

CALCUL DE DOSES GENEREES PAR LES RAYONNEMENTS IONISANTS

✓ MANUEL D'UTILISATION

Alain VIVIER, Gérald LOPEZ

SOMMAIRE

PARTIE I.	CALCUL DOSE BETA ET ELECTRON DE CONVERSION	4
I.1	CONFIGURATIONS « LIBRES » : PONCTUELLE, CYLINDRE, DISQUE, FIL	
I.2	CONFIGURATIONS « IMPOSEES »: CONTAMINATION PEAU, BECHER, SERINGUE	15
PARTIE II.	OPTIONS	19
II.1	OPTION « CHARGER UN NOUVEL EMETTEUR BETA »	20
II.2	OPTION « CREER UN ECRAN »	22
П.3	OPTION « PORTEE MAX. »	
II.4	OPTION « INTEGRATION DED »	25

Vous pouvez afficher dans la colonne de gauche de ce document le sommaire interactif en cliquant sur l'icône « signet » :

PRESENTATION GENERALE

Le code «Dosimex-B 2.0 » met en œuvre une méthode déterministe :

- o parcours CSDA des électrons dans la matière (*pouvoirs d'arrêt base NIST/estar*)
- o calcul débit de fluence
- o coefficient de conversion fluence équivalent de dose ICRU 57

Pour calculer le débit de dose Bêta et électrons de conversion de source de géométries variées :

- o Ponctuelle
- o Disque
- Cylindrique
- o Fil

De plus certaines configurations utilisées dans l'ouvrage « Radionucléides & Radioprotection » (*Delacroix et al., EDP Sciences 2006*) sont reproduites ici :

- Exposition peau par uniforme sèche et goutte
- o Bécher
- o Seringue

Source							
•		-			NM g		And
Ponctuelle	C Cylindre	C Disque	C Fil	C Goutte	C Contamination séche	C Becher	C Seringue
			Val	der			

Partie I. CALCUL DOSE BETA ET ELECTRON DE CONVERSION

1.1 CONFIGURATIONS « LIBRES » : PONCTUELLE, CYLINDRE, DISQUE, FIL

Les géométries proposées dans Dosimex-B 2.0 peuvent se classer en 2 catégories :

Des catégories « libres : source ponctuelle, cylindrique, disque et fil. Ces configurations permettent de paramétrer les distances, la nature de la matrice source pour le cylindre, la présence ou non d'un écran.

Des catégories « imposées » : on retrouve ici des configurations figées, identiques à celle rencontrées dans le Guide Pratique.

Cliquer sur le bouton actif « Calcul dose Bêta :

Pour faire apparaître la boite de dialogue qui présente toutes les géométries proposées dans Dosimex-B 2.0 :

Source							X
•		-					And
Ponctuelle	C Cylindre	C Disque	O Fil	O Goutte	Contamination séche	C Becher	C Seringue
			Val	ider	<u></u>		

On peut choisir la configuration souhaitée avec les boutons d'options. Il ne reste ensuite qu'à valider ce choix.

La boite de dialogue suivante apparaît :

Elle permet de choisir dans un premier temps le radionucléide dans une liste prédéfinie comportant 188 radionucléides. Ils correspondent à tous les radionucléides émetteur Bêta proposés dans le guide pratique. Pour les radionucléides absents de cette liste, voir option « *Charger un nouvel émetteur Bêta* »

Source			×
•	Emetteur bêta Radionucléide 14C 13N 15O 18F 22Na 24Na 28Mg 26Al	•	

Remarque 1: l a table d'émission électronique (Energie, intensité) du radionucléide choisi apparaît dans la feuille de synthèse, avec les composantes Bêta et électrons :

manuel + valid.							
	Spectre béta de :137Cs						

	Q béta max (keV)	I (%)	Eec/ci (keV)	lec/ci (%)
Composante 1	513,97	94,36	624,22	7,62
Composante 2	1175,63	5,64	656,04	1,42
Composante 3				
Composante 4				

Remarque 2 : en fin de liste des radionucléides prédéfinis se trouve une liste d'énergie pour des émissions monoénergétiques, variant de 80 keV à 15 MeV. Ces valeurs peuvent être utiles dans une étude paramétrique. Pour définir une valeur précise en émission monoénergétique n'existant pas dans cette liste, voir options « créer un radionucléide ».

Il faut ensuite déterminer l'activité puis valider ce choix :

Remarque 1 : pour rentrer par exemple 1 GBq, saisir « 1E9 »

Remarque 2 : en saisissant 1 Bq, on obtient directement des facteurs de conversions en μ Sv/h/Bq tels que dans le Guide pratique

SOURCE PONCTUELLE

Pour la source ponctuelle, la distance par défaut est prise à 30 cm (cf. guide pratique, mais peut bien entendu être modifiée). Il suffit ensuite de valider pour obtenir un résultat exprimé en μ Sv/h en termes de **H'(0,07)** :

Source ponctuelle	
H'(0,07) 1.13E-04 μSv/h	Lancer calcul
	🗌 Vide entre la source et le point de mesure
Distance 30 cm	☐ Ecran(s) de protection
Commentaires	
Calcul réalisé avec l'application DOSIMEX	

D'autres grandeurs opérationnelles, conformes à l'ICRU 57, sont calculées et apparaissent dans la feuille de synthèse : H'(3) et H'(10). Ces valeurs sont souvent nulles car l'énergie des électrons n'est pas suffisante pour atteindre ces profondeurs (*voir utilitaire « Coeff. ICRU 57 » dans le pack pédagogie*).

En cliquant sur l'option « Vide entre la source et le point de mesure », on ne tient plus compte de l'atténuation des électrons dans l'air (un petit nuage symbolique disparaît). Il faut à nouveau valider (lancer calcul) pour obtenir le résultat :

Source ponctuelle	\mathbf{X}
H'(0,07) 1.28E-04 µSv/h ✓ Vide entre la sou	Icul urce et le point de mesure
Distance 30 cm	e protection
CommentairesCalcul réalisé avec l'application DOSIMEX	

Pour les configurations libres, il est possible d'effectuer un calcul avec la présence d'un écran quelconque :

Il suffit de cliquer sur l'option « écran », puis de choisir un écran dans une liste prédéfinie, et ensuite son épaisseur en cm.

Source ponctuelle H'(0,07)	Lancer calcul Vide entre la source et le point de mesure Caratéristiques écran(s)
Distance 30 cm Commentaires Calcul réalisé avec l'application DOSIMEX	Nature Epaisseur Plastique Aluminium Beryllium Verre Fer Cuivre

Source ponctuelle	×
H'(0,07) 1,11E-04 μSv/h Distance 30 cm	Image: Caratéristiques écran(s) Caratéristiques écran(s) Nature Plastique Epaisseur 0,1

Il ne reste qu'à valider le calcul pour obtenir un résultat. Pour des matériaux n'existant pas dans la liste prédéfinie, voir option « **Créer un matériau écran ou matrice**».

Compte tenu des parcours en général relativement faibles dans la matière (millimétriques dans la matière dense), le code vérifie initialement à partir des énergies maximales des spectres que des électrons sont susceptibles d'émerger de l'écran. Dans le cas inverse, si aucun électron n'émerge, la dose n'existe pas et un message apparaît :

Source ponctuelle	×
H'(0,07) 8,30E-07 μSv/h Vide entre la source et le point de mesure Foran(s) de protection Microsoft Excel Les électrons de cette source ne traverse pas cette épaisseur OK Foraisseur Foraisseur Les électrons de cette source ne traverse pas cette épaisseur OK CM CM CM CM	
Commentaires Calcul réalisé avec l'application DOSIMEX	

Pour plus d'informations sur la portée maximale des électrons dans un matériau, voir option « Portée ».

Les matériaux de la liste prédéfinie sont pris en compte avec une masse volumique usuelle. Cette masse volumique peut être visualisée mais aussi modifiée en cliquant sur le bouton « Masse vol. » :

Source cylindrique		×
Source cylindrique	H'(007) 1,57E-03 μSv/h Distance 3,5 cm Vide entre la source et le point de mesure Hauteur 1,6 cm Baron	
Les distances source / points doses sont prises à partir de la surface du cylindre	Matériau source Eau Masse vol. Matrice source avec activité volumique constante dans tout le cylindre	
	Calcul realise avec Tapplication DOSIMEX	

Une boite de dialogue apparaît avec la masse volumique de référence (ici 0,4 g/cm³ pour le plastique).

Source cylindrique	
	H'(007) 1,57E-03 μSv/h
	Masse volumique Masse vol. (g/cm ²) 0,94
	Contraction Contraction Contraction Modification Contraction Modification Contraction Contraction Contraction Contraction
Les distances source /points doses sont prises à partir de la surface du cylindre	Matériau source Plastique V Masse vol.
	Matrice source avec activité volumique constante dans tout le cylindre Commentaires Calcul réalisé avec l'application DOSIMEX

Cette masse volumique peut être modifiée manuellement et enregistrée :

	Masse volumique	×
Microsoft Excel	Masse vol. (g/cm³)	
Masse volumique enregistrée	Enregistrer nouvelle masse vol.	
	Modification valable pour le matériau source et écran Modification perdue à la fermeture du tableur	

Attention :

- 1) cette modification porte sur le matériau en tant qu'écran ainsi qu'en tant que matrice source.
- 2) A la fermeture du fichier Excel, la masse volumique revient à sa valeur initiale (fichier crypté).

SOURCE CYLINDRIQUE

Pour la source cylindrique, les paramètres devant être définis avant de lancer un calcul sont :

- Le rayon du cylindre
- o Sa hauteur
- o La nature du matériau constituant la matrice source

Les valeurs rentrées par défaut correspondent au calcul imposé « Bécher au col » :

Source cylindrique		×
	Distance Calcul	
	Hauteur Ecran(s) de protection	
Les distances source /points doses sont prises à partir de	2 cm Rayon	
la surface du cylindre	Matériau source Eau 💌 Masse vol.	
	Matrice source avec activité volumique constante dans tout le cylindre Commentaires Calcul réalisé avec l'application DOSIMEX	

mais peuvent être modifiées :

Source cylindrique	
	H'(007) 8,14E-03 µSv/h Distance 0,1 cm Vide entre la source et le point de mesure Ecran(s) de protection Hauteur Caratèristiques écran Nature Aluminium Masse vol.
Les distances source /points doses sont prises à partir de la surface du cylindre	s m Rayon Matériau source Plastique v Masse vol. Matérice source avec activité volumique constante dans tout le cylindre Commentaires Cadou réalsé avec l'application DOSIMEX

Comme pour la source ponctuelle, il est possible de mettre en place un écran, avec toutes les possibilités décrites précédemment

L'hypothèse de calcul est une activité volumique homogène dans le cylindre. Le calcul est réalisé sur l'axe de symétrie du cylindre. La source est découpée en éléments finis suivant une loi en puissance définissant, notamment pour les sources de grandes dimensions, des tranches plus fines en regard du point de mesures et de plus en plus épaisses en profondeur. Cette approche permet de mieux affiner les calculs d'autoabsorption dans la source et éviter ainsi de surestimer cette dernière. Et *in fine* de sous-estimer le débit d'équivalent de dose (voir Chapitre validation).

En cas d'incohérence entre la distance source écran et l'épaisseur d'écran, un message apparaît, ici une distance nulle (contact source) pour une épaisseur d'écran de 1 mm :

Source cylindrique	
	H'(007)
	0 0 0
	La distance source point de mesure est inférieure à l'épaisseur d'écran OK Caratéristiques écran Nature Plastique Masse vol.
Les distances source /points doses sont prises à partir de la surface du cylindre	Rayon Epaisseur 0,1 Cm
	Matrice source avec activité volumique constante dans tout le cylindre Commentaines Calcul réalisé avec l'application DOSIMEX

SOURCE DISQUE

Pour la source surfacique disque, les paramètres d'entrée spécifiques sont

- \circ $\,$ Le rayon du disque $\,$
- La distance disque-point de mesure au droit du disque

Source disque			
H'(007) 2,09E-05 μSv/h ↑	Lancer calcul	
		Ecran(s) de protection	
Distance <u>30</u>	Cm		
Ray	0 n 100 Cm		
А	tivité surfacique constante sur tou	t le disque	
Commentaires	avec l'application DOSIMEX		

Comme dans les cas précédents, il est possible de mettre en place un écran :

Source disque		<
Distance	H'(007) 2,82E-05 µSv/h Colcul dans le vide Caratéristiques écran Nature Plastique Masse vol.	
	Rayon 100 Cm	
	Activité surfacique constante sur tout le disque Commentaires Calcul réalisé avec l'application DOSIMEX	

SOURCE FIL

Pour la source linéique, les paramètres d'entrée spécifiques sont

- \circ $\,$ La longueur du fil
- La distance fil-point de mesure au droit du fil

Source fil	
H'(007) 1,26Ε-04 μ	Sv/h
<u>+</u>	Calcul dans le vide
	Ecran de protection
Distance <u>30</u> Cm	
Longueur 10	Cm
Activité linéique constante sur toute la l	longueur du fil
Commentaires	
Calcul réalisé avec l'application DOSI	MEX

Avec la possibilité de mise en place d'un écran

Source fil	
H'(007) 1,20E-04 μSv/h	Lancer calcul
Distance 30 Cm	Calcul dans le vide
Longueur 10 Cm	Ecran de protection
Activité linéique constante sur toute la longueur du fil	Caratéristiques écran
Commentaires	Nature Plastique Masse vol.
Calcul réalisé avec l'application DOSIMEX	Epaisseur 0,1 Cm

1.2 CONFIGURATIONS « IMPOSEES » : CONTAMINATION PEAU, BÉCHER, SERINGUE

Les configurations « imposées » correspondent à certaines configurations utilisées dans le Guide pratique « Radionucléides & Radioprotection » (*Delacroix et.al , EDP Sciences 2006*) :

1) « *Exposition de la peau lors d'une contamination corporelle* » (cf. guide pratique §3.2.3 p. 21) :

a)

b)

« Projection d'une goutte de 0,05 cm³ de substance radioactive d'activité égale à 1 Bq,[..] modélisée par un cylindre de densité 1, de 1 cm² de section et de 0,5 mm de hauteur »

Ce scenario est appelé « goutte » dans Dosimex-B 2.0

« Contamination surfacique homogène sur la peau égale à 1 Bq/cm² ». Ce scenario est appelé « contamination sèche » dans Dosimex-B 2.0

Contamination séche

2) « *Exposition externe au contact de récipients* » (cf. guide pratique §3.2.2 p. 20) :

2.a) Solution dans un bécher modélisé par un cylindre de 4 cm de diamètre et 1,6 cm de hauteur dont la solution de densité 1, est contenue dans une enveloppe de verre épaisse de 2 mm et de densité 2,7.

Dosimex-B propose deux options pour le bécher conforme au Guide pratique :

 b) « Solution dans une seringue : modélisée par un cylindre de 1,2 cm de diamètre, 2,2 cm de hauteur dont la solution, de densité 1, est contenue dans une enveloppe épaisse de 1 mm et de densité 1 ». Calcul au contact du plastique

APPLICATION

Choisir un scenario et valider

La boite de dialogue commune à tous les scenarri apparaît (choix radionucléide et activité) :

Après validation la boite de dialogue de la géométrie apparaît :

Source cylindrique		
	Η'(007) 8,42E-01 μSv/h	Lancer calcul
	NA	
Les distances source /points doses sont prises à partir de la surface du cylindre		
	Matrice source avec activité volumique constante dans tout le cylindre Commentaires Calcul réalisé avec l'application DOSIMEX	

Pour ces configurations, le choix des paramètres est prédéterminé (voir page précédente). Il ne reste alors qu'à valider.

Attention : pour le choix « contamination sèche », le paramètre d'entrée est une activité surfacique en Bq/cm² :

Partie II. OPTIONS

Cliquer sur le boutons actif "Options"

DOSIMEX-B 2.0	Calcul dose Bêta	Ontions	manuel + valid.

Une boite de dialogue apparaît et propose 4 options :

Options	×
Charger nouvel emetteur béta	
Créer un écran	
Portée max.	
Intégration DeD	

II.1 OPTION « CHARGER UN NOUVEL EMETTEUR BETA »

Cette option permet de créer une table d'émission électronique d'un radionucléide qui n'existerait pas dans la liste prédéfinie

Après avoir cliquer sur le bouton actif la boite de dialogue suivante apparaît :

On peut rentrer une table d'émission avec un maximum de 4 composantes Bêta et 4 composantes électrons de conversion interne (exemple avec le Cs 137) :

Chargement de la base de données 🛛 🔀					
	Radionucléide (AX) numéro atomique Z Cs essai 55	⊂ Type transition isobarique ⓒ Emetteur beta - ○ Emetteur beta +			
Composante bé Energie max (k 512 Intensité (%) 95	te bêta 1	nposante bêta 3 🛛 🗖 Composante bêta 4			
Electron Conve Electron de conve Energie (keV)	ersion 1 🔽 Electron Conversion 2 🗌 Electron ersion 1 — Electron de conversion 2 — Energie (keV) 656	ron Conversion 3 🔲 Electron Conversion 4			
Intensité (%) 8	Intensité (%)				
Enregistrer nouvel émetteur					

Le radionucléide ainsi défini se retrouve à la fin de la liste prédéfinie :

II.2 OPTION « CREER UN ECRAN »

Cette option permet de créer un écran monoélémentaire ou multiélémentaire qui n'existe pas dans la liste prédéfinie. Ce matériau se retrouve dans la liste des matériaux source ou écran.

Exemple avec la définition élémentaire d'un verre simple (SiO2)

UserForm4			E						
Nom de l'écran	Verre essai	Masse volumique (g/cm3)	2,7						
Saisissez dans le tableau de Mendeleïev la formule chimique principale de l'élément à créer. Pour cela indiquez sous le symbole de l'atome correspondant le coefficient stoechiométrique correspondant H Ex: Pour H2O saisir sous H le chiffre 2 et sous O le chiffre 1									
Li Be		B C N C	2 F Ne						
Na Mg		Al Si P Si I I	5 CI Ar						
K Ca Sc Ti	V Cr Mn Fe Co	Ni Cu Zn Ga Ge As S	e Br Kr						
Rb Sr Y Zr	Nb Mo Tc Ru Rh	Pd Ag Cd In Sn Sb T	e I Xe						
Cs Ba La Hf	Ta W Re Os Ir	Pt Au Hg Tl Pb Bi P	o At Rn						
Fr Ra Ac									
	Ce Pr Nd Pm Sm	Eu Gd Tb Dy Ho Er T	m Yb Lu						
	Th Pa U Np Pu	Am Cm Bk Cf Es Fm							
Enregistrer le nouveau matériau dans la base de données									

Après avoir validé, ce nouveau matériau apparaît à la fin de la liste des matériaux prédéfinis :

Attention : à la fermeture du fichier Excel le nouveau matériau n'est pas enregistré (tableur crypté).

II.3 OPTION « PORTEE MAX. »

Cette option permet de calculer la porté maximum (parcours de Bethe) des électrons émis par un radionucléide. Les parcours sont calculés à partir des pouvoirs d'arrêt définis dans la base de référence *estar* du NIST :

Calcul portée maxim	um		×			
Radionucléide	150	•				
Ecran	Plastique	•				
Calculer						
Portée (cm)	10.26E-01					

et p sci

II.4 OPTION « INTEGRATION DED »

Après avoir choisi un radionucléide, on obtient une première information : sa période en seconde (s), heure (h), jours (j) ou année (A) suivant le cas (exemple ici avec le Fluor 18).

Cette option permet alors de connaitre la dose équivalente intégrée sur une durée en prenant en compte la décroissance de la source. La durée considérée est exprimé en heure décimale, de telle sorte que si le débit de dose est considéré en μ Sv/h, alors la dose intégrée sera exprimés en μ Sv.

Calcul DeD intégré				
	Elément	F	•	
	Isotope			
	Nombre de masse	18	•	
	Páriode (b) :	18 295-01		
	renoue (ii) :	10,202-01		
ln I	tégration débit d'équ	ivalent de dos	e en décroissance	
DED(0)	10			
$\mathbf{\Lambda}$			Calculer	
	4	.t		
Ē	ED _{int} =	DED(t) dt	= 2,24E+01	
8		2		
	~			
$\Delta t(h)$) 5			
*		>		
		t (h)		