to consider the units in which our Hamiltonian is expressed. Quite
often, quantum chemical/dynamical programs work with atomic units; however, in
UFSS, units are taken care of implicitly, with frequencies being expressed in mul-
tiples of some angular frequency x0 and times in units of the inverse of this, x�1

0 .
For numerical convenience, we will choose our unit x0 to be fixed to the dominant
vibrational frequency i.e. x0 ¼ 2pcX, and express all energies in our Hamiltonian as
multiples of X. The units of time in fs may then be expressed as

x�1
0 ¼ 1� 1015

2pcX
ð20Þ
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where c is the speed of light (given simply as 3� 1010 cm s−1 in the notebook), and
the factor of 2p arises due to the conversion from angular frequency to time. This is
expressed in the notebook as

inv_omega0 = 1E15/(Omega*2*np.pi*3E10)
print(“omega_0^{-1} is equivalent to ”+str(inv_omega0)+“ fs”)

with x�1
0 ’ 4:35 fs, and the value saved in the variable inv omega0. The corre-

sponding period of the vibrational mode is T ¼ 2px�1
0 ’ 27 fs.

Next, we can create an input file for UFSS. A function setup ufss has been
created in the notebook for this purpose. It creates a folder whose name you specify,
into which an input file simple params:yaml will be created, containing the
parameters and associated keywords required for UFSS. The folder will also sub-
sequently contain information used by the calculations. The routine takes care of
converting the energies and couplings into multiples of X and setting a temperature
of 298 K. The latter is accomplished with the line:

’temperature’:207/Omega

where the value of 207 arises from the fact that kBT ’ 207 cm−1 at 298 K. The
setup ufss routine also takes care of setting up the environment bath with the
overdamped Brownian oscillator spectral density and dissipation by Redfield theory.
Further information on this may be found in Refs. [1] and [2].

The setup ufss function can be called by passing the parameters we have
previously defined, plus the name of a folder, defined in the folder variable.

#Define the folder name
folder = ’SQAB1_folder’
#Pass folder name and all previously defined parameters to setup_ufss
setup_ufss(folder,eA,eB,muA,muB,V1,Omega,S,l_sb,gamma)

Once the folder and input file have been setup, we call two internal methods of
UFSS, HLG:run and DensityMatrices. The former reads the input file and sets
up the Liouvillian L0 within UFSS, while the latter creates an object with this
information enclosed, which can subsequently be used to perform the spectroscopy
calculations. This object is named sqab1, and will be repeatedly used throughout
the rest of the practical.

#Internally generate the Liouvillian using the HLG.run method on
the folder

ufss.HLG.run (folder)
#Define a sqab1 object with which we will perform our spectroscopic

calculations
sqab1 = ufss.DensityMatrices (os.path.join (folder,’open’))
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8.3 Ultrafast Laser Pulse and Absorption Spectrum
Now that the molecular system is set up, let us start interacting with light! We want
to define an ultrafast laser pulse with a Gaussian envelope of standard deviation r

AðtÞ ¼ 1ffiffiffiffiffiffiffiffi
2pr

p e�t2=2r2 ð21Þ

We will choose a pulse with full-width half maximum (FWHM) of 12 fs. The
relationship between FWHM and the standard deviation r is

FWHM ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2lnð2Þ

p
r ð22Þ

In the notebook we implement the conversion from FWHM in fs to r in units of x�1
0 :

def fwhm_to_sigma(fwhm_fs):
”’ This function converts from a full width half maximum (FWHM)
of a Gaussian in fs, to a standard deviation of the Gaussian in
units of omega_0^{-1}

Parameters
-----------
fwhm_fs : FWHM of a Gaussian in fs

Returns
-------
sigma : standard deviation of the Gaussian in units of omega_0^{-1}

”’

#Convert from fs to omega_0^{-1}
fwhm = fwhm_fs/inv_omega0
#Calculate standard deviation sigma
sigma = fwhm/(2*np.sqrt(2*np.log(2)))

return sigma

This function can be called as follows

sigma = fwhm_to_sigma (12)
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which results in a value of r ’ 1:17 x�1
0 , i.e., we have a Gaussian pulse with a

standard deviation � 5 fs.
In order to numerically define this Gaussian envelope, we need to create an array

of values of t. We will use an array of 1001 points, equally spaced on the interval
t ¼ ½�20r; 20r�

#Number of time points
Nt = 1001
#Vector of 1001 time points from -20*sigma to 20*sigma
t = np.linspace (-20*sigma, 20*sigma, num = Nt)

The envelope itself can be defined by the gaussian function in UFSS, passing the
times and standard deviation r as parameters

A = ufss.gaussian (t, sigma)

Next, we would like to set our laser pulse to have a carrier frequency xc, such that
our electric field in the time domain will be defined as:

�ðtÞ ¼ AðtÞeixct ð23Þ
where for the moment we will ignore the phase and wavevector, as we are only
dealing with a single pulse in this section.

We will use a pulse centered at xc ¼ 14700 cm−1, which we write in the notebook
as a multiple of X

#Set carrier frequency in multiples of Omega
omega_c = 14700/Omega

An array for the electric field �ðtÞ can, therefore be written as

epsilon = A*np.exp(1j*omega_c*t)

where the symbol 1j is how an imaginary number is written in Python.
We can plot what this laser pulse looks like in the frequency domain by a

Fourier transformation from the time domain, which is implemented via the
signals:SignalProcessing:ft1D function in UFSS. This function takes as
arguments the time array and the electric field array. It returns an array of
frequencies, which we save into the laser w variable, and the electric field in
the frequency domain, which we save in the epsilon w variable.

laser_w, epsilon_w = ufss.signals.SignalProcessing.ft1D (t, epsilon)
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Experimentally, detectors will not measure the electric field directly, but instead
its intensity, i.e.

I ðxÞ ¼ j�ðxÞj2: ð24Þ
This is calculated in the notebook in the cell

I_w = np.abs (epsilon_w)**2

Now let us plot both the real part of the electric field and its detected intensity. In
the plot, since we wrote our carrier frequency in a multiple of X, we must multiply
our laser frequency array by X to return to units of cm−1

laser_w_cm = laser_w*Omega

We can also normalise the electric field and its intensity

epsilon_w_norm = np.real(epsilon_w)/np.max(np.real(epsilon_w))
I_w_norm = I_w/np.max(I_w)

The resulting plot is executed with the command

ax.plot(laser_w_cm,epsilon_w_norm,color=’black’,linestyle=“dashed”,
label=“$\epsilon(\omega)$”)

ax.plot(laser_w_cm,I_w_norm,color=’black’,label=“$I(\omega)$”)

and shown in figure 8.3, with the electric field in the dashed line and its intensity
plotted with a solid line. Notice that the measured intensity is narrower than the
field itself by a factor of

ffiffiffi
2

p
.

FIG. 8.3 – Electric field (dashed line) and its intensity (solid line) in the frequency domain due
to a Gaussian laser pulse of FWHM=12 fs.

258 Quantum Dynamics and Spectroscopy of Functional Molecular Materials...



8.3.1 Absorption Spectrum

Now, let us calculate the absorption spectrum that would be obtained from the
interaction of our laser pulse with the molecular system we defined in section 8.2.
A routine is included in the notebook for this, calculate linear absorption
so that it is straightforward to recalculate an absorption spectrum with a change of
parameters. We will describe some components of this routine below.

In order for UFSS to read the laser field and compute its interaction with our
molecular system, we need to use the set efields routine, which takes as
arguments the time array, envelope function, carrier frequency, and phase
discrimination condition. We will pass the first three variables as arguments to
the linear absorption function, while the latter point we have not yet considered but
will become important when we consider multiple pulses later in the chapter.
For now, we will simply set it equal to ’+’. This is implemented within the
calculate linear absorption function as:

#Set the electric fields for interaction with molecular system in UFSS
spec_obj.set_efields([t],[A],[center],[’+’])

Since UFSS is primarily intended for the computation of non-linear spectra with
multiple pulses, it requires a set of pulse delays and times with the
set pulse delays routine. For now, we only have one arriving at t ¼ 0, so we
pass an empty array to this routine

#Make an empty pulse delay for linear absorption
spec_obj.set_pulse_delays ([])

For the spectral signal itself, a time grid upon which it is calculated is set by the line

#Set a time grid for the signal that will be returned
spec_obj.set_t(0.1)
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Internally, UFSS calculates the maximum time upon which to evaluate the signal by
dividing the passed value by 6.91, i.e. 6:91=0:1 ¼ 69:1 x�1

0 . The reason 6.91 is used is
because, assuming the signal decays exponentially, e�6:91 ¼ 0:001, i.e., the maximum
time to evaluate the signal should be until it has decayed to 0.1%. Unless you have a
priori knowledge about the slowest optical dephasing time in your system, setting
this parameter may require some trial and error to get a properly resolved signal. In
the workbook, it should not be necessary to alter this parameter.

The routine calculates the polarization in the x, y, and z directions and then
averages. For our example, only the x direction will contribute since we defined the
dipole moments only in the x direction.

The calculate linear absorption function can be called by passing the
object created by the Density Matrices routine of UFSS (in the example case,
sqab1), the time array, envelope function and carrier frequency, and it returns the
spectral signal which we save in a variable la

%% capture
#Calculate linear absorption signal from our routine
la = calculate_linear_absorption (sqab1,t,A,omega_c)

Since, by default, UFSS will print a lot of information into the notebook; we use the
ipython command %%capture at the beginning of the cell to suppress output.

The values of the frequencies on which the spectral signal is computed are stored
in the w item of the sqab1 object, and we can copy them to a new array:

#Extract the frequency array
w = sqab1.w.copy()

UFSS returns these frequencies centered at x ¼ 0, so we must shift by the carrier
frequency xc before plotting the spectrum. We must also remember to multiply by
X, since our Hamiltonian was set up in multiples of this for numerical convenience.
Both of these features are achieved with the following:

w_cm = (w+omega_c)*Omega

The signal returned is complex-valued, and we only wish to plot the real part of it.
So we use the np:real command to extract this. We can also normalise the linear
absorption signal by dividing by its maximal value, which is obtained with the
np:max command

la_norm = np.real(la)/np.max(np.real(la))

Finally, the spectrum and the exciting laser pulse are plotted as shown in figure 8.4.
Red vertical lines have been added at the positions of the vibronic peaks via the
commands

ax.axvline (13533, color=’red’)
ax.axvline (14800, color=’red’)
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FIG. 8.4 – Ultrafast linear absorption signal (blue) of the SQAB1 dimer due to an exciting
Gaussian laser pulse with FWHM of 12 fs (black). Positions of the main peaks indicated with
red vertical lines.

figure 8.
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#Get a new array for the electric field of the laser
epsilon_w2 = sqab1.get_local_oscillator ()
#Set the intensity and normalise
I_w2 = np.abs (epsilon_w2)**2
I_w2_norm = I_w2/np.max(I_w2)

#Set a mask for I_w2_norm so we do not divide by tiny numbers where
the pulse is not present

I_w2_norm[I_w2_norm <0.001] = 1

#Divide the signal and normalise
abs_I = np.real(la)/I_w2_norm
abs_I_norm = np.real(abs_I)/np.max(np.real(abs_I))

8.3.2 Inhomogeneous Broadening

Spectral peaks typically have some width associated with them and are not perfectly
sharp lines. The broadening of the lines can be separated into two components:
homogeneous broadening and inhomogeneous broadening.

Homogeneous broadening arises from three sources:

1. Population relaxation (time constant T 1). Transitions have a finite lifetime
associated with them, and this uncertainty in time gives rise to an uncertainty in
the energy that is the same for all molecules in the system.

2. Pure dephasing (time constant T �
2). A dynamic effect in which memory of the

phase of oscillation of a molecule is lost as a result of intermolecular interactions
that randomize the phase.

FIG. 8.5 – Ultrafast linear absorption signal (blue) of the SQAB1 dimer due to an exciting
Gaussian laser pulse with FWHM of 12 fs (black), with the intensity normalised linear
absorption spectrum in green.
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3. Orientational relaxation (sor) An ensemble averaged dephasing effect associated
with the randomization of the initial dipole orientations.

Population and orientational relaxation are exponential, and so give rise to a
Lorentzian line shape, however pure dephasing is not necessarily exponential.
These sources of homogeneous broadening are already accounted for in our model.

Inhomogeneous broadening arises due to the fact that each molecule is in a
slightly different environment, and hence, the electronic transitions all have slightly
different energies due to interactions with this environment. This gives rise to a
Gaussian broadening of the absorption spectrum. We can mimic this effect in UFSS
by first setting up a number of different molecular Hamiltonians with slightly
different energy levels according to a Gaussian distribution and then computing
absorption spectra for each and averaging. This is implemented in the notebook in
two routines: 1) setup inhom that sets up the requisite molecular Hamiltonians
with energy levels offset according to a Gaussian distribution, as well as calculating
the weights of the subsequent spectra for these molecular Hamiltonians, and 2)
inhomogeneous broadening that calculates the spectra and averages.

We can define a standard deviation for the inhomogeneous broadening, specified
in the notebook, as 200 cm−1

broad = 200

Then, a list of separate calculation objects containing the molecular Hamiltonians
with Gaussian distributions of energy levels may be obtained by calling the
setup inhom routine and saved in sqab1 inhom. This routine also returns
the weights of the spectra that will be subsequently calculated and saves them in the
weights list. The number of different calculations is set to 11 in the workbook,
which is too small for practical purposes, and typically, tens to hundreds of different
spectra should be calculated. However, this small number will allow the subsequent
calculations to be carried out quickly while still observing the inhomogeneous
broadening of the spectra.

num_points = 11
sqab1_inhom,weights = setup_inhom(eA,eB,muA,muB,V1,Omega,S,l_sb,

gamma,broad,num_points)

The function to calculate the inhomogeneously broadened spectrum can then be
called, passing as parameters the previously defined calculate linear
absorption function, the sqab1 inhom list, the weights for the averaging, the
carrier frequency of our laser field, as well as the other named parameters required by
calculate linear absorption, i.e. the time array and envelope function. The
spectral signal is returned by this function, and saved into the la broadened
variable.

la_broadened = inhomogeneous_broadening(calculate_linear_
absorption,sqab1_inhom,weights,omega_c,t=t,A=A)
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The corresponding frequencies are obtained by using the w:copy() command on the
first element of the sqab1 inhom list

w = sqab1_inhom[0].w.copy()

The resulting spectrum can now be plotted by once more shifting this frequency
array by omega c, multiplying by Omega, and normalising the signal. The result is
illustrated in figure 8.6, noticing how the higher energy vibronic peaks are now no
longer distinct.

8.4 Transient Absorption
Transient absorption spectroscopy is conducted by a pump laser pulse that excites a
sample and a probe laser pulse that measures the change in absorption of the sample
after a time delay. It is perhaps the most straightforward of the 3rd order non-linear
spectroscopies, with the generated 3rd-order polarisation being detected in the same
direction as the probe laser pulse, which acts as a local oscillator. In terms of the
phase-matching condition, the resultant wavevector of the detected third-order

FIG. 8.6 – Linear absorption spectrum (blue) of the SQAB1 dimer, with inhomogeneously
broadened transitions due to a Gaussian distribution of electronic transitions with standard
deviation 200 cm−1.
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polarization ksig can be expressed in terms of the wavevectors of the pump kpu and
probe kpr pulses as:

ksig ¼ �kpu þ kpu þ kpr ð26Þ
Therefore, the electric field of the pump pulse is actually providing two wavevectors
simultaneously in the positive and negative directions so that the resultant ksig is in
the direction of the probe, which is used as the local oscillator for detection. Despite
only using pump and probe pulses, transient absorption is still formally a 4 wave
mixing technique (three waves to generate the third-order polarization in the
direction ksig, which then emits an electric field in this direction and detected using
the local oscillator).

Let’s now illustrate how we can compute this within UFSS. This is implemented
in the calculate transient absorption function in the notebook. For
simplicity, we have chosen the pump and probe pulses to have the same Gaussian
profile and carrier frequency. Important points to note in this function are as follows:
similar to the previously illustrated linear absorption routine, the electric fields and
phase matching condition must be set within the UFSS through the set efields
routine. The parameters passed to this routine are the time array, envelope function
and central carrier frequencies, in this case each of them is multiplied by 4 since we
have 4 electric fields we need to define, and [’-’,’+’,’+’] sets the phase matching
condition, equivalent to �kpu þ kpu þ kpr.

spec_obj.set_efields([t]*4,[A]*4,[c]*4,[’-’,’+’,’+’])

Then, the code sets the delay time for the pulses. Only two variables are passed: time
0 for the pump pulse and a sequence of delay times for the probe pulse.

spec_obj.set_pulse_delays([np.array([0]),delay_times])

Next, all the pulses are defined to have x direction polarization – i.e., in the same
direction as our dipole moments.

spec_obj.set_polarization_sequence([’x’]*4)

The final two lines of the routine perform an isotropic averaging of the spectral
signal – assuming a random distribution of molecules in the laboratory frame.

#Makes an object for the isotropically averaged signal
iso = ufss.signals.FWMIsotropicAverage(spec_obj,[’x’]*4)
#Perform the isotropic averaging
signal = iso.averaged_signal(return_signal = True)

The returned signal is of the form S ð3Þðtpump; tprobe;xprobeÞ, and therefore given as a
3-dimensional numpy array. The first dimension is equal to the dimension of the
pump times passed to spec obj:set pulse delays (i.e., 1D, as we only have a
pump at time 0), the second dimension is equal to that of delay times, while the
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third dimension is equal to the dimension of the probe detection frequencies that
exist in the spec obj:w method, which is worked out internally by UFSS.

With the routine explained, let us compute transient absorption spectra using it.
First, let us define an array for the probe delays, from 0 to 30 in units of x�1

0 such
that it corresponds in fs to delay times from 0 to � 130 fs.

probe_t = np.arange(0,30,1)

Now, we can call our transient absorption function, and save the resulting signal into
the array ta. The parameters passed to it are the sqab1 object, the standard
deviation of the laser fields sigma, carrier frequency omega c, and the array of
probe times probe t. As with the linear absorption example in the previous
section, we can get an array of the detection frequencies with the sqab1:w:copy()
command.

ta = calculate_transient_absorption(sqab1,sigma,omega_c,probe_t)
w = sqab1.w.copy()

Now, we will plot this transient absorption signal. In contrast to linear absorption,
where we only had two dimensions to plot (signal and frequency), with tran-
sient absorption we now have a third dimension – time. To visualise this, we will
make use of a colour map, where delay time appears on the x-axis, detection
frequency on the y-axis, and the signal intensity is given a colour. UFSS has a
ufss :signals :plot2D function that takes care of this for us, we just need to
pass the x and y values, the signal, and an optional argument that states we only
want to plot the real part of the signal.

Before calling this ufss :signals :plot2D function however, let us take care
of the units: delay times of the probe converted to fs, and frequencies shifted and
converted to cm−1

#Convert probe delay times to fs
probe_t_fs = probe_t*inv_omega0

#Convert detection frequency to cm−1
w_cm = (w+omega_c)*Omega

Now we can plot the signal.
Technical note: As mentioned above, the transient absorption signal ta is a

3-dimensional array, and plot2D requires a 2-dimensional array for the signal.
However, the first array index only has a size of 1, so we can “slice” the array at this
point with the command ta½0;:;:� (Python starts indexing at “0”). The result is
shown in figure 8.7.

ufss.signals.plot2D(probe_t_fs,w_cm,ta[0,:,:],part=’real’)
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8.4.1 Peak Monitoring

A common way to gain insight into the dynamical process being explored by
pump-probe spectroscopy is to monitor the intensity of the peaks and how they
change as a function of time. We can also do this theoretically by plotting
time-dependent cuts through the signal at approximately the energies from peaks in
the absorption spectrum (f 1 ¼ 13533 cm−1 and f 2 ¼ 14800 cm−1). To do this, we
need to first find out what index in the frequency array w these wavenumbers
correspond to. We can work this out by adding the carrier frequency to the w array,
and then subtracting either f 1 or f 2. After this procedure, the element in the w array
closest to 0 is located in the index we want, which can be found using the
np:argmin command. The two indices are obtained below:

#Get wavenumbers in multiples of Omega
f1=13533/Omega
f2=14800/Omega
#Get the index they appear in the detection frequency array w
ind1 = np.argmin(np.abs(w+omega_c-f1))
ind2 = np.argmin(np.abs(w+omega_c-f2))

FIG. 8.7 – Transient absorption spectrum of the SQAB1 dimer as a function of probe delay
time and detection frequency.
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Then, one can extract the intensity of the signal at these frequencies, as the
detection frequency corresponds to the third dimension in the ta array.

#Extract TA signal at 13533 cm−1
y1 = np.real(ta[0,:,ind1])
#Extract TA signal at 14800 cm−1
y2 = np.real(ta[0,:,ind2])

A plot of these extracted intensities is shown in figure 8.8, and we can notice
oscillations due to coherences.
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8.5 2D Electronic Spectroscopy (2DES)

8.5.1 Rephasing, Non-Rephasing and Absorptive Spectra

2DES consists of a sequence of three ultrafast laser pulses interacting with a sample,
separated by times t1, t2, and t3, which generate the third-order polarization Pð3Þ in
the sample that is detected by a fourth laser beam (the local oscillator). This pulse
sequence is illustrated in figure 8.9.

The resulting signal generated by the third-order polarization is then plotted as a
function of the excitation frequency x1, which is the Fourier transform of t1 (also
known as the coherence time), and the detection frequency x3, which is the Fourier
transform of t3 (also known as the detection time). The evolution of these 2D maps is
followed along t2, which is known as the delay or population time, and during this
time the molecular system evolves. Therefore t2 reports on the excited and ground
state dynamics of the system.

FIG. 8.9 – Pulse sequence for a 2DES experiment.

FIG. 8.8 – Time dependence of transient absorption peaks at 13533 cm−1 (cyan) and 14800
cm−1 (violet) of the SQAB1 dimer.
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The signal is typically detected in so called “rephasing” and “non-rephasing”
directions, where the phase-matched wavevectors of the detected signal are
respectively:

kr ¼ �k1 þ k2 þ k3 ð27Þ
and

knr ¼ þ k1 � k2 þ k3 ð28Þ
The signals in these directions are complex-valued, and typically, they contain both
absorptive and dispersive contributions, making the bands broad and difficult to
interpret. Commonly, the real parts of the rephasing and non-rephasing signals are
summed, obtaining the “purely absorptive” or “total” signal, which yields sharper
peaks that are easier to interpret.

In the notebook, routines are defined to calculate the rephasing and
non-rephasing signals in UFSS, calculate 2DES r and calculate 2DES nr
respectively. These routines resemble that of calculate transient
absorption, although there are some differences:

	 The set efields method is passed the rephasing and non rephasing phase
matching conditions (kr ¼ ½0�0;0 þ 0;0 þ 0� and knr ¼ ½0 þ 0;0 �0;0 þ 0�).

	 The set pulse delays method now contains an array of t1 times rather
than 0 as in the pump probe case.

	 The electric field envelopes are defined on a much smaller grid (M ¼ 51 and
from �5r to þ 5r) in order to speed up the calculations.

	 In order to return the full, complex signal we set spec obj:return
complex signal ¼ True.

The returned signal is of the form S ð3Þðt1; t2;x3Þ, and therefore a 3-dimensional
array, similar to the transient absorption case. However, the first dimension of the
array is now not equal to 1 but equal to the size of the array of t1 times. The second
dimension of the array is equal to the size of the t2 array, while the third-dimension is
equal to the size of the x3 array.

The defined routines automatically set t1 and x3, and we only need to define the
population time array t2. We choose an array from 0 to 30, in steps of 3 and units of
x�1

0 such that it corresponds in fs to delay times from 0 to � 130 fs, in steps of � 13 fs.

#Delay times
t2 = np.arange(0,30,3)
#Also write the array in fs
t2_fs = t2*inv_omega0

Now, we calculate the rephasing and nonrephasing signals using these routines.
We also obtain the coherence times t1 directly from UFSS with the
all pulse delays½0� element of our sqab1 object, as well as the detection
frequency w3 from the w element of our sqab1 object. These are stored in the
variables t1r and t1nr, and w3r and w3nr for the rephasing and nonrephasing
spectra, respectively.
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#Calculate the rephasing spectrum
tdes_r = calculate_2DES_r(sqab1,sigma,omega_c,delay_times=t2)
#Obtain the coherence times
t1r = sqab1.all_pulse_delays[0].copy()
#Obtain the detection frequencies
w3r = sqab1.w.copy()

#Calculate the non-ephasing spectrum
tdes_nr = calculate_2DES_nr(sqab1,sigma,omega_c,delay_times=t2)
#Obtain the coherence times
t1nr = sqab1.all_pulse_delays[0].copy()
#Obtain the detection frequencies
w3nr = sqab1.w.copy()

Since our obtained signals tdes r and tdes nr are of the form S ð3Þðt1; t2;x3Þ,
but we would like to plot S ð3Þðx1; t2;x3Þ, we must Fourier transform over the times
t1 in order to obtain the signal in terms of the excitation frequencies x1.

To do this, we can utitlise the Fourier transform methods built into UFSS.
We require the signals:SignalProcessing:ft1D method for the rephasing
spectrum, and the signals:SignalProcessing:ift1D method for the
non-rephasing spectrum. It is necessary to use the inverse Fourier transform for the
latter due to the sign change associated with k1 for the non-rephasing spectrum
relative to the rephasing one. We implement two functions ft rephasing and
ft nonrephasing to calculate these Fourier transforms, which return an array of
excitation frequencies x1 (saved in the notebook as w1r and w1nr for the rephasing
and non-rephasing signals, respectively), as well as the signal as a function of x1, t2,
and x3 (saved in the notebook as tdes r ft and tdes nr ft for the rephasing
and non-rephasing signal, respectively).

w1r, tdes_r_ft = ft_rephasing(tdes_r,t1r)
w1nr, tdes_nr_ft = ft_nonrephasing(tdes_nr,t1nr)

Now, we can plot the spectra as a function of x1 and x3. This is implemented in the
plot 2des function in the notebook, which can be called by passing
S ð3Þðx1; t2;x3Þ, x1 and x3, as well as the laser carrier frequency and X. The routine
also optionally takes as an argument an integer index for the population time t2. By
default it is set to 0, which would correspond to the first element of the t2 array we
defined above. We can also optionally control the range of the colorbar for the signal
intensity through the vmax argument. Part of the implementation is shown below:

def plot_2des(signal,w1,w3,omega_c,Omega,t2_ind=0,vmax=’max’):
""" This function plots 2D spectra

Parameters
---------
signal : 2DES signal as a function of w1, t2 and w3

w1 : Array of excitation frequencies
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w3 : Array of detection frequencies
omega_c : Carrier frequency of the laser pulses
Omega : Vibrational wavenumber which the Hamiltonian

is written in multiples of
t2_ind (optional) : Integer index of t2 delay times.

Default is 0, i.e. first t2 time.
vmax (optional) : Maximum value for colourbar.

Default is maximum signal intensity.
"""

#Shift by carrier frequency and multiply by Omega
w1_cm = (w1+omega_c)*Omega
w3_cm = (w3+omega_c)*Omega
#Make the plot
ufss.signals.plot2D(w1_cm,w3_cm,signal[:,t2_ind,:],

part=’real’,vmax=vmax)

As with the transient absorption case, we make use of the plot2D function in UFSS
within the plot 2des function. Here, the x and y axes are the excitation frequency
x1 and detection frequency x3, respectively. As previous, we must shift by the
carrier frequency and multiply by X. The 2DES rephasing and non-rephasing
spectra for an initial population time (t2 ¼ 0) are shown in figure 8.10.

UFSS follows the experimental convention that ground-state bleaching and
stimulated emission are shown as negative signals and excited state absorption is
shown with a positive signal. This comes from the historical pump probe convention
that signals are measured as an absorption difference relative to the absorption
before photoexcitation.

As was mentioned earlier in this section, the bands are particularly broad, which
we can observe in figure 8.10. So instead we will plot the purely absorptive spectra,

FIG. 8.10 – Real part of the rephasing (left) and non-rephasing (right) spectra for an initial
population time (t2 ¼ 0) for SQAB1.
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by summing the rephasing and non-rephasing signals and then plotting the real part
of this sum

#Sum the rephasing and nonrephasing signals
tdes_abs_ft = tdes_r_ft + tdes_nr_ft
#Plot the real part of the absorptive signal
plot_2des(tdes_abs_ft,w1r,w3r,omega_c,Omega)

The result of this is shown in figure 8.11, where it can be seen we have much more
clearly defined peaks, with ground state bleaching/stimulated emission signals in
blue on the diagonal and lower right off-diagonal, and excited state absorption in the
upper left off-diagonal.

FIG. 8.11 – Total absorptive 2D electronic spectrum for an initial population time (t2 ¼ 0) for
SQAB1.
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8.5.2 Peak Monitoring

Like with the transient absorption case, it is quite common to monitor the intensity
of the peaks as a function of time. We will look at the diagonal peaks at excitation
and detection frequencies of f 1 ¼ 13533 and f 2 ¼ 14800 cm−1, as well as the lower
right cross peak, indicative of energy transfer from the higher energy state to the
lower. These peaks are highlighted on the left-hand side of figure 8.12.

Similar to the case for transient absorption, we need to calculate the indices in
the signal array that f 1 and f 2 will correspond to. These indices are the same as in
the x1 and x3 arrays.

indf1w1 = np.argmin(np.abs(w1r+omega_c-f1))
indf1w3 = np.argmin(np.abs(w3r+omega_c-f1))
indf2w1 = np.argmin(np.abs(w1r+omega_c-f2))
indf2w3 = np.argmin(np.abs(w3r+omega_c-f2))
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One can then extract the signal intensities at these points and plot them

plt.plot(t2_fs,np.real(tdes_abs_ft[indf1w1,:,indf1w3]),
color=’violet’)

plt.plot(t2_fs,np.real(tdes_abs_ft[indf2w1,:,indf2w3]),
color=’darkorange’)

plt.plot(t2_fs,np.real(tdes_abs_ft[indf2w1,:,indf1w3]),
color=’cyan’)

with the result shown in the right-hand panel of figure 8.12. We observe a decrease
in the intensity of diagonal peak 2 (DP2) and a marginal average increase in the
lower right cross peak (CP21) as we have energy transfer from the higher energy
state to the lower one. We can also notice again some oscillations due to
coherences.

8.5.3 Inhomogeneous Broadening

2DES can separate homogeneous and inhomogeneous broadening. The width of the
peak along the diagonal (from bottom left to top right) corresponds to an inho-
mogeneous broadening, while the width of the peak along the anti-diagonal (from
bottom right to top left) corresponds to homogeneous broadening. This is illustrated
in figure 8.13.

Let us observe the effect of inhomogeneous broadening on our computed spectra.
Similarly to the linear absorption case, we can utilise the inhomogeneous
broadening routine previously defined, passing it the functions to calculate the 2D

FIG. 8.12 – Highlighted diagonal peaks of the total absorptive spectrum (left) and the time
dependence of their intensity (right) for SQAB1.
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spectra, as well as the previously defined sqab inhom list, weights array, carrier
frequency for excitation omega c, and the remaining parameters sigma and a list of
population times t2. For the latter, wewill redefine the t2 array and only include t2 ¼ 0,
as the calculation will take a number of minutes to run:

#Redefine population time array to only have t2=0
t2 = np.array([0])

#Compute the broadened rephasing signal
tdes_r_broadened = inhomogeneous_broadening(calculate_2DES_r,

sqab1_inhom,weights,omega_c,sigma=sigma,
delay_times=t2)

We can do this for both the rephasing (as shown above) and non-rephasing signals,
then sum them up to get the inhomogeneously broadened total absorptive signal, as
shown in figure 8.14. In comparison to figure 8.11, we can notice the peaks are
elongated along the diagonal.

FIG. 8.13 – Illustration of homogeneous and inhomogeneous broadening in 2DES.
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8.6 Feynman Diagrams
Non-linear spectral signals typically consist of contributions from different sources,
such as ground state bleaching (GSB), stimulated emission (SE) and excited state
absorption (ESA). As illustrated in the previous section, all of these features can
appear in a 2D electronic spectrum. These photochemical pathways can be illus-
trated through the use of double sided Feynman Diagrams, which illustrate the
influence of the laser pulses on the denisty matrix q ¼ jWihWj of the system [10].
Feynman Diagrams have the following properties:

1. They consist of a pair of parallel vertical lines, with the left hand line rep-
resenting the ket of the system and the right hand line representing the bra of
the system.

2. Time evolution proceeds upwards, and interactions with the electric field of
the laser are represented by straight arrows.

3. Straight arrows pointing towards the bra or ket lines represent an excitation
(and so increase the quantum number by 1), straight arrows pointing away
from the bra or ket lines represent a de-excitation (and so decrease the
quantum number by 1).

4. If the arrow points to the right, it represents an electric field with þ k
wavevector, and if it points to the left, it represents an electric field with �k
wavevector.

5. The final arrow represents emission of the polarization signal by the system
and is typically shown with a different style of arrow (dashed or curved), and
by convention is emitted from the ket side. It must also end in a population
state (i.e., diagonal element of the density matrix).

FIG. 8.14 – Inhomogeneously broadened total absorptive 2D electronic spectrum at an initial
population time (t2 ¼ 0) for SQAB1.
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6. Each Feynman diagram has a sign ð�1Þn, where n is the number of inter-
actions from the right (bra side). This is because each time an interaction is
from the right in the commutator for the n th-order polarization in equation
(5), it carries a minus sign. Since the last interaction is not part of the
commutator, it is not counted in this sign-rule.

Example Feynman diagrams for GSB, SE and ESA are shown in figure 8.15. The
incident wavevectors sum to �k1 þ k2 þ k3 hence they correspond to the rephasing
direction, and the polarization signal emitted is ksig ¼ kr . Note that UFSS employs
the opposite sign convention for the GSB, SE, and ESA signals to that described in
the final point of the above list. This will be explained in section 8.6.2.

In the following section, we will first generate these Feynman diagrams progra-
matically, and then use them to seperate components of the sqab1 2D spectral
signal. The questions in this section will only involve the sqab1 object, to save
repetition, however you are welcome to seperate the signal of sqab2 as well to
compare.

8.6.1 Generating Feynman Diagrams

UFSS contains a class that can generate Feynman diagrams for specific
phase-matching conditions and pulse delays, and calculate the spectra using these
diagrams. In the following, we will use this to seperate the GSB, SE and ESA
components of the 2DES signal.

First let us create an instance of the ufss:DiagramGenerator class, and then
call it to make an object with which we will calculate the Feynman diagrams for the
rephasing signal.

#Make an instance of the diagram generator class
DG = ufss.DiagramGenerator
#Call DG and make an object to compute the Feynman diagrams for the

rephasing signal
tdes_dg_r = DG()

FIG. 8.15 – Example double sided Feynman diagrams in the rephasing direction, showing
ground state bleaching (GSB), stimulated emission (SE) and excited state absorption
(ESA) for a pair of two-level systems.
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Now, let us set the phase matching condition to be that of the rephasing signal, i.e.,
kr ¼ �k1 þ k2 þ k3

tdes_dg_r.set_phase_discrimination([’-’,’+’,’+’])

For the diagram generator, we need to pass a list of durations for the electric fields. If
we use Gaussian pulses with standard deviation r as previously in the exercise, then
the electric fields will have approximately decayed by 5 r. So we define the duration
of the 3 pulses and the local oscillator as:

t1 = np.array([-5*sigma,5*sigma])
t2 = np.array([-5*sigma,5*sigma])
t3 = np.array([-5*sigma,5*sigma])
tlo = np.array([-5*sigma,5*sigma])
all_pulse_intervals = [t1,t2,t3,tlo]

We then set the efield times attribute of the tdes dg r object equal to this:

tdes_dg_r.efield_times = all_pulse_intervals

Next, we need to define when these pulses will arrive. To ensure that we have proper
time ordering (i.e., pulse 3 arrives when pulse 2 has completely decayed, and pulse 2
arrives when pulse 1 has completely decayed) we will define arrival times seperated
by 100 x�1

0 , which is much greater than 5 r� 6x�1
0 . We also need to define an arrival

time for the local oscillator. However this time is irrelevant for the functioning of the
code and can be defined to arrive at the same time as pulse 3.

arrival_times = [0,100,200,200]

Now, we can generate the set of Feynman diagrams associated with the rephasing
phase matching condition and time-ordering of the pulses with the get diagrams
method.

time_ordered_diagrams_r = tdes_dg_r.get_diagrams(arrival_times)

Finally, we can visualise/print the diagrams. In the notebook, the resulting diagrams
can only be visualised if you have a TeX distribution installed. This is accomplished
as follows:

tdes_dg_r.display_diagrams(time_ordered_diagrams_r)

UFSS prints only the interaction with the laser fields, and not the emitted signal,
with k1, k2 and k3 denoted as a, b and c, respectively. This is illustrated in
figure 8.16.
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If you do not have a TeX distribution, you can print the diagrams in a textual
format, for example:

print(time_ordered_diagrams_r[1])

with the output:

((’Bu’, 0), (’Ku’, 1), (’Bd’, 2))

The numbers 0, 1 and 2 in the output correspond to the first, second and third pulse.
“Ku” and “Bu” correspond to arrows pointing towards the ket and bra sides,
respectively (“u” signifying we are moving up the density matrix by one quantum),
“Kd” and “Bd” correspond to arrows moving away from the ket and bra sides,
respectively (“d” signifying we are moving down the density matrix by one quan-
tum). If we were to draw the Feynman diagram according to this output, we would
see it would correspond to a SE signal (central panel of figure 8.16).

8.6.2 Assigning Feynman Diagrams

As well as assigning the diagrams by hand, it is possible to do so programmatically.
To do so, we make use of the filter diagrams by excitation manifold
method. This separates the diagrams by the maximum number of quanta in the bra
and ket sides after the interaction with the second pulse (i.e., the population state

FIG. 8.16 – Feynman diagrams generated by the UFSS code, corresponding to GSB (left), SE
(middle) and ESA(right) for the rephasing signal.
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monitored by 2DES). With 0 quanta in the bra and ket sides after interaction with
the second pulse, we have the ground state manifold with the GSB diagram. With a
maximum of 1 quantum in the bra and ket sides, we have the singly excited manifold
with the SE and ESA diagrams.

#GSB diagram
gsb_dg_r = tdes_dg_r.filter_diagrams_by_excitation_manifold

(time_ordered_diagrams_r,manifold=0)
#SE and ESA diagrams
se_esa_dg_r = tdes_dg_r.filter_diagrams_by_excitation_manifold

(time_ordered_diagrams_r,manifold=1)

Now let us seperate the SE and ESA diagrams. We can do this by filtering by the
sign of the signal. As mentioned in the introduction to section 8.6, UFSS employs the
opposite convention for the sign to the theoretically derived sign of the polarization,
i.e., negative for stimulated emission (and ground state bleaching) and positive for
excited state absorption. This is because the convention that UFSS follows is that
used in experiment – where the signal is to be interpreted as an intensity change
relative to the ground state absorption before photoexcitation. Therefore, when
seperating the diagrams with UFSS, we follow this convention.

#Define the sign of the SE signal as negative
se_sign = -1
#Extract only the SE Feynman diagram
se_dg_r = tdes_dg_r.filter_diagrams_by_sign(se_esa_dg_r,sign=se_

sign)

#Define the ESA signal as positive
esa_sign = 1
#Extract only the ESA Feynman diagram
esa_dg_r = tdes_dg_r.filter_diagrams_by_sign(se_esa_dg_r,sign=esa_

sign)

As before, one can then print and visualise these diagrams to check that the pro-
grammatic assignment is correct.

8.6.3 Separating Spectral Components by Diagram

Now that we have generated Feynman diagrams and separated them into GSB, SE
and ESA, we can use these separated diagrams to generate 2D electronic spectra
with only these components. To do this, we will pass the diagrams to our previously
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defined calculate 2DES r function, which had an optional argument to pass
Feynman diagrams.

#Calculate the GSB for the rephasing spectrum by passing the
GSB diagram

tdes_r_gsb = calculate_2DES_r(sqab1,sigma,omega_c,delay_times=t2,
dgs=gsb_dg_r)

After extracting the t1 times, x3 frequencies, and Fourier transforming over t1 to get
x1 as previously, we can plot the GSB-only component of the rephasing signal, as
shown in figure 8.17.

We can see that even isolating the GSB component of the rephasing signal, we
have positive and negative components. However, for the total absorptive signal
(shown in figure 8.18, the answer to the following task 5.6), we have essentially only
negative components as may be expected.

FIG. 8.17 – GSB component of the rephasing 2D electronic spectrum for an initial population
time (t2 ¼ 0) for SQAB1.
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8.6.4 Time Ordering

One of the key approximations made in 2DES, both experimentally and theoreti-
cally, is that the laser pulses arrive in a time ordered fashion – i.e., laser pulse 3
arrives after laser pulse 2, which arrives after laser pulse 1. However, if the pulses are
not strictly ordered in time, we have the possibility of more Feynman diagrams
contributing the signal. If we define a set of arrival times where the pulses all
overlap, then we have the possibility of 16 rather than 3 Feynman diagrams
contributing to the signal. This is shown in the notebook in the following lines:

#Arrival times where all three pulses overlap, given the pulse
durations defined at the beginning of this section

arrival_times_overlap = [0,1,2,2]
#Compute Feynman diagrams and print the total number
overlap_diagrams_r = tdes_dg_r.get_diagrams(arrival_times_overlap)
print(’When pulses overlap, there are ’,len(overlap_diagrams_r),’

diagrams in total’)
#Compare this to the time ordered case
print(’With time ordering, there are ’,len(time_ordered_diagrams_r),’

diagrams in total’)

Now, let us look at the effect on the spectrum if we do not take care of this time
ordering of the pulses. The rephasing spectrum computed using the Feynman dia-
grams from time ordered pulses is shown on the left-hand side of figure 8.19, while
that computed using Feynman diagrams with all pulses overlapping is shown on the

FIG. 8.18 – GSB component of the total absorptive 2D electronic spectrum for an initial
population time (t2 ¼ 0) for SQAB1.

right-hand side of figure 8.19. While the spectra are quite similar to one another,
there are some differences, for example in the intensities of the two spectra. For more
complex systems, the differences also could be larger.
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8.7 Where Do We Go From Here?
One can play around with the workbook further, for example, changing the tem-
perature and the parameters for the bath, simulating how the separate GSB, SE and
ESA components vary as a function of t2 etc. One can also use this as a basis to
create models for other molecular systems and see how their non-linear spectra look
or simulate other non-linear spectra. For example, one can use UFSS to calculate
nth-order transient absorption signals, as described in Ref. [15], and 5th-order 2D
spectroscopies as described in Ref. [5]. Further examples may also be found in Ref.
[2], as well as the UFSS GitHub repository [1]. Happy simulating!
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