

DOSIMEX-GX 2.0

CODE DE CALCUL DE DOSE GAMMA ET X

✓ MANUEL D'UTILISATION

Alain VIVIER, Gérald LOPEZ

SOMMAIRE

PARTIE I.	PREAMBULE	3
I.1	PRINCIPES DE FONCTIONNEMENT DU CODE DOSIMEX-GX 2.0	3
I.2	CORRECTIONS ET MODIFICATIONS PRINCIPALES APPORTEES A LA VERSION ORIGINALE	6
PARTIE II.	UTILISATION DOSIMEX-GX /SOURCES GAMMA	8
II.1	CHOIX BASE DE DONNEES RADIONUCLEIDES :	8
II.2	CALCUL DE DEBIT DE DOSE GAMMA	. 10
II.2.1	Choix de la géométrie	. 10
II.2.2	Choix du terme source	. 11
II.2.3	Choix de la méthode de calcul du build-up	. 12
II.2.4	Les résultats de calcul	. 15
II.2.5	Configuration des écrans	. 16
<i>II.2.6</i>	Ecran multi-couches	. 17
II.3	SPECIFICITES SUR LES GEOMETRIES SOURCES	. 19
11.3.1	Cas particulier des sources volumiques	. 19
II.3.2	Fonction décalage avec source cylindrique et fil	. 20
II.3.3	Gradient d'activité volumique avec la source parallelepipede	. 21
11.3.4 11.2.5	Cas particulers des sources type « tuyau »	. 23
П.З.З	CALCHE INVERSE ACTIVITE VS. DEDIT DE DOSE	. 24 25
11.4 11.5	CALCUL INVERSE ACTIVITE VS DEBIT DE DOSE	. 25 28
п.5 П.6		20
II.0 II.6.1	Ontion multi-écran	31
11.6.2	Option « matériau composite »	. 31
II.6.3	Option « Individue Composite » inn spectre d'émission gamma »	. 32
II.6.4	<i>Option « calcul du débit de dose du au rayonnement de freinage d'une source Bêta»</i>	. 33
II.6.5	Option « Build-up »	. 36
II.6.6	Option « calculer des épaisseurs d'écrans pour un facteur d'atténuation donné »	. 37
II.6.7	Option « catégorisation dangerosité des sources »	. 38
II.6.8	Option « definir un zonage prévisionnel»	. 39
II.6.9	Option « décroissance »	. 40
II.6.10	Option « Conversion de proportions de mélanges »	. 43
PARTIE III	. UTILISATION DOSIMEX-G OPTION GENERATEURS X ET NORME NF C 15-160	9 46
III.1	PREAMBULE : CHOIX SOURCES GAMMA OU GENERATEUR X	. 46
III.2	OPTION « MODELISATION GENERATEUR X »	. 47
III.3	MODE « FEUILLE DE CALCUL NF C15-160 »	. 54
III.4	REGLE DES EPAISSEURS DANS LA METHODE ALTERNATIVE :	. 63
III.4.1	La règle des épaisseurs usuelle NF C 15-160	. 63
III.4.2	Méthode alternative pour la règle des épaisseurs	. 64
III.5	MODE DE CALCUL « DOSIMEX »	. 66
PARTIE IV	ANNEXE SUR LES PRODUITS DE FISSION COMBUSTIBLES UOX ET MOX	. 68
IV.1	PRINCIPES DE CALCULS	. 68
IV.2	METHODE DE CALCUL	. 68
IV.3	RESULTATS COMBUSTIBLE UOX	. 69
IV.4	RESULTATS COMBUSTIBLE MOX	. 72

Partie I. PRÉAMBULE

1.1 PRINCIPES DE FONCTIONNEMENT DU CODE DOSIMEX-GX 2.0

Le code DOSIMEX-GX est un code permettant de calculer les débits d'équivalents de dose gamma et X générés par des émetteurs de rayonnements ionisants de type radionucléide ou générateurs X. C'est un code de type déterministe mettant en œuvre des calculs d'atténuation en lignes droites avec correction de build-up.

Schéma de principe du calcul d'atténuation en ligne droite

Pour chaque épaisseur x de matière traversée, on obtient un facteur d'atténuation en ligne droite égal à $e^{-\mu x}$, avec μ le coefficient d'atténuation linéique du matériau pour l'énergie des photons considérés. Il est toujours intéressant d'exprimer ces épaisseurs en termes de nombre de longueur de relaxation $n = \mu x$. Ce nombre, sans dimension, est fondamental dans l'expression du **build-up**.

Dans la figure ci-dessus, le débit de fluence issu du point source S est atténué, avant d'arriver au point P, par la traversée de la matrice source et de l'écran. Les deux termes d'atténuations $e^{-\mu_l x_l}$ et $e^{-\mu_2 x_2}$ sont multiplicatifs, et l'atténuation totale en ligne droite est égale à :

$$e^{-\mu_1 x_1} \times e^{-\mu_2 x_2} = e^{-[\mu_1 x_1 + \mu_2 x_2]}$$

Le débit de fluence après atténuation en ligne droite est donc égal à :

$$\varphi_{att} = A \quad I_{\gamma} \quad \frac{\Omega}{4\pi} e^{-\left[\mu_{l} x_{l} + \mu_{2} x_{2}\right]}$$

Dans la mesure où le calcul en atténuation en ligne droite ne prend en compte que les photons ayant conservé leur énergie initiale, le coefficient de conversion permettant de passer du débit de fluence atténué au débit d'équivalent de dose est inchangé. Le débit de dose après atténuation en ligne droite s'écrit :

$$H^{*}(10)_{att.} = h^{*}(10, E_{\gamma})\varphi_{att} = h^{*}(10, E_{\gamma})A \quad I_{\gamma} \frac{\Omega}{4\pi} e^{-[\mu_{I}x_{I} + \mu_{2}x_{2}]}$$

En ce sens, la présence d'un écran amoindrit le schéma simple d'un modèle radiatif purement sphérique (schémas ci-dessous). Dans certains cas, la présence d'un écran peut même augmenter la valeur totale du débit de dose.

La valeur \dot{H}_{att} , résultat du calcul d'atténuation en ligne droite, doit donc être corrigée pour obtenir une estimation du débit d'équivalent de dose total \dot{H}_{tot} .

La correction est formalisée par un facteur multiplicatif B avec

Principe de l'atténuation en ligne droite et de la correction de diffusion

Le terme $\begin{bmatrix} B_{\infty} \times e^{-\mu x} \end{bmatrix}$ représente le **facteur d'atténuation en dose avec correction de diffusion.** Le build-up résultant de la diffusion dans deux épaisseurs successives de deux matériaux de natures différentes peut être estimé par l'expression :

$$B_{ml+m2}(E_{\gamma},\mu_{1} x_{1},\mu_{2} x_{2}) \approx B_{m2}(E_{\gamma},\mu_{1} x_{1}+\mu_{2} x_{2}) + \left[B_{ml}(E_{\gamma},\mu_{1} x_{1})-B_{m2}(E_{\gamma},\mu_{2} x_{2})\right]$$

l'élément (voxel) de source au point S s'écrit :

$$d\dot{D} = B_{total}(\mu_1 x_1, \mu_2 x_2) e^{-[\mu_1 x_1 + \mu_2 x_2]} d_{\phi} I_{\gamma} \frac{\Omega}{4\pi} A_{vol} dV$$

Avec A_{vol} l'activité volumique de la source (en considérant une activité volumique uniforme) et dV le volume élémentaire entourant le point S.

Le débit de dose total s'obtient en intégrant cette expression sur le volume total de la source :

$$\dot{D} = \int_{Source} B_{total}(\mu_1 x_1, \mu_2 x_2) e^{-\left[\mu_1 x_1 + \mu_2 x_2\right]} d_{\phi} I_{\gamma} \frac{\Omega}{4\pi} A_{vol} dV$$

En pratique cette intégrale continue est remplacée par une somme discrète obtenue par un découpage discret (voxel) de la source.

A partir de cette expression, on peut aussi définir et calculer le build-up résultant par la moyenne pondérée suivante

$$\overline{B} = \frac{\int_{Source} B_{total}(\mu_{1} x_{1}, \mu_{2} x_{2}) e^{-[\mu_{1} x_{1} + \mu_{2} x_{2}]} d_{\phi} I_{\gamma} \frac{\Omega}{4\pi} A_{vol} dV}{\int_{Source} e^{-[\mu_{1} x_{1} + \mu_{2} x_{2}]} d_{\phi} I_{\gamma} \frac{\Omega}{4\pi} A_{vol} dV}$$

Pour ces calculs, DOSIMEX-GX 2.0 utilise les bases de données suivantes

- > Pour les coefficients d'atténuation μ : la base de données XCOM/NIST : <u>http://physics.nist.gov/PhysRefData/Xcom/html/xcom1.html</u>
- Pour les coefficients de conversion fluence vers équivalent de dose d_o : les valeurs données dans l'ICRU REPORT 57 (International Commission on Radiations Units and Measurements, 7910 Woodmont Avenue, Bethesda, maryland 20814, USA)
- Pour les coefficients de build-up : les valeurs données dans le document ANSI/ANS-6.4.3-1991.(American Nuclear Society, Standarts Committee Working group ANS 6.4.3, 555 North Kensington Avenue La grange Park, Illinoid 60525 USA)
- Pour les tables d'émissions gamma, les données disponibles sur le site Laraweb : <u>http://laraweb.free.fr/</u>

1.2 CORRECTIONS ET MODIFICATIONS PRINCIPALES APPORTÉES À LA VERSION ORIGINALE (VERSION CD-ROM 1ERE EDITION, 2012)

VERSION 1.2

- Correction du bug pour les options Bq.cm⁻³ et Bq.cm⁻¹ sur les géométries cylindre, sphère et fil.
- Correction d'un défaut de calcul de l'autoabsorption dans les sphères creuses.
- Amélioration de la loi de composition des build-up, notamment entre un écran mince et un écran épais, dans des matériaux très différents, de telles configurations étant susceptibles de générer, dans la version initiale, des build-up aberrants.
- Extension de la base de données X Com (coefficients d'atténuation linéique) de 3 MeV à 15 MeV.
- Passage d'un maillage uniforme à un maillage en puissance, adapté à l'énergie des photons et la nature des matériaux, afin de pouvoir prendre en compte des sources de très grandes dimensions ('voir §II.6).
- Prise en compte du matériau « Air ».
- Création d'une option permettant de modifier les masses volumiques des matériaux source et écran.
- Ajout d'une pseudo-source monoénergétique (choix élément « *Mono E* » de 10 keV à 15 MeV) permettant des études paramétriques en fonction de l'énergie.

VERSION 1.3.1

- Ajout de la géométrie source parallélépipédique.
- Possibilité de deux écrans avec la source ponctuelle
- Calcul de dose générateur X médical ou industriel et calcul suivant norme NFC 15-160.
- Modification du calcul des build-up. Abandon du modèle de Taylor (voir §II.2).

VERSION 1.3.2

- Modification du calcul NFC 15-160 : création calcul méthode abaque.
- Possibilité création spectre source personnalisée.
- Correction d'un défaut de codage dans la prise en compte de radionucléides multiples.

VERSION 1.3.3

- Implémentation de méthodes alternatives de calcul de la norme NFC 15-160.
- Option écrans multiples pour les sources gamma.
- Option calcul de dose générée par le rayonnement de freinage et/ou d'annihilation (β⁺) d'une source Bêta.

VERSION 1.4

- Calcul de débits de dose à l'intérieur de volumes contaminés sur les surfaces internes
- Calcul inverse activité vs spectre isotopique et débit de dose mesuré
- Nouvelle option permettant de déterminer un zonage radiologique
- Choix de la nature de l'anode avec le générateur X.

VERSION 2.0

- Correction d'un bug sur le calcul de la surface des pics X de fluorescence versus intensité (mA) dans le calcul débit de dose générateur X
- Calcul débit de dose diffusé et spectre dans l'application calcul générateur X
- Calcul du build-up moyen généré par l'écran éclairé par le primaire du générateur X
- Calcul du débit de dose dû à la fluence directe dans le calcul « effet de ciel gamma »
- Ajout d'un champ dans la boite de dialogue permettant de rajouter un commentaire dans la feuille de synthèse

VERSION 2.0 (SECONDE EDITION)

- Calcul Hp(3) (dose cristallin)
- Mise en place d'un écran sur le trajet du diffusé dans l'option « générateur X »
- Possibilité de multi-écran dans la modélisation générateur X
- Option décroissance et relation masse-activité
- Calcul DED pour des hauteurs variables en regard de la source cylindrique et fil
- Modification bases de données émission gamma : prise en compte d'émission X de faibles énergies (10 keV, 30 keV) pour environ 80 radionucléides (Am 241, I 125 ...). Voir dossier de validation scenario 1
- Affichage H*(10) directement sur les boites de dialogues à la place du kerma air
- Base de données émetteur Bêta pour l'option rayonnement de freinage
- Zonage opérationnel dans l'option zonage
- Option permettant de convertir de l'une à l'autre les fractions de mélanges massique, isotopiques ou en activité

Partie II. UTILISATION DOSIMEX-GX /SOURCES GAMMA

II.1 CHOIX BASE DE DONNÉES RADIONUCLÉIDES :

Le code DOSIMEX-G 2.0 utilise, pour les calculs associés à des sources gamma, différentes bases de données de radionucléides (spectre énergies et intensités d'émission).

Quatre bases de données sont disponibles et peuvent être mises en œuvre en cliquant sur la barre de commande « *Choix Base de donnée radionucléides* ».

DOSIMEX-G 2.0	CALCUL DEBIT DE DOSE GAMMA ET X	CALCUL ACTIVITE VS DED	OPTIONS	Choix base de donnée RN	Manuel	Validation
La fenêtre de di	alogue suivante s'ouvr	e :				
Ch	oix de la BdD des radion	ucleides			×	
	+,	BdD complète oseudo-source mono	avec raies énergétique	gamma regroup (voir élément"Mond	oées o E")	
		C BdD complète				
		OBdD Médicale				
		ි BdD électro-n	ucléaire			
		Valider				

Par défaut, la base de données sélectionnée est la *base de données complète avec raies gamma regroupées*. Le cryptage de l'application interdisant tout enregistrement à la fermeture du code, l'application se lancera sur cette base de données à chaque ouverture.

✤ BASE DE DONNEES COMPLETE AVEC RAIES GAMMA REGROUPEES

Cette base de données a été établie pour limiter les temps de calculs en regroupant certaines raies gamma d'énergies proches. L'application utilise alors une énergie gamma moyenne, pondérée par l'intensité d'émission et une intensité totale égale à la somme des intensités. Ainsi, par exemple le spectre de l'américium 241 qui comporte 27 raies gamma identifiées dans la base de données complète, se limite à 6 raies gamma dans la base de données complète avec raies gamma regroupées. Lors d'un calcul de débit de dose, les énergies et intensités des raies gamma utilisées sont affichées en haut à droite sur la page de synthèse.

Dans cette base de données a été rajouté :

La possibilité de choisir un pseudo-émetteur monoénergétique « *Mono E* » pour des calculs paramétriques plus rapides. Les énergies disponibles sont limitées à des valeurs précises (10 keV, 20, keV...) dans une progression logarithmique jusqu'à 15 MeV. Pour choisir une énergie quelconque, voir ci-après « *compléter une base de données* ».

Les tables d'émission type des combustibles irradiés de type UOX ou MOX en fonction des temps de refroidissement. Ces tables sont données en fonction de la masse et non de l'activité. Voir annexe en fin de manuel.

✤ BASE DE DONNEES « MEDICAL » & BASES DE DONNEES « ELECTRO-NUCLEAIRE »

Ces deux bases de données sont des bases réduites extraites de la base de données complète avec raies gamma regroupées, et limitées aux radionucléides usuellement rencontrés dans ces deux domaines spécifiques.

BASE DE DONNEES COMPLETE

Cette base de données n'utilise pas le principe de regroupement des raies gamma et par principe donne des résultats plus précis. Elle entrainera cependant en général des temps de calcul plus importants. En effet le temps de calcul, pour une configuration donnée, est proportionnel aux nombres de raies gamma prises en compte.

COMPLÉTER UNE BASE DE DONNEES

Il est possible d'ajouter des radionucléides à la base de données. Pour cela il vous faudra vous diriger dans l'onglet « **OPTION** » sélectionner « *Définir manuellement un spectre d'émission gamma* » : voir chapitre sur les options §I.3.

Une fois le choix de votre base de données effectué, vous êtes prêt à utiliser DOSIMEX-G 2.0.

II.2 CALCUL DE DÉBIT DE DOSE GAMMA

II.2.1 CHOIX DE LA GÉOMÉTRIE

Il suffit de cliquer sur le bouton actif « *Calcul de dose gamma et X* » pour faire apparaitre la boite de dialogue proposant les différents sources possibles, gamma ou X :

DOSIMEX-G 2.0	CALCUL DEBIT DE DOSE GAMMA ET X	CALCUL ACTIVITE VS DED	OPTIONS	Choix base de donnée RN	Manuel	Validation
	The second se					

Une boite de dialogue s'ouvre, vous proposant les configurations suivantes :

Les 8 premières configurations sont relatives aux géométries sources contenant le ou les radionucléides émetteurs gamma choisis. La dernière configuration correspond aux calculs pour les générateurs de rayons X. Cette application spécifique est présentée dans la partie III de ce document. Pour une utilisation en calcul de dose gamma, l'application permet le calcul pour des sources cylindrique, disque, ponctuelle, fil, sphérique ou parallélépipède.

Pour les sources volumiques (*resp. surfacique, linéique*), on considère que l'activité volumique (*resp. surfacique, linéique*) est constante et homogène dans la source.

La géométrie « cylindre ou parallélépipède contaminée », rajoutée avec la version 1.4, permet par exemple de déterminer le débit de dose à l'intérieur d'une tuyauterie en fonction de la contamination surfacique de la paroi interne.

L'option « effet de ciel » permet de déterminer le débit d'équivalent de dose générée par la diffusion d'un rayonnement primaire sur une plaque d'un matériau déterminé.

II.2.2 CHOIX DU TERME SOURCE

Après avoir choisi une géométrie source, la boite de dialogue « *Terme source* » vous permettant de choisir le ou les radionucléides présents, ainsi que leurs activités respectives, s'ouvre :

Terme source				2
	Elément		Cs -	•
– Isotope –				
Nombre	de masse	137 -	🖲 Ba	
Д	ctivité	1E9	C kBq C MBq	○ Bq/cm³ ○ Ci
		Valider		

Vous devez tout d'abord saisir la nature chimique de l'élément (Cs ou Co etc.) ; La boite de dialogue vous propose alors de choisir l'isotope souhaité en précisant son nombre de masse ainsi que son activité

Une fois les renseignements saisis, cliquer sur « *Valider* » pour enregistrer la saisie. *Remarques :*

- Si vous souhaitez utiliser un radionucléide que vous avez ajouté à la base de données à l'aide de l'option manuelle, celui-ci se trouvera en fin du menu déroulant « Elément ». Dans ce cas éviter la saisie automatique du symbole associé à votre élément car il est possible qu'un élément similaire à celui que vous avez saisi soit déjà enregistré dans la base de données.
- La saisie de l'activité accepte les notations scientifiques exemple pour 1 GBq vous pouvez saisir 1E9 puis valider le bouton « Bq ».
- Les activités spécifiques évoluent en fonction du type de source sélectionnée : Bq.cm⁻³ pour les sources volumiques, Bq.cm⁻² pour les sources surfaciques, Bq.cm⁻¹ pour les sources linéaires.

Après validation, l'application vous propose alors de saisir éventuellement un autre radionucléide :

Si vous sélectionnez « *oui* » l'application ouvrira une nouvelle fois la fenêtre « *Terme source* ».

Vous pouvez utiliser jusqu'à **15 radionucléides** différents dans votre calcul

Si vous sélectionnez « *non* » l'application vous demandera alors de choisir le type de modèle de calcul de build-up que vous souhaitez utiliser pour vos calculs. Ce qui peut pour certaines géométries, notamment cylindre et parallélépipède, augmenter considérablement le temps de calcul.

II.2.3 CHOIX DE LA MÉTHODE DE CALCUL DU BUILD-UP

L'application fonctionne sur un modèle déterministe basé sur un calcul d'atténuation en ligne droite dans la matrice source et dans le ou les écrans éventuels. Ce modèle nécessite l'application d'un facteur de correction, le Build-up, afin de prendre en compte l'influence du rayonnement diffusé sur la valeur du débit de dose. Deux modèles de Build-up ont ainsi été paramétrés, le modèle de Taylor et le modèle de Berger. (*Cf ouvrage § 6.1.6.4*)

Choix du build-up	Patro and	×
Quel type de formule souhaite facteur d'accumulation de dos	z vous utiliser pour le calcul du e (Build-up) ?	
• Formule de Taylor	C Formule de Berger	
26 Materiaux pré-determinés	Ecrans ou matrices quelconques (voir option/écran)	
Va	alider	

Le modèle de Taylor ne permet des calculs que pour 26 matériaux prédéfinis. Le modèle de Berger, plus simple mais moins précis, permet si nécessaire de prendre en compte n'importe quel type de matériau, simple ou composite. Quelques matériaux complémentaires ont été définis pour l'option build-up de Berger, mais il est possible de définir un matériau quelconque : voir chapitre sur les options, option « *matériau composite* ».

Remarque : la version DOSIMEX-G 1.3.3 propose, dans l'option « modèle de Taylor » une méthode de calcul différente de la version initiale, mais toujours conforme au document de référence ANSI/ANS 6.4.3 (1991). Pour plus de précision sur ce changement, voir §II.2.

Après avoir choisi et validé le modèle de calcul du build-up, la fenêtre de dialogue associée à la configuration géométrique choisie s'ouvre :

Exemple de calcul avec la géométrie « source ponctuelle » :

Par défaut l'application vous propose d'effectuer un calcul **dans le vide** à une distance de 100 cm.

Source ponctuelle	
H*(10)	Lancer calcul
	□ Ecran(s) de protection
Distance	
	•
— Commentaires —	
	Calcul réalisé avec l'application DOSIMEX

Vous pouvez modifier la distance et également intervertir entre la source de rayonnement et le point de mesure un écran de protection, comme dans ce cas de figure correspondant à un calcul dans l'air pour une source situé à 50 cm.

Source ponctuelle	
H*(10)	Lancer calcul
	Ecran(s) de protection Caratéristiques écran(s)
Distance 50 cm	Nature Air Masse vol.
•	Epaisseur 50 cm
Commentaires Calcul réalisé avec l'app	lication DOSIMEX

En cliquant sur le bouton « *Lancer calcul* » l'application effectue le calcul associé à votre configuration :

Source ponctuelle H*(10) 370,11 µSv/h Distance 50 cm	Lancer calcul Ecran(s) de protection Caratéristiques écran(s) Nature Air Masse vol. Epaisseur 50 cm
Commentaires Calcul réalisé avec l'app	lication DOSIMEX

II.2.4 LES RÉSULTATS DE CALCUL

La valeur affichée dans la boite de dialogue correspond au **débit d'équivalent de dose ambiant H*(10)**. L'ensemble des grandeurs radiométriques réglementaires essentielles (CIPR 74) est indiqué sur la feuille de synthèse :

- Débit de kerma dans l'air K_a
- Débit d'équivalent de dose ambiant H^{*}(10)
- Débit d'équivalent de dose individuelle $\dot{H}_{p}(10)$
- Débit d'équivalent de dose cristallin $\dot{H}_{n}(3)$ (cf. rapport CEA, voir dossier validation)
- Débit d'équivalent de dose directionnel H'(0,07)

Les valeurs sont données à la fois avec prise en compte du build-up et sans prise en compte du buildup.

Vous trouverez également sur cette feuille de synthèse :

- Le spectre gamma utilisé
- Le listing des radionucléides saisis
- Leurs activités respectives
- La nature du build-up utilisé
- La distance source-détecteur
- Le type de matrice source, géométrie et matériau
- L'épaisseur et la nature des écrans

sciences	DOSIMEX-G 2.0	CALCUL DEBIT DE DOSE	GAMMA ET X	ALCUL ACTIVI	TE VS DED	OPTIONS	 Choix base de donr	ée RN	Manuel	Valid
~		Terme source						Spectre	gamma	
~ L	Source	Ponctuelle					Radionucléide	Isotope	E(keV)	1 (%)
	Radionucléide		Activité				Cs	137	33 keV	6,9 °/.
	Cs 1	137	1,00E+09	Bq			Cs	137	661,66 keV	84,99 °/.
Type de Bu Condition d'e	ild-up Ta	aylor	inctuelle : avec écran de	Air de 50cm de	densité 0.0013g	/cm ³				
<u>Type de Bu</u> Condition d'e Distance sou	ild-up Ta xposition: xp/point de mesure:	aylorSource po	nctuelle avec écran de	Air de 50cm de	densité 0,0013g	/cm³				
Type de Bu Condition d'e Distance sou	ild-up Ta xposition: ce/point de mesure: Avec Build-up	aylor Source po 50cm Sans Build-up	nctuelle avec écran de Build-up mover	Air de 50cm de	densité 0,0013g	/cm³				
Type de Bu Condition d'e Distance sou Kerma	ild-up Ta xposition: ce/point de mesure: Avec Build-up 307.84 µGy/h	sylor Source po 50cm Sans Build-up 306,05 µGy/h	nctuelle avec écran de Build-up moyer 1.01	Air de 50cm de	densité 0,0013g	/cm³				
Type de Bu Condition d'e Distance sou Kerma H*(10)	ild-up Ta cposition: ce/point de mesure: <u>Avec Build-up</u> 307,84 µGy/h 370,11 µSv/h	Source po 50cm Sans Build-up 306,05 µGy/h 366,45 µSy/h	nctuelle avec écran de Build-up moyer 1,01	Air de 50cm de	densité 0,0013g	/cm³				
Type de Bu Condition d'e Distance sou Kerma H*(10) H'(0,07)	ild-up Ta xposition: cc/point de mesure: <u>Avec Build-up</u> 307.84 µGy/h 370.61 µSv/h 370.69 µSv/h	<u>Source po Socm</u> <u>Sans Build-up</u> 306,05 μGy/h 366,45 μSv/h 367,02 μSv/h	nctuelle avec écran de Build-up moyeu 1,01	Air de 50cm de	densité 0,0013g	/cm³				
Type de Bu Condition d'e Distance sou Kerma H*(10) H'(0,07) Hp(10)	ild-up Ta kposition: ce/point de mesure: Avec Build-up 307,84 µGy/h 370,59 µSv/h 373,59 µSv/h	Source po 50cm Sans Build-up 306,05 µGv/h 366,45 µSv/h 367,02 µSv/h 369,89 µSv/h	nctuelle avec écran de Build-up moyer 1,01	Air de 50cm de	densité 0,0013g	/cm³				

II.2.5 CONFIGURATION DES ÉCRANS

Il est possible de modifier la densité des écrans utilisés. Pour cela, sélectionnez, dans la fenêtre de dialogue associé à la configuration de calcul, un écran puis cliquer sur le bouton « *Masse Vol.* ».

Source ponctuelle		×
- 2-455	H*(10) 370,11 μSv/h	Lancer calcul
	Distance	✓ Ecran(s) de protection Caratéristiques écran(s) Nature Masse vol
	50 cm	Epaisseur 50 Cm

Une boite de dialogue vous indique alors la valeur de la masse volumique actuellement saisie pour ce matériau, vous pouvez alors la modifier et enregistrer cette nouvelle valeur.

Validation masse volumique (source et écran)						
Masse vol. (g/cm³)	0.0013					
Enregistrer nou Modification valable po Modification perdue à la	velle masse vol. ur le matériau s a fermeture du t	ource et écran tableur				

Remarques :

- Comme dans le cas de la modification de la base de données, vos modifications de masse volumique ne seront pas conservées à la fermeture de l'application.
- Pendant toute la durée de l'utilisation de l'application, la nouvelle masse volumique sera utilisée pour l'ensemble des calculs.

II.2.6 ECRAN MULTI-COUCHES

Il est également possible de créer, après avoir choisi un écran multi-couches constitué par une succession de matériaux divers et d'épaisseurs diverses. Pour cela, vous devez sélectionner « *Multi-écran* » dans la nature du matériau :

Source ponctuelle				×
	H*(10) 370,11 μSv/h	Lancer calc	ul	
		✓ Ecran(s) de	protection les écran(s) ——	
	Distance cm	Nature	Multi-écran	▼ Config écrans
	- 100 •	Epaisseur	Multi-écran Air Eau	
	Commentaires Calcul réalisé avec l'application DOSIMEX		Aluminium Béton Fer Plomb Uranium	-

Par défaut le multi-écran est constitué de 100 cm d'air.

Pour le configurer suivant vos besoins, cliquez sur le bouton « *Config. Ecrans* » et saisissez un à un la nature et l'épaisseur de chacun des écrans qui le constitue :

Saisie des écrans		Carrowr calked	×
Ecran n° 1			
Nature	Aluminium	•	
Epaisseur	10 C	m	
	Valide	er	

Au fur et à mesure que vous saisissez les écrans, le numéro de l'écran indiqué en haut à gauche de la boite de dialogue « *Saisie des écrans* » s'incrémente. A chaque nouvelle saisie l'application vous rappelle la constitution de l'écran multicouche :

1	Microsoft Excel	ſ
	Données saisies votre écran comporte: Aluminium 10 cm / Fer 5 cm /	
	ОК	

Lorsque vous avez saisi l'ensemble des écrans constituant votre écran multi-couches, fermez la fenêtre « *Saisie des écrans* ».

Dans cette configuration de calcul, bien que la fenêtre épaisseur soit apparente, vous ne pourrez plus en modifier la valeur.

Source ponctuelle	
H*(10) 49,22E+00 nSv/h Distance 100 cm	Lancer calcul Caratéristiques écran(s) Caratéristiques écran(s) Nature Multi-écran Config écrans Epaisseur 18 cm
Commentaires Calcul réalisé avec l'appl	ication DOSIMEX

La feuille de synthèse vous indiquera alors que le calcul a été effectué dans le cas d'un multi écran et vous précisera en bas de page la composition de ce multi écran.

tet			
ition:		Source pon	ctuelle avec écran de Multi-écran de 18cm
Distance source/point de mesure:		100cm	
Avec Build-up		Sans Build-up	Build-up moyen
40,95E+00 nGy/h		16,12E+00 nGy/h	2,54
49,22E+00 nSv/h		19,38E+00 nSv/h	
49,26E+00 nSv/h		19,39E+00 nSv/h	
49,69E+00 nSv/h		19,56E+00 nSv/h	
48,64E+00 nSv/h		19,15E+00 nSv/h	
	oint de mesure: Avec Build-up 40,95E+00 nGy/h 49,22E+00 nSv/h 49,26E+00 nSv/h 49,69E+00 nSv/h 48,64E+00 nSv/h	oint de mesure: Avec Build-up 40,95E+00 nGy/h 49,22E+00 nSv/h 49,26E+00 nSv/h 49,69E+00 nSv/h 48,64E+00 nSv/h	Non. Source point point de mesure: 100cm Avec Build-up Sans Build-up 40,95E+00 nGy/h 16,12E+00 nGy/h 49,22E+00 nSv/h 19,38E+00 nSv/h 49,26E+00 nSv/h 19,39E+00 nSv/h 49,69E+00 nSv/h 19,56E+00 nSv/h 48,64E+00 nSv/h 19,15E+00 nSv/h

de: Aluminium 10 cm/ Fer 5 cm/ Plomb 3 cm/

Remarque :

A chaque fois que vous cliquez sur le bouton « config.écran », l'écran saisi est détruit et remplacé à défaut par 100 cm d'air si vous ne choisissez rien.

ecp sciences

II.3 SPÉCIFICITÉS SUR LES GÉOMÉTRIES SOURCES

II.3.1 CAS PARTICULIER DES SOURCES VOLUMIQUES

Les sources volumiques sont considérées comme contaminées de manière homogène dans la matrice qui les constitue. Vous devez donc indiquer la nature de cette matrice. Les matériaux constitutifs de la matrice source proposés sont identiques à ceux proposés pour les écrans, en fonction du modèle de build-up choisi.

Pour les sources volumiques, nous proposons généralement 2 points de calcul du débit de dose. Le tableau de synthèse des résultats précise alors les valeurs calculées pour chacun de ces points :

0	Condition d'exp	osition	Cylindre R=100 cm / H=100 cn	n de Eau sans écran
[Distance source/Pt1		100cm	Distance source/Pt2
		Avec Build-up	Sans Build-up	Build-up moyen
	Kerma	4,5 μGy/h	2,33 μGy/h	1,93
	H*(10)	5,4 µSv/h	2,8 μSv/h	
2	H'(0,07)	5,41 µSv/h	2,8 μSv/h	
	Hp(10)	5,4 µSv/h	2,8 μSv/h	
	Hp(3)	5,34 µSv/h	2,77 μSv/h	
	Kerma	8,97 μGy/h	4,71 μGy/h	1,91
	H*(10)	10,79 µSv/h	5,65 µSv/h	
22	H'(0,07)	10,79 µSv/h	5,65 µSv/h	
	Hp(10)	10,89 µSv/h	5,7 μSv/h	
	Hp(3)	16 µSv/h	8,38 μSv/h	

Il est possible de ne choisir qu'un seul point, ce qui peut être un gain de temps.

 $A_{vol. max}$.

II.3.3 GRADIENT D'ACTIVITÉ VOLUMIQUE AVEC LA SOURCE PARALLÉLÉPIPÈDE

La possibilité de définir une activité volumique variable a été intégrée à la géométrie parallélépipèdique, selon l'axe horizontal. Ce type de situation peut se rencontrer par exemple avec des activités induites par une fluence neutronique, ou encore par des processus lents de migrations chimiques dans le matériau (contamination)

Parallélépipède

Cette option ne peut être activée qu'en choisissant une activité en termes d'activité volumique. La valeur choisie est dans tous les cas de figure la valeur correspondant à l'activité volumique maximale

Elément		Cs	•
Sotope Nombre de masse	137 -	C Ba	
Activité	1E4	⊖bq CkBq CMBq	⊙ Bq/cm³ ○ Ci

En choisissant l'option « gradient axe horizontal » sur la boite de dialogue du parallélépipède, on peut définir un gradient exponentiel suivant l'axe horizontal avec deux possibilités :

✓ Gradient positif : la face mesurée est alors celle qui est la moins active. Le gradient est alors définie par : $A_{vol}(x) = A_{vol,min} exp(\mu x)$.

L'activité minimale est déterminée à partir de $A_{vol.max}$ par : $A_{vol.max} = A_{vol.max} exp(-\mu L)$ avec :

- \circ μ : le coefficient d'atténuation (ou de relaxation) de l'activité volumique choisie par l'utilisateur en fonction de données expérimentales (carottages par exemple)
- \circ L : la longueur totale du parallélépipède suivant l'axe horizontal

Le gradient s'exprime alors suivant la relation $A_{vol}(x) = A_{vol,max}exp\left[\mu(x-L)\right]$

✓ Gradient négatif : la face mesurée est alors celle qui est la plus active. Le gradient est alors définie par : $A_{vol}(x) = A_{vol,max} exp(-\mu x)$.

Calcul débit de dose parallélépipède	
Gradient axe horizontal	option active uniquement avec l'activité volumique
Coefficient d'atténuation de l'activité	
0,1 cm-1	
C Positif	
·····	•
(Point 1)	
Kerma air	Hauteur
56.32 μGv/h	100 cm
Distance	Largeur
100 cm	100 _{cm}
	Longueur 100 _{cm}
Matériau source	e Eau Vasse vol.

II.3.4 CAS PARTICULIERS DES SOURCES TYPE « TUYAU »

II.4 CALCUL INVERSE ACTIVITÉ VS DÉBIT DE DOSE

Cette option permet de calculer l'activité d'une source radioactive en fonction du débit de dose mesuré en H*(10) en fonction :

- De la distance source-détecteur
- De la configuration source (géométrie, écran..)
- Du spectre des radionucléides en termes de proportions en activités

Choix de la configuration source :									
Choix de la géométrie de la source radioactive									
Sélectionnez la géométrie de la source p	oarmi les choix suivants:								
Cylindre ○ Disque ○ Ponctuelle	C Fil C Sphère C	Parallélépipède Ger	, pède						

Détermination des radionucléides et de leur proportion en activité dans le spectre :

	Cs	•	
137 -]		
45	-		
Valider			
	137 - 45 Valider	Cs 137 v 45 Valider	Cs v 137 v 45 Valider

Exemple pour 45 % en activité de Cs 137 et 55 % en Co 60

Terme source		×
Elémer	nt Co -	
_ Isotope		
Nombre de masse	60 🗸	
% en activité	55	
	Valider	

100% du spectre a été saisie.	
·	
Continuer	

Lorsque 100 % du spectre a été saisie, la boite de dialogue de la source choisie apparait et permet de rentrer le débit de dose mesuré :

Manuel d'utilisation de DOSIMEX-GX 2.0

Commentaires

Il est alors possible de lancer le calcul pour obtenir dans un premier temps l'activité totale de la source :

La feuille de synthèse affiche l'activité par radionucléide :

	DOSIMEX-G	2.0	ALCUL DEBIT DE D	OSE GAMI	ИА ЕТ Х	CALCI	IL ACTIVITE	VS DED	ΟΡΤΙ	ONS	Choix base de donn	ée RN	Manuel	Valio	dation
<u>ه</u>			Terme source									Spectre	gamma		
	Soi	urce	Cylindre								Radionucléide	Isotope	E(keV)	1 (%)	
	Radior	nucléide			Compositio	on					Cs	137	33 keV	6,9 °/.	
	Cs	137	5,22E+09	Bq	4,50E+01		%				Cs	137	661,66 keV	84,99 °/.	
	Co	60	6,38E+09	Bq	5,50E+01		%				Со	60	1332,49 keV	99,983 °/.	
											Co	60	1173,23 keV	99,85 °/.	
											Co	60	826,1 keV	0,008 %	
											Co	60	347,14 keV	0,008 %.	
	Condition d'exposition		Cylindre R=100cm	/ H=100 cm	de Béton ave	ec écran	de Plomb de	1cm de den	nsité 11.34g/	:m ³	Co	60	2158,57 keV	0,001 %.	
	Distance source/Pt1		100cm	·											
	H*(10): 2,	50E+01 µSv/h													
	A: 1,1	6E+10 Bq		- Comme	ntaires —										
E C	Av: 3,698	E+03 Bq/cm ³		Calcul	réalisé ave	c l'appl	ication DOS	IMEX							

II.5 CALCUL EFFET DE CIEL

L'option « effet de ciel » permet de déterminer le débit d'équivalent de dose générée par la diffusion d'un rayonnement primaire générée par une source ponctuelle constituée d'un ou plusieurs radionucléides sur une plaque d'un matériau déterminé.

Après avoir renseigné les diverses boites de dialogues identiques à l'option sources ponctuelles (choix RN, activité), la boite de dialogue effet de ciel apparaît.

Boite de dialogue « effet de ciel », calculé ici pour 1 TBq de Co 60

Les paramètres pris en compte sont :

- La distance de la source au droit de l'écran
- L'angle entre l'angle d'incidence normal des rayonnements primaires et la position de la source. Cet angle est compris entre 0° (rétrodiffusion vers la source) et 90 ° (direction parallèle à l'écran)
- La distance sur l'axe de diffusion à laquelle on souhaite calculer le débit de dose du rayonnement diffusé
- La nature de la plaque
- Son épaisseur

- La surface irradiée, fonction en général d'un angle de collimation (*il appartient à l'utilisateur de déterminer cette surface*). Cette surface est limitée à 25.10⁴ cm² (25 m²)
- La calcul s'appuie sur la section efficace différentielle de Klein et Nishina (*cf annexe H :IRM photon*) et rendent compte d'une part de l'atténuation de la fluence primaire dans la plaque irradiée ainsi que de l'absorption des photons diffusés avant émergence de la plaque

Le code donne la valeur du débit d'équivalent de dose dans le faisceau incident au niveau de l'écran ainsi que la valeur du débit généré par la composante diffusée au point souhaité. Cette valeur ne tient pas compte de l'irradiation éventuelle en ligne droite en ce point. Le cas échéant une telle composante peut être calculée directement avec l'option source ponctuelle.

Le facteur de diffusion est le rapport du débit généré par la diffusion au débit dans le faisceau primaire.

II.6 OPTIONS.

L'application DOSIMEX-G propose également un panel d'options accessible en cliquant sur le bouton actif « Options » :

DOSIMEX-G 2.0	CALCUL DEBIT DE DOSE GAMMA ET X	CALCUL ACTIVITE VS DED		OPTIONS	Choix base de donnée RN	Manuel	Validation
			/	7			
		(/			

Une boite de dialogue vous proposant 10 options s'ouvre :

Options	
Créer un écran de protection multi-couche (source gamma uniquement)	Multi-ecran
Créer un matériau composite pour matrice source ou écran (utilisable avec option "build-up de Berger")	Mat. comp.
Définir manuellement un spectre d'émission gamma	Spectre gam.
Estimation du DED du au freinage d'une source bêta	Ray. frein.
Calculer un build-up de Taylor et un facteur de transmission	Build-up
Calculer des épaisseurs d'écran pour un facteur d'atténuation donné	Xécran
Catégorisation dangerosité sources (AIEA)	Dang. Source
Définir un zonage prévisionel	Zonage
Calcul décroissance & relation masse activité	Decroissance
Conversion proportions de mélange (masse, activité, isotopie)	Conversion

II.6.1 OPTION MULTI-ÉCRAN

Multi-ecran

Cette option permet de définir un multi-écran préalablement à un calcul de dose gamma. Son principe d'utilisation est identique à celle décrite précédemment (<u>§ I.2.E</u>) et fonctionnement est identique.

II.6.2 OPTION « MATÉRIAU COMPOSITE ··· Mat. comp.

Le choix de l'option « modèle de build-up de Berger » permet d'utiliser des matériaux quelconques, simple ou composite, tant pour la matrice source que pour les écrans mis en place. La nature du matériau doit être défini au préalable avec l'option « Mat.comp » :

Une boite de dialogue type tableau de périodique apparait et vous propose de définir la composition chimique de votre écran via les proportions atomiques (*coefficients stœchiométriques*) ainsi que sa masse volumique totale.

A la fermeture de cette boite de dialogue, votre matériau sera accessible pour toutes les configurations de calcul (hors générateur X) utilisant le build-up de Berger.

II.6.3 OPTION « DEFINIR MANUELLEMENT UN SPECTRE D'ÉMISSION GAMMA »

Spectre

Saisir un radionuc	léide	×				
1						
Radionucléide X						
Raie	Energie gamma (keV)	Intensité gamma (%)				
1						
2						
3						
4						
5						
Enregistrer						
Informations perdues à la fermeture du tableur						

Saisissez le symbole du radionucléide (X), son nombre de masse (A). Définissez ensuite le spectre d'émission de 1 à 5 raies possibles en précisant énergie(s) et intensité(s) d'émission et validez en l'enregistrant. Plusieurs spectres-types peuvent être saisis successivement. Les radionucléides saisis seront placés en fin de la base de données de radionucléide en cours d'utilisation.

Si le radionucléide à enregistrer présente plus de 5 raies gamma, enregistrer vos 5 premières données puis réitérer l'opération en saisissant le même symbole et le même nombre de masse. Pour que votre radionucléide soit correctement pris en compte par la suite, ne saisissez les informations relatives à un nouveau radionucléide qu'après avoir totalement renseigné le premier.

II.6.4 OPTION « CALCUL DU DÉBIT DE DOSE DU AU RAYONNEMENT DE FREINAGE D'UNE SOURCE BÊTA»

Cette option permet de calculer le débit de dose du au rayonnement de freinage généré dans un matériau jouant le rôle d'absorbeur d'électrons (en vert) par l'émission bêta d'une source. L'épaisseur de l'absorbeur est telle que la conversion électron/X est totale, ce qui revient à dire qu'aucun électron n'émerge de cet absorbeur. La valeur de la dose obtenue est ainsi uniquement une dose « X ». La boite de dialogue ne prend pas en compte d'épaisseurs d'écran primaire inférieures à la portée maximale des électrons, calculée lorsque l'opérateur choisit la nature de l'écran.

Dans le cas inverse, pour un absorbeur d'épaisseur inférieure à la portée maximale des électrons, il faut utiliser le code DOSIMEX-B pour calculer la dose « bêta ».

L'application détermine le spectre bêta de la source de rayonnement, puis le spectre X de freinage pour enfin déterminer le débit de dose du au rayonnement de freinage. Il est possible de mettre en place un écran secondaire (en bleu) pour calculer l'atténuation du rayonnement X de freinage. Dans le cas d'un émetteur β^+ , cette application prend en compte l'émission des photons d'annihilation de 511 keV.

Il y a deux possibilités pour déterminer l'émetteur Bêta :

1) Soit une liste déroulante proposant l'essentiel des radionucléides pris en compte dans le guide Pratique (*Delacroix et al.*)

Remarque : le code ne calculant qu'à partir d'une seule composante, le spectre d'émission est approximé par un Qmax moyen.

- 2) Soit en rentrant manuellement les caractéristiques de la composante bêta :
- Bêta ou +
- Qmax
- Intensité d'émission

Lors de l'utilisation de cette option, une feuille de synthèse est éditée présentant les éléments associés à la simulation :

	s DC	OSIMEX-G 2.0	CALCUL DEBIT DE DOSE GA	MMA ET X	CALCUL ACTIVITE VS DED		
Terme source							
_		Source					
		Source béta - de Z=	39	A/I beta			
	Source gain	née de 0,4cm de Alumini	ium	1E12Bq / 100%			
	Type de build	l-up: Taylor C	onfiguration avec écran de Eau de	10cm			
		Avec Build-up	Sans Build-up	Build-up	moyen		
	Kerma	608,58 µGy/h	208,98 μGy/h	2,9	91		
	H*(10)	783,39 µSv/h	269,21 μSv/h				
	H'(0,07)	772,19 µSv/h	265,36 μSv/h				
	Hp(10)	806,64 μSv/h	277,2 μSv/h				
	Hp(3)	768,19 μSv/h	263,98 μSv/h				

II.6.5 OPTION « BUILD-UP »

Build-up

Cette option permet un calcul de build-up (*BU*), du facteur de transmission (*F*), et le produit des 2, pour des configurations simples, équivalentes à une source ponctuelle monoénergétique (**limitée de 10 keV à 15 MeV**) pour un ou deux écrans accolés.

Build-up Taylor et atténuation	ı	×			
Energie gamma	150	keV			
Nature de l'écran	Fer	•			
Epaisseur de l'écran	10	Cm			
🗖 2éme écran accolé					
Calculer					
	Ecran 1				
Calcul µ×x	1.40E+01				
Build-up	Build-up 6.49				
Facteur de transmission F [e(-µx)]:	8.01E-07				
F×B:	5.20E-06				

La feuille de synthèse indique alors les courbes et tableaux d'évolution du build-up de Taylor du facteur de transmission.

F×B 1,00E+00 1,43E+00 1,28E+00 9,46E-01 6,10E-01 3,60E-01 1,26E-02 2,55E-04 4,04E-06

	Table	eau de valeu	rs		_		
150 keV		Fer			Eau		
μХ	Transmission	x	Build-up	F×B	x	Build	
0	1,00E+00	0,00E+00	1	1,00E+00	0	1	
1	3,68E-01	7,10E-01	1,68	6,18E-01	6,76	3,8	
2	1,35E-01	1,42E+00	2,15	2,91E-01	13,51	9,4	
3	4,98E-02	2,14E+00	2,59	1,29E-01	20,27	19	
4	1,83E-02	2,85E+00	3	5,50E-02	27,02	33,	
5	6,74E-03	3,56E+00	3,39	2,28E-02	33,78	53,	
10	4,54E-05	7,12E+00	5,17	2,35E-04	67,56	27	
15	3,06E-07	1,07E+01	6,75	2,07E-06	101,34	83	
20	2,06E-09	1,43E+01	8,21	1,69E-08	135,11	196	
30	9,36E-14	2,14E+01	10,9	1,02E-12	202,67	732	
40	4,25E-18	2,85E+01	13,2	5,61E-17	270,23	203	

II.6.6 OPTION « CALCULER DES ÉPAISSEURS D'ÉCRANS POUR UN FACTEUR D'ATTÉNUATION DONNÉ »

Multi-ecran

Cette option permet de définir, pour une énergie donnée et un matériau donné, l'épaisseur d'écran nécessaire pour obtenir un facteur d'atténuation quelconque choisi par l'opérateur (1/2, 1/10...1/n etc.).

Deux épaisseurs d'écran sont calculées, la première, résultant du calcul classique d'atténuation en exponentielle, ne tenant pas compte du build-up, et la seconde, invariablement supérieure à la précédente, tenant compte du build-up. Il est possible d'utiliser les deux modèles de build-up, Taylor et Berger. L'intérêt, avec le build-up de Berger, étant de pouvoir utiliser cette option avec un écran composite défini dans l'option « Matériau composite ».

Exemple de calcul d'écran dixième pour 1332 keV dans le plomb avec le modèle de Taylor :

Calcul libre parcours moyen		
Energie gamma	1332	keV
Nature de l'écran	Plomb 🗸	
Facteur d'atténuation à at	teindre 1/ <mark>10</mark>	
Libre parcours moyen (lpr	m) 1.611 cm	
X1/10 sans build-	up 3.71 cm	
X1/10 avec build-	up 4.78 cm	
Modèle de build-up		
	C Berger	

II.6.7 OPTION « CATÉGORISATION DANGEROSITÉ DES SOURCES »

Dang. Source

Cette option permet de définir la classe de dangerosité d'une source selon les critères de l'AIEA (*AIEA/Safety guide/RS-C-1.9 <u>http://www-pub.iaea.org/MTCD/publications/PDF/Pub1227_web.pdf</u>)*

Catégorisation des sources	selon AIEA		_	x			
Source radioactive	<mark>241 -</mark>						
(Classées par dangerosité d	décroissante)						
Activité	1 0	ି Bq ି GBq	ିkBq ିN ତTBq ିC	/IBq i			
Classement Catégorie 2: Source trés dangereuse							

II.6.8 OPTION « DEFINIR UN ZONAGE PRÉVISIONNEL»

Cette option permet de définir les distances correspondantes aux différentes zones radiologiques pour une source ponctuelle (1 ou plusieurs radionucléides possibles) avec ou sans écran de protection. Les calculs (solveur) tiennent comptent de l'atténuation et du build-up dans l'air. Exemple pour 37 GBq Ir 192 avec un écran de 3 cm de plomb.

Zonage

Une première option supplémentaire permet de connaitre la distance d'une zone pour une valeur choisie du débit de dose :

🗹 Valeur personnalisée (μSv/h)	\$7
2,5	11,39E+00m

Une seconde option permet de définir une zone d'opération spéciale ou non au prorata temporis :

		DED moyen		
	Zone sous autorisati	on spéciale 🛛 📀	25μSv/h	
72,56E-01m	Durée opération (h)	8	Durée du tir (h)	2

II.6.9 OPTION « DECROISSANCE»

Après avoir choisi un radionucléide, on obtient une première information : sa période en seconde (s), heure(h), jours (j) ou année (A) suivant le cas (exemple ici avec le Fluor 18)

Calcul Calcul inverse Calcul nbre de jours Intégration débit dose en décroissance

Le premier onglet « Calcul » permet de calculer une correction de décroissance en rentant l'activité initiale et la durée de décroissance

Sur le même onglet il est possible de convertir une masse (g ou kg) en activité (Bq)

- Relation mas	se vers activité	
masse	1E-12	്g ⊙kg
		-
	Calculer	
Activité	3,52E+09Bq	

Calcul Calcul inverse Calcul nbre de jours Intégration débit dose en décroissance

Le second onglet « Calcul inverse » permet de calculer une correction de décroissance « en sens inverse », c'està-dire de remonter à l'activité initiale d'une source ayant décru

Relation activité vers masse

Sur le même onglet il est possible de convertir une activité (Bq) en masse (g ou kg)

Le dernier onglet permet de connaitre la dose équivalente intégrée sur une durée en prenant en compte la décroissance de la source. La durée considérée est exprimée en heure décimale, de telle sorte que si le débit de dose est considéré en μ Sv/h, alors la dose intégrée sera exprimée en μ Sv.

II.6.10 OPTION « CONVERSION DE PROPORTIONS DE MÉLANGES »

A. PRINCIPES CALCULS MÉLANGE DE K ÉLÉMENTS

- ω_i : proportion en masse $\left(\sum_i \omega_i = 100\%\right)$
- $\circ \quad I_i : \text{proportion isotopique}\left(\sum_i I_i = 100\%\right)$
- Act_i : proportion en masse $\left(\sum_i Act_i = 100\%\right)$
- ✓ T_i : période en s et $\lambda_i = \ln(2)/T_i$ en s⁻¹
- \checkmark A_i : nombre de masse

$$\mathsf{Cas 1:} I_i \text{ connue} \Longrightarrow \begin{cases} \omega_i = \frac{I_i A_i}{\sum_k I_k A_k} \\ Act_i = \frac{\lambda_i I_i}{\sum_k \lambda_k I_k} \end{cases}$$

$$\operatorname{Cas 2:} \omega_{i} \operatorname{connue} \Rightarrow \begin{cases} \operatorname{calcul 1:} I_{i} = \frac{\omega_{i}/A_{i}}{\sum_{k} \omega_{k}/A_{k}} \\ \operatorname{Puis calcul 2:} \operatorname{Act}_{i} = \frac{\lambda_{i}I_{i}}{\sum_{k} \lambda_{k}I_{k}} \\ \operatorname{Cas 3:} \operatorname{Act}_{i} \operatorname{connue} \Rightarrow \begin{cases} \operatorname{calcul 1:} \omega_{i} = \frac{\operatorname{Act}_{i} A_{i}}{\sum_{k} \operatorname{Act}_{k} A_{k}/\lambda_{k}} \\ \operatorname{Puis calcul 2:} I_{i} = \frac{\omega_{i}/A_{i}}{\sum_{k} \omega_{k}/A_{k}} \end{cases}$$

B. MISE EN ŒUVRE

Exemple avec le mélange massique de l'uranium naturel

Elément U isotope 235 % 0,719 Période (s) 61,712 A 235 Marcintager statis 99,994 Période (s) 61,712 A 235 Saisir le denni Fourcentage statis 99,994 Fourcentage statis 99,994 Saisir le denni Consult e poutcentage Numerlisseur de poutcentage Numerlisseur de poutcentage Elément U Isotope 234 Saisir le derni saisie s'arrête lorsque somme des proportion Suiture des proportions consues Vien Actorité Vien Actorité Vien Actorité Vien Actorité Vien Actorité Vien Actorité Saisir le derni Saisir le derni La saisie s'arrête lorsque somme des proportion attent 100 %. En cas de dépassement de 100 %, un message d'alert apparaît et permet d'ajuste automatiquement la derniét	vertisseur de pourcentage	
Lotope 235 % 0,719 Période (s) 61,71E+11 Ajouter Pourcentage saiste 99.994 Pourcentage saiste 99.994 % Consult of pourcentage total sass atteint 100 %, les propertions pour les 2 autres types de mélonges sont efficiele date la symbele Saisir le derni radionucléide. Nature des proportions connues % isotopique % isotopique Élément U Losope 234 % 0,006 Période (s) 21,52E+08 A 234 Ajouter Pourcentage saiste 100 % En cas de dépassement de 100 %, un message d'alert apparaît et permet d'ajuste automatiquement la dernière proportion Saister le pourcentage total sois attent 100 %. Les proponsons pour les 2 autres types suite the permet d'ajuste automatiquement la dernière proportion	Elément U 🗸	Saisir le second radionucléide, sa proportion puis validor
% 0,719 Période (s) 61,71E+11 A 235 Ajouter Pourcentage saisi: 99,994 % Pourcentage restant: 0,006 % Corsue le pourcentage Pourcentage restant: 0,006 % Saisir le derni radionucléide. Netrisseur de pourcentage Image: Saisie sould atteint 100 %, les proportions pour les 2 nutres types Saisir le derni radionucléide. Netrisseur de pourcentage Image: Saisie s'arrête lorsque somme des proportion atteint 100 %. La saisie s'arrête lorsque somme des proportion atteint 100 %. Fériode (s) 21,52E+08 A 234 Veurcentage saisie 100 % En cas de dépassement de 100 %, un message d'alent apparaît et permet d'ajuste automatiquement la dernière proportion Lorsaue le pourcentage tots isoli atteint 100 %, les proportions pour les 2 nutres types 5%	Isotope	Valider
Période (s) 61,71E+11 A 235 Ajouter Pourcentage restant 0,000 % Drouw le pourcentage Pourcentage restant 0,000 % Neture des proportions connues Image: Connue de synthese Saisir le derni radionucléide. Neture des proportions connues Image: Connue de synthese Image: Connue de synthese Neture des proportions connues Image: Connue de synthese Image: Connue de synthese Elément U Image: Connue de synthese Image: Connue de synthese Période (s) 21,52E+08 A 234 Vourcentage restant 0 % En cas de dépassement de 100 %. En cas de dépassement de 100 %. En cas de dépassement de lour %, un message d'alert apparaît et permet d'ajuste automatiquement la dernière proportion Suite de synthese	% 0,719	
Ajouter Pourcentage saisie 99,994 % Pourcentage restant 0,006 % Lorsaue le pourcentage total saisi atteint 100 %, les proportions pour les 2 autres types de mélonges sont difficiés dans lo feuine de synthèse Neurtisseur de pourcentage Saisir le derni radionucléide. Neure des proportions connues Image: Construction of the c	Période (s) 61,71E+11 A 235	
Invertisseur le pourcentage Saisir le derni radionucléide. Invertisseur de pourcentage Image: Sont affectés dans la feuille de synthèse Invertisseur de pourcentage Image: Sont affectés dans la feuille de synthèse Invertisseur de pourcentage Image: Sont affectés dans la feuille de synthèse Invertisseur de pourcentage Image: Sont affectés dans la feuille de synthèse Invertisseur de pourcentage Image: Sont affectés dans la feuille de synthèse Invertisseur de pourcentage Image: Sont affectés dans la feuille de synthèse Invertisseur de pourcentage Image: Sont affectés dans la feuille de synthèse Invertisseur de pourcentage sont affectés dans la feuille de synthèse Image: Sont affectés dans la feuille de synthèse Invertisseur le pourcentage tots lasis atteint 100 %, les proportions pour les 2 autres types de melanges sont affectés dans la feuille de synthèse Image: Sont affectés dans la feuille de synthèse	Ajouter Pourcentage saisie 99,994 %	
Invertisseur de pourcentage Saisir le derni radionucléide. Nature des proportions connues Image:	l organe la pourcentage total solei attaint 100 % las proportions pour las 2 outres tipes	
Nature des proportions connues C % en Activité C % en Activité C % isotopique Elément U Isotope 234 % 0,006 Période (s) 21,52E+08 A 234 Période (s) 21,52E+08 A 234 Ourcentage saisie 100 % En cas de dépassement de 100 % En cas de dépassement de 100 % En cas de dépassement de 100 % Uncentage saisie 0 % Durcentage restant 0 % Lorsque le pourcentage total saisi atteint 100 %	Larsque le pourcentage rotal saisi atteint 100 %, les proportions pour les 2 autres types de mélanges sont affichés dans la feuille de synthèse	
Nature des proportions connues C % en Activité C % en Activité C % en Activité C % isotopique Elément U Isotope 234 % 0,006 Période (s) 21,52E+08 A 234 Pourcentage saisie 100 % En cas de dépassement de 100 % Pourcentage saisie 100 %, un message d'alert apparaît et permet d'ajuste automatiquement la dernière proportion Lorsque le pourcentage total saisi atteint 100 %. les proportions pour les 2 autres types de milanges sont affichés dans la feuille de synthèse	I	
Nature des proportions connues La saisie s'arrête lorsque Somme des proportion Ajouter Pourcentage saisie No No Nature des proportions connues La saisie s'arrête lorsque Somme des proportion Ajouter Pourcentage saisie No Nature des proportions pour les 2 autres types A metinges sont afficiés dans la feulle de synthése Nature des proportion Saisi de definit La saisie s'arrête lorsque La saisie s'arrête lorsque Somme des proportion A 234 Nature des proportion La saisie statistic de synthese La saisie statistic de synthése		Coisir la damis
Nature des proportions connues Image: Construction of the second of	vertisseur de pourcentage	Saisir le dernie
Nature des proportions connues C % en Activité C % isotopique ® massique Elément U Image: Construction of the state of		radionucleide.
Elément U Isotope 234 Isotope 234 % 0,006 % 0,006 Période (s) 21,52E+08 A 234 Période (s) 21,52E+08 A 234 Durcentage saisie 100 % Pourcentage saisie 100 % Pourcentage restant 0 % Lorsque le pourcentage total saisi atteint 100 %, les proportions pour les 2 autres types de mélanges sont affichés dans la feuille de synthèse	- Nature des proportions connues C % en Activité C % isotopique	
Isotope 234 % 0,006 % 0,006 Période (s) 21,52E+08 A 234 A 234 Definide (s) 21,52E+08 Pourcentage saisie 100 % Pourcentage restant 0 % Lorsque le pourcentage total saisi atteint 100 %, les proportions pour les 2 autres types de mélanges sont affichés dans la feuille de synthèse	Elément U 🗸	
% 0,006 % 0,006 Période (s) 21,52E+08 A 234 Ajouter Pourcentage saisie Pourcentage saisie 100 % Pourcentage restant 0 % Lorsque le pourcentage total saisi atteint 100 %, les proportions pour les 2 autres types de mélanges sont affichés dans la feuille de synthèse	Isotope	La saisie s'arrête lorsque la
Période (s) 21,52E+08 A 234 Ajouter Pourcentage saisie 100 % Incas de dépassement de 100 %, un message d'alert apparaît et permet d'ajuste automatiquement la dernièr proportion Lorsque le pourcentage total saisi atteint 100 %, les proportions pour les 2 autres types de mélanges sont affichés dans la feuille de synthèse Pourcentage total saisi atteint 100 %, les proportions pour les 2 autres types	% 0,006	atteint 100 %.
Ajouter Pourcentage saisie 100 % apparaît et permet d'ajuste Pourcentage restant 0 % automatiquement la dernièr Lorsque le pourcentage total saisi atteint 100 %,, les proportions pour les 2 autres types proportion	Période (s) 21,52E+08 A 234	En cas de dépassement des 100 %, un message d'alerte
Lorsque le pourcentage total saisi atteint 100 %., les proportions pour les 2 autres types proportion de mélanges sont affichés dans la feuille de synthèse	•	apparaît et permet d'ajuste
de mélanges sont affichés dans la feuille de synthèse	Ajouter Pourcentage saisie 100 % Pourcentage restant 0 %	automatiquement la dernière
	Ajouter Pourcentage saisie 100 % Pourcentage restant 0 %	automatiquement la dernière proportion

Les résultats des conversions pour les autres types de mélange s'affichent alors sur la feuille de synthèse :

RN	Lambda	А	% en Act	% en isot.	% en masse
U238	49,14E-19	2,38E+02	46,17E+00	99,27E+00	99,28E+00
U235	31,20E-18	2,35E+02	21,50E-01	72,81E-02	71,90E-02
U234	89,47E-15	2,34E+02	51,68E+00	61,02E-04	60,00E-04

Partie III. UTILISATION DOSIMEX-G OPTION GÉNÉRATEURS X ET NORME NF C 15-160

III.1 PRÉAMBULE : CHOIX SOURCES GAMMA OU GÉNÉRATEUR X

La boite de dialogue principale vous propose le générateur X comme sources de rayonnements :

En validant ce choix, une boite de dialogue s'ouvre, permettant de choisir entre deux options :

Généra	teur X sélection		— X	
·	Modélisation générateur X	c	Feuille de calcul NF C15-160	
	Valid	er choix		

- Modélisation générateur X : permet de déterminer le débit de dose primaire et diffusé en fonction des paramètres HT/Intensité/filtration du générateur X ainsi que des écrans mis en place.
- Feuille de calcul NF C15-160 : permet d'obtenir tous les résultats demandés par la norme NF C15-160 de mars 2011 intitulée : « Installations pour la production et l'utilisation de rayonnements X Exigences de radioprotection ».

III.2 OPTION « MODELISATION GENERATEUR X »

Cette option permet de calculer le débit de dose (kerma, H*(10) etc.) :

- 1. Dans le faisceau primaire
- 2. Dans le faisceau primaire derrière un écran
- 3. Dans le faisceau diffusé par un écran
- 4. Dans le faisceau diffusé derrière un écran
- 1) CALCUL DANS LE FAISCEAU PRIMAIRE

Dans ce mode, il suffit de renseigner :

- La valeur de la haute tension (kV)
- La nature de l'anode (par défaut le tableur se positionne sur une anode en tungstène W)
- L'intensité électronique (mA)
- o La nature de la filtration (avec possibilité de 2 écrans de filtration)

Pour obtenir le débit de kerma dans l'air en Gy/min ou en Gy/h à une distance quelconque dans le faisceau primaire.

Générateur X	
Générateur X	
Alimentation	
HT utilisation (kV) 100	HT
Intensite (mA) 1	
Filtration inhérente	
Filtration inhérente	
Nature Aluminium -	
Epaisseur 2 mm	Distance (b)
	1 m
Filtration additionnelle	
A second second second second second	Lancer calcul
	C Ecran
	kerma air 659,21 mGy/h
	(acciquez pour passer en uy/min)

Les hautes tensions prises en compte dans cette option vont de **25 kV à 1000 kV**. En cas de dépassement, un message d'alerte apparait :

Microsoft Excel 🛛 🔀
Les limites de calcul sont [25kV-1000kV]
ОК

Les grandeurs opérationnelle Hp(10), H*(10,) H'(0,07) et Hp(3) sont reportées dans la feuille de synthèse avec d'autres informations telles que le spectre X en fluence et en débit de kerma :

iences	DOSIMEX-G 2.0	CALCUL DEBIT DE DOSE GAMIN	IA ET X CALCUL AC	TIVITE VS DED	OPTIONS	Choix base de donnée RN	Manuel	alidation
Ĩ.	6	Terme source		4,0E+7 -	S	pectre X primaire et diffu	isé	2,5E+07
SOURCE Générateur X Tension / intensité Filtration inhérente 2mm de Aluminium 100kV / 1mA / Anode W (12*)			3,5E+7			Spectre en fluence Spectre en kerma		
	Energie X mo Energie X mo Fluence X totale	oyenne (Fluence) 48,82 keV oyenne (Kerma) 40,34 keV au point de mesure 3,69E+08/cm ³	l/s	3,0E+7			Spectre de diffusion (ZOO	M) - 2,0E+07
			-	A 2,5E+7				- 1,5E+07
				s/cm)/ 2,0E+7				
				× 1,5E+7				- 1,0£+07
				1,0E+7	_	~ 1		5,0E+06
Type de Bu	uild-up: Berger	Configuration sans écran		0,0E+0				0,0E+00
	Avec Build-up	Sans Build-up	Build-up moyen		20	Energie X (keV)	80 100	120
Kerma	11,01 mGy/min	11,01 mGy/min	1					
H*(10)	13,97 mSv/min	13,97 mSv/min						
H'(0,07)	14,77 mSv/min	14,77 mSv/min						
Hp(10)	14,75 mSv/min	14,75 mSv/min						
		14.0						

2) CALCUL DANS LE FAISCEAU PRIMAIRE DERRIERE UN ECRAN

On peut introduire un écran simple sur le trajet du faisceau primaire :

iénérateur X	and the subscription of th	states and a surround in surround	and the second division of the second divisio	
Générateur X Alimentation HT utilisation (kV) 100	нт			
Intensité (mA) 1	- The second			
☑ Filtration inhérente	NAM	S		
Filtration inhérente Nature Aluminium		<u>^</u>		
Epaisseur 2 mm Distance Filtration additionnelle 1	e (b) . m	Calcul de diffus	ion	
		Ecran Lancer calcul	Ecran Nature Plomb -	Masse vol.
kerma (primai	air 3643,09 µGy/h re)	Unité d'affichage en Gy/h (décliquez pour passer en Gy/min)	Epaisseur 1 mm	
Facteur d'atténuation sur le primaire (Fp) (h	ors BU) 1,81E+02	Débit de dose calculé derrière l'écran Le spectre présenté est le spectre devant l'écran		

Le calcul donne comme information :

- Le débit de dose derrière l'écran
- Le facteur d'atténuation calculé comme le rapport de la dose sans écran sur la dose en présence d'écran (facteur supérieur ou égal à 1). Ce facteur est noté Fp dans la norme NF C15-160

Le build-up moyen est calculé sur l'ensemble du spectre puis affiché dans la feuille de synthèse :

Type de Build-up: Berger Configuration avec écran de Plomb de 0,5mm

	Avec Build-up	Sans Build-up	Build-up moyen	
Kerma	1 mGy/min	0,34 mGy/min	2,98	
H*(10)	1,71 mSv/min	0,57 mSv/min	Fp	
H'(0,07)	1,61 mSv/min	0,54 mSv/min	3,26E+01	
Hp(10)	1,89 mSv/min	0,63 mSv/min		

Les valeurs de débits derrière l'écran sont ainsi données avec et sans build-up. Il est rappelé que la norme NF C15-160 ne tient pas compte du build-up.

3) CALCUL DANS LE FAISCEAU DIFFUSE PAR UN ECRAN

On peut calculer le débit de dose générée par le rayonnement diffusé dans l'écran placé dans le faisceau primaire :

Après avoir cliqué sur « Calcul de diffusion », des champs de saisie apparaissent. Les informations complémentaires demandées sont :

- L'angle de diffusion
- La distance par rapport au centre de l'écran
- La surface de l'écran

Remarque : conformément au schéma, un angle nul correspond à des rayons X rétrodiffusés vers l'arrière.

Attention : le calcul de diffusion ne fonctionne pas si l'écran choisi est le multi-écran

Le calcul s'effectue suivant deux modes :

MODE « RAPIDE »: décliquer pour spectre de diffusion (calcul plus long)

Dans ce mode le calcul prend en compte l'énergie moyenne du spectre incident (primaire). Dans ce mode il n'est pas réaliste de calculer l'atténuation au travers d'un écran et l'on ne peut naturellement déterminer le spectre X de diffusion

Dans ce mode le calcul s'effectue en prenant en considération le spectre complet.

Comme pour l'effet de ciel, le facteur de diffusion en dose est le rapport de la dose diffusée à la dose dans le primaire <u>devant l'écran (calcul initial sans écran dans le primaire)</u>. Ce terme correspond au facteur k de la norme lorsqu'il est calculé avec des distances anode-diffuseur et diffuseur–point dose égales à 1 m.

Cette méthode nécessite un temps de calcul plus long, mais il est plus précis et surtout il permet d'obtenir dans un premier temps le spectre diffusé (en vert ci-dessous) ou l'on constate une baisse en énergie du à l'effet Compton.

Attention : la surface du spectre diffusé n'est pas à l'échelle du spectre primaire, car il est souvent beaucoup plus faible. Le spectre présenté ici est zoomé pour pouvoir être vu.

Le calcul des grandeurs radiométriques autres que le kerma air est possible au choix :

Résultats complémentaires
✓ Calcul de H*(10)
Calcul de Hp(10)
🗌 Calcul de H'(0,07)
Calcul de Hp(3)
Attention augmente le temps de calcul

_		
-	Kerma	21,23E+00 nGy/h
	H*(10)	36,95E+00 nSv/h
Ξ	H'(0,07)	00,00E+00 nSv/h
_	Hp(10)	00,00E+00 nSv/h
	Hp(3)	00,00E+00 nSv/h

Dans ce mode « lent » il est possible de mettre en place un écran sur le trajet du diffusé :

Ecran de protection sur diffusé

Et d'obtenir :

- les valeurs de dose derrière cet écran
- Le coefficient de diffusion avec écran
- Le facteur d'atténuation (Fs) de cet écran sur le trajet du diffusé

On notera que le facteur d'atténuation pour un même écran est plus élevé pour le diffusé que pour le primaire, en raison d'un spectre d'énergie plus basse.

Le spectre diffusé présenté sur le graphe est le spectre derrière l'écran, contrairement au spectre primaire, toujours donné devant l'écran.

On constate sur l'exemple donné ici le durcissement du spectre au travers du plomb. Rappelons que ce spectre est normalisé afin de pouvoir être vu.

edp sciences

III.3 MODE « FEUILLE DE CALCUL NF C15-160 »

Dans ce mode, l'application effectue les calculs de dimensionnement de l'écran de protection à mettre en place en équivalent plomb sur une paroi d'une installation comportant des générateur de rayon X fonctionnant sous une tension inférieure à 600 kV.

Pour cela, après avoir sélectionné l'option de calcul selon la Norme NF C15-160, vous devrez renseigner au maximum 6 onglets.

Génér	ateur X sélection	X	
0	Calcul débit de dose	• Feuille de calcul NF C15-160	
	Valid	er choix	

A. ONGLET « ACTIVITÉ & LOCAL ADJACENT »

•

Cet onglet propose, après saisie de l'activité et du domaine d'emploi, une valeur de charge de travail W indicative donnée par la norme NF C15-160.

- Pour un appareil fonctionnant par impulsion, cette charge se calcule selon :
 - W=I(mA)×Nbre de pulse/semaine×Durée du pulse(s)
- Pour un appareil fonctionnant en continu, cette charge se calcul selon :
 - W = I(mA) × Nbre d'utilisation/semaine × temps d'utilisation (s)

Cette valeur est ajustable par l'opérateur en fonction de sa charge réelle de travail.

La nature du local et la nature et épaisseur de la paroi permettent ensuite de définir le taux d'occupation T ainsi que la protection équivalente de plomb déjà en place pour déterminer le dimensionnement de la protection complémentaire.

Les matériaux proposés pour les cloisons présentent quelques différences suivant le mode de calcul utilisé.

((Voir onglet F)

En cliquant sur le bouton « Ecran équiv. » vous pouvez déterminer l'épaisseur équivalente de plomb d'un écran donné, <u>selon les critères de la norme uniquement</u>. Exemple :

Calcul d'équivalent d'écran	X
Détermination se	lon NFC 15 160
HT utilisation (kV)	120
Cloison	Epaisseur (mm)
Platre 🔻	100
Calcul Epaisseur de Pb é 0.2	er quivalente (mm)

Dans cet onglet, l'opérateur doit également saisir la valeur de débit d'équivalent de dose (au sens de la norme) à atteindre derrière la protection. Ce débit d'équivalent de dose s'exprime en mSv/semaine. La valeur correspondant à une limite de zone surveillée correspond à 0,02 mSv/semaine. Par défaut si aucune valeur n'est saisie dans cet onglet l'application retiendra la valeur de 0,02 mSv/semaine.

Générateur X	
Activité & local adjacent	Générateur X Impact du au rayonnement primaire Impact du au rayonnement diffusé Impact du au rayonnement de fuite Résultats
	té
	Domaine d'activité Medical -
	Application imagerie radiologique générale avec scopie et graphie
	Charge de travail 400 mA.min / Semaine (voleur indicative NFC 15-160)
	Caractéristique du local où doit être déterminée la protection
	Nature du local Autre 🔍 Cloison Beton cellulaire V Epaisseur (mm) 26 Ecran équiv.
	✓ Local exposé par le rayonnement primaire
	✓ Local exposé par le rayonnement diffusé et le rayonnement de fuite
	Facteur d'occupation du local 1 (valeur indicative NFC 15-160)
	Hmax (mSv/sem) 0,02

Si le local, pour lequel doit être déterminé la protection, est exposé par du rayonnement primaire, l'opérateur devra cocher la mention : *Local exposé par le rayonnement primaire*

Si le local est exposé par du rayonnement diffusé et de fuite, cocher l'option correspondante.

L'exposition au rayonnement primaire n'exclut pas l'exposition au rayonnement de fuite ou diffusé, malgré que celui-ci soit vraisemblablement prédominant.

B. ONGLET « GÉNÉRATEUR X »

Les informations saisies dans cet onglet serviront principalement au calcul du rendement Γ_x associé au générateur X. Il faut pour cela saisir la valeur de la haute tension d'utilisation (HT en kV) et les caractéristiques de la filtration (nature et épaisseur en **mm**).

valade unquement pour H1 nominal = 50kV, 75kV, 100 kV, 125 kV ou 150 k voir fig. 7 NF ct5-160		Alimentation HT utilisation (kV)	HTnominal (kV)	50 HT utilisation < HT nominal impacte le	facteur f (rayonnement de fuite)
Filtration inhérente Nature Aluminium				valable uniquement pour H1 nominal = voir fig. 7 NF c15-160	50KV, 75KV, 100 KV, 125 KV 60 150 KV
Filtration inhérente Nature Aluminium •	-				
Filtration inhérente Nature Aluminium					
Filtration inhérente Nature Aluminium		The second secon			
Filtration inhérente Nature Aluminium					
Nature Additional		C - mm		Filtration inhérente	ii ma
		I Man		Nature	
Epaisseur 2 mm				Epaisseur 2	mm

La norme NF C 15-160 impose des hautes tensions nominales et d'utilisation comprises entre 50 kV et 600 kV. Des messages s'affichent en cas de dépassement.

Microsoft Excel 🛛 🔀
Cette application est utilisable pour les HT inférieure à 600kV
ОК

Microsoft Excel	X
Cette application est utilisable pour les HT supérieure à 50kV, cette valeur sera retenue pour votre configuration de calc	:ul.
OK	

Une utilisation à une tension inférieure à la tension nominale du générateur X permets de limiter le risque d'exposition en diminuant le paramètre de fuite **f** (*cf norme NF C 15-160 § 4.2.6 et figure 7*), il est donc préférable de saisir la valeur vrai de la tension nominale. Si celle-ci est identique à la tension d'utilisation saisissez la même valeur que dans HT utilisation.

Alimentation			
HT utilisation (kV)	120	HTnominal (kV)	150/
,		,	

Remarque : lorsque vous saisissez la valeur de la tension d'utilisation, cette valeur est recopiée par défaut dans le champ de saisie « HT nominal ». Si vous ne connaissez pas la valeur nominale, le facteur f sera pris égal à 1. Si vous rentrez la valeur connue de la HT nominale, toujours supérieure, le facteur **f** sera calculé en conséquence et affiché dans la feuille de calcul.

C. ONGLET « IMPACT DU AU RAYONNEMENT PRIMAIRE »

Si le local où doit être déterminée la protection est concerné par ce type de rayonnement (option préalablement sélectionnée dans l'onglet « *Activité & local adjacent* ») cet onglet sera alors visible, l'opérateur aura uniquement à saisir la distance **en mètre** séparant le générateur X du point de mesure considéré, cette distance est notée « a » s'exprime en mètre.

D. ONGLET « IMPACT DU AU RAYONNEMENT DIFFUSÉ »

Si le local où doit être déterminée la protection est concerné par ce type de rayonnement (option préalablement sélectionnée dans l'onglet « *Activité & local adjacent* ») cet onglet sera alors visible, l'opérateur aura à saisir la distance « b » séparant le générateur X de l'élément radiographié et la distance « c » séparant l'objet radiographié du point de mesure considéré. Ces distances s'expriment en mètre.

E. ONGLET « IMPACT DU AU RAYONNEMENT DE FUITE »

Si le local où doit être déterminée la protection est concerné par ce type de rayonnement (option préalablement sélectionnée dans l'onglet « *Activité & local adjacent* ») cet onglet sera alors visible, l'opérateur aura à saisir la distance « c » séparant le générateur X du point de mesure considéré. De son côté l'application propose en fonction des données préalablement saisies par l'opérateur (haute tension et nature de l'application) les valeurs indicatives de rendement de rayonnement de fuite (Cg¹), ainsi que la valeur « Q » correspondant au produit de l'intensité maximum d'alimentation du générateur X par le temps maximum d'utilisation par heure. Ces données indicatives données par la norme NF C 15-160 sont modifiables si nécessaire par l'opérateur.

¹ Outre les exceptions liées au domaine d'utilisation, la valeur de Cg est égale à 1 pour toutes les HT≤150kV

F. ONGLET « RÉSULTATS »

Après avoir rentré toutes les données nécessaires, les calculs s'effectuent à partir de cet onglet et présentent les résultats dans un tableau intégré à la boite de dialogue. Il est possible de modifier les paramètres d'entrés et relancer les calculs sans sortir de la boite de dialogue. Les mêmes résultats sont reportés sur la feuille de synthèse.

Secteur d'activi	ité :	Medical		Calcul effectu	é par :	DOSIMEX	
Domaine	: ima	gerie radiologiqu	e générale	Date	:	06/10/2013 19:16:	07
Appareil :				Appareil			
HT utilisée (kV)	:	120		Local adjacent	: :	Couloir	
Filtration	:	Aluminium 2mr	n	T occupation	:	0.2	
Γ _R (mGy.m2/m	in/mA) :	1.15E+01		Paroi	: Bet	on cellulaire E	quivalent Pb
Largeur Faiscea	au I (cm) :			Epaisseur (mn	n) :	100	0.2
W (mA.min/se	m) :	400		Hmax (mSv/se	em) :	0,02	
Ravonnement	I	3		а	Hp×T (mSv/sem)	Fp	X _{Pb}
primaire		1 🗸		1	9.20E+02	4.60E+04	3.5
Rayonnement	k (m2)	b		d	Hs×T (mSv/sem)	Fs	Хрь
diffusé	0.0025	1		1	2.30E+00	1.15E+02	1.2
Rayonnement	f	с	Q	Cg	Hg×T (mSv/sem)	Fg	X _{Pb}
de fuite	0.49	1	180	1	2.18E-01	1.09E+01	0.98
	Epaisse	ur équivalente	de protection d	e plomb calculé	e (mm)		3.5
	Epaisseu	ir équivalente c	le protection d	e plomb à ajout	er (mm)		3.3

La feuille de résultat propose 3 modes de calculs :

En changeant le mode de calcul, la liste des matériaux cloisons est modifiée. Votre choix initial est alors annulé. Le code vous demande alors de redéfinir le matériau cloison

OPTION » NF C 15-160(03-2011) NF C15-160 (03-2011)

L'option NF C 15-160 propose un calcul rigoureusement conforme à la norme, en mettant en œuvre une méthode de calcul de type abaque. Le choix de cette méthode garantit la validité des résultats vis-à-vis de la norme. Par contre elle ne donnera aucun résultat si certains paramètres sont en dehors de la norme, comme par exemple un coefficient d'atténuation supérieur à 10 000, conformément à la figure 8 de la NF C15-160.

♦ OPTION METHODE ALTERNATIVE
 Methode alternative*

Dans cette option, la méthode reste une méthode de calcul de type « abaque », mais la règle de calcul de l'écran équivalent pour le diffusé et le rayonnement de fuite est modifié. Cette règle alternative propose un calcul plus fin pour la composition des écrans (*voir détails dans §III.3*). L'application d'une telle règle ne déroge pas à l'arrêté **Arrêté du 22 août 2013**

OPTION DOSIMEX
 Dosimex

Dans cette option, le calcul s'appuie sur des grandeurs (rendement, atténuation) calculées à partir d'une modélisation physique, identique à celle utilisée dans l'option « calcul débit de dose ». Les résultats obtenus sont en général très peu différents des résultats obtenus avec les options précédentes. Mais elle a l'avantage de ne pas être limitée aux valeurs tabulées dans la norme. (*Voir détails dans §III.4*)

Dans cet onglet l'opérateur pourra saisir les informations relatives à l'appareil utilisé et à la personne effectuant les calculs. Dans le cas de l'option « *scanner* » (onglet 1), vous devrez également saisir la largeur du faisceau en **cm.**

ACTIVATION CALCULS

Lancer calcul

L'application détermine dans un premier temps les facteurs d'atténuation correspondant à chacun des modes d'exposition :

- Facteur **F** pour le primaire
- Facteur **F**, pour le diffusé
- Facteur **F**_g pour le rayonnement de fuite

Puis détermine les valeurs des épaisseurs nécessaires de plomb pour obtenir le débit de dose Hmax de consigne (onglet 1):

- épaisseur **e**_n (en **mm**) pour la protection contre le primaire
- épaisseur **e**, (en **mm**) pour la protection contre le diffusé
- épaisseur **e**_g (en **mm**) pour la protection contre le rayonnement de fuite

A partir des valeurs \mathbf{e}_{s} et \mathbf{e}_{g} l'application détermine l'épaisseur résultante de protection contre le rayonnement de fuite plus le rayonnement diffusé, conformément à la règle des épaisseurs préconisée par la norme (§ 4.2.8). En fonction de la nature de la paroi déjà présente et de son niveau de protection, si celle-ci est référencée selon la NF C15160, l'application détermine alors **l'épaisseur équivalente de plomb à rajouter.**

r X	Impact du au	ravonnement prin	aire I Impact du a	u ravonnement diffi	isé Ì Impact du au	ravonnemer	nt de fuit	e Résultats	And Annu
lodèle de ca	leul					_			
• NF C15-160	0 (03-2011)	C Metho	ode alternative*	C Do	simex		Lanc	er calcul	
Secteur d'activité		Media	al	Calcul effectu	énar :		DOS	SIMEY	
Domaine	: im	agerie radiologi	que générale	Date	:	20/	/09/201	13 13:43:36	
Appareil :			Арр	oareil					
HT utilisée (kV) Filtration	:	120 Aluminium 2	.5mm	Local adjacent	:	Autr	e		
Γ _R (mGy/min/mA)	:	1.15E+0	1	Paroi	. Beton o	ellulaire	Eq	juivalent Pb	
Largeur Faisceau I (c	cm) :			Epaisseur (mn	ו) : 2	26		0	
W (mA.min/sem)	:	400		Hmax (mSv/se	em) : 0,	02			
Rayonnement	R			a	Hp×T (mSv/sem)	Fp	.04	X _{Pb}	
primare	1	_			1.150+05	5.750		5.0	
Rayonnement	k (m2)	b		d	Hs×T (mSv/sem)	Fs		X _{Pb}	
diffusé 0	0.0025	0,8	5	5	7.19E-01	3.60E4	-01	0.8	
Rayonnement	f	c	Q	Cg	Hg×T (mSv/sem)	Fg		X _{Pb}	
de fuite	0.49	3	180	1	1.21E-01	6.05E4	+00	0.74	
	Epaisseur	équivalente o	le protection d	e plomb calculé	e (mm)			3.6	
	Epaisseur	équivalente d	e protection de	e plomb à ajout	er (mm)		(3.6)
				Imprimer les résu	ltats	Déclare	er une i	imprimante pa	r défaut

Pour la validation des épaisseurs d'écran calculées dans cette option voir § IV.2

III.4 Regle des epaisseurs dans la méthode alternative :

III.4.1 LA REGLE DES EPAISSEURS USUELLE NF C 15-160

Dans le cas d'exposition aux seuls rayonnements de fuite et diffusés, la règle dite des épaisseurs demi / dixième actuellement prescrite par la norme (NFC15 160/04/2011 §4.2.8) peut entrainer des contraintes de surdimensionnement des protections biologiques. L'application propose donc un second modèle de calcul dit « Méthode alternative » basé sur la ÖNORM S5212 (10/2005).

Exemple d'application transmise par des experts du domaine :

Considérons un générateur X de 100 kV utilisé sous une HT de 100 kV avec une filtration de 2,5 mm d'aluminium. La charge de travail associé à l'utilisation de ce générateur X est de 4mA.min/semaine. Nous cherchons à définir la protection à mettre en place sur une paroi d'un local située à 1,9 m du diffuseur et de la zone de fuite du générateur X. Le matériau diffuseur est quant à lui situé à 70 cm du foyer focal. Ce local doit faire l'objet d'un zonage « Publique » et est considéré comme toujours occupé.

Secteur d'activi	ité :	Vétérin	aire	Calcul effectue	é par :	DO	SIMEX
Domaine	:	Imagerie radi	ologique	Date : 07/10/20			13 22:51:50
Appareil :			Арр	oareil			
HT utilisée (kV)	:	100		Local adjacent	Local adjacent : Autre		
Filtration	:	Aluminium 2	2,5mm	T occupation	: 1		
Γ_{R} (mGy/min/n	nA) :	8.91E+0	0	Paroi	: Plo	imb Ec	uivalent Pb
Largeur Faisceau I (cm) :			Epaisseur (mn	n) :	0	0	
W (mA.min/se	m) :	4		Hmax (mSv/se	em) : o,	02	
Ravonnement	I	R		а	Hp×T (mSv/sem)	Fp	X _{Pb}
primaire	1 -		-		-	•	•
Rayonnement	k (m2)	b		d	Hs×T (mSv/sem)	Fs	X _{Pb}
diffusé	0.0022	0,7	1,	,9	4.43E-02	2.22E+00	0.2
Rayonnement	f	с	Q	Cg	Hg×T (mSv/sem)	Fg	X _{Pb}
de fuite	1	1,9	180	1	6.16E-03	3.08E-01	0
	Epaisseur équivalente de protection de plomb calculée (mm)						0.47
	Epaisseu	ir équivalente d	le protection de	e plomb à ajout	er (mm)		0.47

L'application stricte de la NFC15160 conduit au résultat suivant :

La valeur de protection à mettre en place devrait être de 0,2 mm d'équivalent de plomb, mais en raison de la règle du demi / dixième (cf NF C15-160 §4.2.8), la valeur final défini sera de 0,5 mm d'équivalent de plomb.

III.4.2 MÉTHODE ALTERNATIVE POUR LA RÈGLE DES ÉPAISSEURS

Methode alternative*

L'application	de la métho	de alternati	ve nous con	duit à :			
Secteur d'activ	ité :	Vétérin	aire	Calcul effectu	é par :	DO	SIMEX
Domaine	:	Imagerie radi	ologique	Date	:	07/10/201	13 22:51:50
Appareil :			Арр	oareil			
HT utilisée (kV)) :	100		Local adjacent	: :	Autre	
Filtration	:	Aluminium 2	2,5mm	T occupation	: 1	L	
Γ _R (mGy/min/r	mA) :	1.05E+0)1	Paroi	: Plo	omb Eq	juivalent Pb
Largeur Faiscea	eur Faisceau I (cm) : Epaisseur (mm			n) :	0	0	
W (mA.min/se	W (mA.min/sem) : 4 Hmax (mSv/sem)				em): o,	02	
Ravonnement	F	2		а	Hp×T (mSv/sem)	Fp	X _{Pb}
primaire		1 💌	-		•	-	-
Rayonnement	k (m2)	b		d	Hs×T (mSv/sem)	Fs	X _{Pb}
diffusé	0.0022	0,7	1,	,9	5.22E-02	2.61E+00	0.2
Rayonnement	f	с	Q	Cg	Hg×T (mSv/sem)	Fg	X _{Pb}
de fuite	1	1,9	180	1	6.16E-03	3.08E-01	0
Epaisseur équivalente de protection de plomb calculée (mm)							0.23
Epaisseur équivalente de protection de plomb à ajouter (mm)							0.23

Donc finalement 0,3 mm d'équivalent de plomb.

Si, pour l'essentiel, les calculs liés à cette méthode alternative sont strictement similaires à ceux préconisés par la NFC15160, la règle des épaisseurs demi / dixième est ici remplacée selon le principe suivant :

Soit e_s et e_g les épaisseurs minimales de plomb vis-à-vis respectivement du rayonnement diffusé et du rayonnement de fuite

A. SI UNE DES ÉPAISSEURS DES ÉCRANS DE PROTECTION, E_s OU E_g, EST NULLE

Il convient de calculer le rapport des facteurs d'atténuation F_s et F_g en divisant le plus élevé par le plus petit. Dans ce cas l'épaisseur de protection nécessaire est égale à l'épaisseur non nulle à laquelle on ajoute la valeur conformément au tableau suivant :

Rapport F _s /F _g ou	Haute Tension (kV)								
F _g /F _s	50	75	100	110	125	150	200	250	300
de 1 à 2	0,06	0,17	0,27	0,27	0,28	0,30	0,52	0,88	1,47
>2 à 4	0,03	0,09	0,13	0,14	0,14	0,15	0,21	0,43	0,85
>4 à 8	0,01	0,04	0,06	0,07	0,07	0,07	0,11	0,22	0,43
>8 à 16	0,01	0,02	0,03	0,03	0,03	0,04	0,05	0,11	0,21
>16	0	0	0	0	0	0	0	0	0

B. SI LES DEUX ÉPAISSEURS DES ÉCRANS DE PROTECTION, $E_{\rm S}$ et $E_{\rm G}$, sont nulles

On calcule $F = F_s + F_g$.

- Si $F \le 1$, il n'est pas nécessaire de rajouter une épaisseur de protection supplémentaire.
- Si F > 1, l'épaisseur de protection supplémentaire nécessaire est obtenue à partir de la courbe relative au facteur d'atténuation F_g. de la NFC15 160 (fig 8, ci-dessous) :

C. SI LES PROTECTIONS E_s ET E_g SONT NON NULLES

Si les épaisseurs des écrans de protection, es et eg, sont non nulles, il convient de calculer un facteur n selon la formule suivante, avec h la hauteur de demi-transmission dans le plomb pour un rayonnement fortement filtré (fig 8) :

$$n = \frac{|e_s - e_g|}{h}$$

- Si n > 4, alors la plus grande des valeurs de e_s ou e_g est retenue.
- Si n ≤ 4, une épaisseur de protection supplémentaire doit être ajoutée à la plus grande des deux valeurs, conformément au tableau 7.

n		Haute Tension (kV)							
(voir 4.2.8)	50	75	100	110	125	150	200	250	300
0 à 1	0,06	0,17	0,27	0,27	0,28	0,30	0,52	0,88	1,47
>1 à 2	0,03	0,09	0,13	0,14	0,14	0,15	0,21	0,43	0,85
>2 à 3	0,01	0,04	0,06	0,07	0,07	0,07	0,11	0,22	0,43
>3 à 4	0,01	0,02	0,03	0,03	0,03	0,04	0,05	0,11	0,21
>4	0	0	0	0	0	0	0	0	0

III.5 MODE DE CALCUL « DOSIMEX »

Le mode de calcul selon Dosimex met en œuvre une méthode physique de détermination du rendement du générateur X :

Dosimex

- détermination du spectre continu de freinage
- filtration de ce spectre en fonction de l'énergie
- calcul des débits de fluence en fonction de l'énergie au point considéré
- utilisation des coefficients fluence-équivalent de dose règlementaire

Ce modèle permet des calculs selon les principes de la NFC15160 de mars 2011 ainsi que selon le modèle ÖNORM S5212 pour la règle des épaisseurs. Mais n'étant pas de type « abaque », il devient possible de prendre en compte toutes les valeurs souhaitées. Il est par exemple possible d'effectuer un calcul sans filtration inhérente, alors que celle-ci est obligatoire dans le mode « norme ». Autre exemple, la norme NFC15160 ne référence pas le cas d'un générateur X de 200 kV avec une filtration de 5 mm d'aluminium, le calcul selon la NFC15160 vous proposera alors un calcul selon le modèle DOSIMEX.

Microsoft Excel	×
Valeur de rendement non référencée, sélectionner l'option 'calcul ph DOSIMEX'.	nysique selon
	ОК

Enfin, dans certain cas de figure, vous devrez combiner l'utilisation du mode NFC15160 et du mode calcul direct. En effet les courbes de facteur d'atténuation utilisée pour définir les épaisseurs d'écran à mettre en œuvre pour diminuer l'impact radiologique lié au rayonnement primaire et aux rayonnements diffusés sont limitées (exemple facteur d'atténuation maximum tabulé pour un générateur X de 250 kV est de 10⁵).

Déterminons la protection pour un générateur X avec filtration de 0,5 mm de cuivre utilisé à des fins industrielles avec une charge de travail de 9000 mA.min/semaine. La paroi à protéger est exposée au rayonnement primaire et est située à 3 mètres du générateur X.

Dans cette configuration l'application vous affichera le message suivant :

Microsoft Excel
Attention l'épaisseur d'écran définie pour le rayonnement primaire de cette configuration est hors du domaine de la NFC15 160. Notez la valeur de l'atténuation requise et faite une recherche en mode [calcul débit de dose]
OK

Dans ce cas de figure relevez la valeur du facteur d'atténuation **Fp** à atteindre indiqué sur la feuille de résultats (ici 1,55E6).

Secteur d'activi	té :	Industr	iel	Calcul effectu	é par :	DOS	SIMEX
Domaine	:	Imagerie radi	iologique	Date	:	20/09/201	3 20:55:40
Appareil :			Арр	oareil			
HT utilisée (kV)	:	250		Local adjacent	t :	Autre	
Filtration	:	Cuivre 0,5	imm	T occupation	:	1	
Γ _R (mGy/min/n	nA) :	3.10E+0)1	Paroi	: Pl	atre Eq	uivalent Pb
Largeur Faiscea	u I (cm) :			Epaisseur (mn	n) : :	26	-
W (mA.min/ser	m) :	9000		Hmax (mSv/se	em) : o	,02	
Ravonnement	I	R		а	Hp×T (mSv/sem)	Fp	X _{Pb}
primaire		1 🔻	3	3	3.10E+04	1.55E+06	-
Rayonnement	k (m2)	b		d	Hs×T (mSv/sem)	Fs	X _{Pb}
diffusé	•	-	-	·	-	-	-
Rayonnement	f	с	Q	Cg	Hg×T (mSv/sem)	Fg	X _{Pb}
de fuite	1	-	-	-	-	-	-
	Epaisseur équivalente de protection de plomb calculée (mm)						-
	Epaisseu	ur équivalente d	le protection de	e plomb à ajout	er (mm)		-

Effectuez alors un calcul dans le mode « calcul de débit de dose ».

Saisissez les données relatives à votre générateur X et sélectionner un écran de plomb, faire varier l'épaisseur d'écran jusqu'à obtenir un facteur d'atténuation correspondant à celui désiré. Dans ce cas de figure vous obtenez 13,33 mm d'équivalent de plomb.

Partie IV. ANNEXE SUR LES PRODUITS DE FISSION COMBUSTIBLES UOX ET MOX

Ces données ont été fournies par Gilles BAROUCH, du Service de Protection Radiologique du CEA/ Cadarache

IV.1 PRINCIPES DE CALCULS

OBJECTIFS : Evaluer les débits d'équivalent de dose générés par des combustibles type UOX et MOX après irradiation et refroidissement.

DONNEES INITIALES : Deux types de combustibles REP ont été étudiés, un UOX et un MOX, pour lesquels on considère les spectres isotopiques initiaux suivants :

Proportions massiques types UOX					
U234 %	U 235 %	U 238 %			
0,05 %	4,95 %	95,00 %			

Proportions massiques types MOX							
Pu238	Pu238 Pu239 Pu240 Pu241 Pu242 Am241						
1,62 %	58,16 %	22,43 %	11,10 %	5,59 %	1,10 %		

IV.2 METHODE DE CALCUL

✓ Phase 1 : calcul d'irradiation neutronique à 99 groupes effectué avec le code APOLLO1

Dans les deux cas, des campagnes d'irradiation de 10 GWj/t suivies d'un arrêt de 90 jours ont été simulées jusqu'à obtenir :

- o 120 GWj/tonne pour l'UOX
- o 90 GWj/tonne pour le MOX
- Phase 2 : calcul de refroidissement à 6 mois, 1 an, 3 ans puis enfin 5 ans à l'aide du code d'évolution CESAR-4 p

IV.3 RESULTATS COMBUSTIBLE UOX

UOX - Activité totale des produits de fission (TBq/tonne)							
		(1/2)					
ISOTOPE	Refr 6 mois	Refr 1 an	Refr 3 ans	Refr 5 ans			
ZN 72	2,95E-29	0,00E+00	0,00E+00	0,00E+00			
GA 72	4,24E-29	0,00E+00	0,00E+00	0,00E+00			
AS 77	6,41E-33	0,00E+00	0,00E+00	0,00E+00			
SE 79	2,22E-03	2,22E-03	2,22E-03	2,22E-03			
BR 82	1,77E-35	0,00E+00	0,00E+00	0,00E+00			
KR 85	7,29E+02	7,06E+02	6,20E+02	5,45E+02			
RB 86	2,02E-01	2,34E-04	3,77E-16	6,31E-28			
RB 87	2,15E-06	2,15E-06	2,15E-06	2,15E-06			
SR 89	1,52E+03	1,25E+02	5,50E-03	2,45E-07			
SR 90	6,48E+03	6,41E+03	6,11E+03	5,82E+03			
Y 90	6,48E+03	6,41E+03	6,11E+03	5,83E+03			
Y 91	3,11E+03	3,61E+02	6,25E-02	1,10E-05			
ZR 93	1,95E-01	1,95E-01	1,95E-01	1,95E-01			
ZR 95	6,84E+03	9,52E+02	3,46E-01	1,27E-04			
NB 93M	4,74E-02	5,05E-02	6,22E-02	7,29E-02			
NB 95	1,35E+04	2,07E+03	7,69E-01	2,83E-04			
MO 99	6,53E-16	7,91E-36	0,00E+00	0,00E+00			
TC 99	1,45E+00	1,45E+00	1,45E+00	1,45E+00			
TC 99M	6,25E-16	7,58E-36	0,00E+00	0,00E+00			
RU103	3,08E+03	1,25E+02	3,19E-04	8,31E-10			
RU106	2,74E+04	1,95E+04	4,98E+03	1,28E+03			
RH103M	3,07E+03	1,25E+02	3,19E-04	8,30E-10			
RH105	2,50E-33	0,00E+00	0,00E+00	0,00E+00			
RH106	2,74E+04	1,95E+04	4,98E+03	1,28E+03			
PD107	2,15E-02	2,15E-02	2,15E-02	2,15E-02			
AG108M	1,21E-06	1,21E-06	1,20E-06	1,20E-06			
AG110M	6,52E+03	3,94E+03	5,18E+02	6,84E+01			
AG111	3,59E-04	1,59E-11	0,00E+00	0,00E+00			
CD113	1,67E-15	1,67E-15	1,67E-15	1,67E-15			
CD113M	7,51E+00	7,33E+00	6,62E+00	5,97E+00			
CD115	7,55E-23	0,00E+00	0,00E+00	0,00E+00			
CD115M	6,08E+00	3,59E-01	4,18E-06	4,95E-11			
IN115	5,31E-13	5,32E-13	5,32E-13	5,32E-13			
SN121	1,01E-01	1,01E-01	9,81E-02	9,57E-02			
SN121M	1,31E-01	1,30E-01	1,26E-01	1,23E-01			
SN123	2,15E+01	8,09E+00	1,60E-01	3,19E-03			
SN125	7,01E-04	1,45E-09	2,17E-32	0,00E+00			
SN126	9,96E-02	9,96E-02	9,96E-02	9,96E-02			
SB122	6,44E-19	0,00E+00	0,00E+00	0,00E+00			
SB124	1,65E+01	2,03E+00	4,50E-04	1,01E-07			
SB125	5,64E+02	4,98E+02	3,02E+02	1,83E+02			
SB126	1,01E-01	9,96E-02	9,96E-02	9,96E-02			

UOX - Activité totale des produits de fission (TBq/tonne)							
		(1/2)					
ISOTOPE	Refr 6 mois	Refr 1 an	Refr 3 ans	Refr 5 ans			
SB127	2,20E-11	1,29E-25	0,00E+00	0,00E+00			
TE123	5,48E-13	6,35E-13	6,81E-13	6,82E-13			
TE123M	4,08E+00	1,42E+00	2,06E-02	3,01E-04			
TE125M	1,29E+02	1,15E+02	6,98E+01	4,23E+01			
TE127	1,77E+02	5,57E+01	5,33E-01	5,14E-03			
TE127M	1,81E+02	5,68E+01	5,44E-01	5,24E-03			
TE129M	5,18E+01	1,21E+00	3,42E-07	9,87E-14			
TE132	6,78E-13	1,04E-29	0,00E+00	0,00E+00			
l 129	3,95E-03	3,95E-03	3,95E-03	3,95E-03			
l 131	5,73E-03	8,78E-10	3,75E-37	0,00E+00			
XE131M	3,34E-02	9,04E-07	4,01E-25	0,00E+00			
XE133	2,92E-06	1,05E-16	0,00E+00	0,00E+00			
XE133M	2,55E-22	0,00E+00	0,00E+00	0,00E+00			
CS134	2,51E+04	2,12E+04	1,08E+04	5,52E+03			
CS135	5,98E-02	5,98E-02	5,98E-02	5,98E-02			
CS136	5,51E-01	3,78E-05	7,19E-22	1,44E-38			
CS137	1,27E+04	1,25E+04	1,20E+04	1,14E+04			
BA137M	1,20E+04	1,19E+04	1,13E+04	1,08E+04			
BA140	2,88E+00	1,45E-04	8,01E-22	0,00E+00			
LA140	3,31E+00	1,67E-04	9,22E-22	0,00E+00			
CE141	1,14E+03	2,35E+01	3,99E-06	6,90E-13			
CE142	7,02E-12	7,02E-12	7,02E-12	7,02E-12			
CE143	4,31E-36	0,00E+00	0,00E+00	0,00E+00			
CE144	2,30E+04	1,48E+04	2,50E+03	4,23E+02			
PR143	4,81E+00	4,44E-04	2,78E-20	1,83E-36			
PR144	2,30E+04	1,48E+04	2,50E+03	4,23E+02			
ND144	2,38E-10	2,41E-10	2,46E-10	2,47E-10			
ND147	2,34E-01	2,42E-06	2,30E-26	0,00E+00			
PM147	5,31E+03	4,66E+03	2,75E+03	1,62E+03			
PM148	3,85E+00	1,82E-01	8,53E-07	4,08E-12			
PM148M	7,29E+01	3,43E+00	1,61E-05	7,71E-11			
PM149	3,16E-21	0,00E+00	0,00E+00	0,00E+00			
SM147	1,93E-07	2,09E-07	2,56E-07	2,84E-07			
SM148	8,80E-12	8,80E-12	8,80E-12	8,80E-12			
SM149	9,06E-13	9,06E-13	9,06E-13	9,06E-13			
SM151	2,53E+01	2,52E+01	2,48E+01	2,44E+01			
SM153	1,95E-24	0,00E+00	0,00E+00	0,00E+00			
EU152	1,07E+00	1,05E+00	9,42E-01	8,49E-01			
EU154	1,10E+03	1,06E+03	9,02E+02	7,70E+02			
EU155	5,32E+02	4,96E+02	3,75E+02	2,84E+02			
EU156	8,61E+00	2,13E-03	6,95E-18	2,37E-32			
TB160	2,47E+01	4,32E+00	3,91E-03	3,57E-06			
TB161	9,82E-07	1,16E-14	0,00E+00	0,00E+00			
HO166M	4,62E-03	4,62E-03	4,62E-03	4,61E-03			
ΤΟΤΑΙ	2,11E+05	1,42E+05	6,69E+04	4,64E+04			

UOX - Source gamma des produits de fission										
	(gamma/sec/tonne)									
GROUPE	Refroidi 6	Refroidi 1 an	Refroidi 3 ans	Refroidi 5 ans						
(keV)	mois									
10	4,78E+14	3,06E+14	5,80E+13	1,32E+13						
18	2,74E+11	2,56E+11	1,94E+11	1,46E+11						
25	3,39E+14	4,94E+13	6,65E+12	2,26E+12						
38	2,65E+15	1,87E+15	6,22E+14	3,23E+14						
53	4,48E+13	2,94E+13	1,25E+13	8,08E+12						
68	6,89E+10	4,73E+06	8,99E-11	1,80E-27						
88	4,92E+14	3,62E+14	1,51E+14	9,40E+13						
108	1,10E+14	1,03E+14	7,75E+13	5,86E+13						
135	3,56E+15	2,08E+15	6,43E+14	3,59E+14						
175	3,80E+13	3,34E+13	2,02E+13	1,23E+13						
250	9,39E+13	7,58E+13	6,18E+13	5,20E+13						
350	7,15E+12	4,76E+12	2,12E+12	1,09E+12						
425	4,97E+13	2,21E+13	5,23E+12	1,40E+12						
480	3,36E+15	6,28E+14	2,82E+14	1,56E+14						
555	1,17E+16	9,04E+15	3,60E+15	1,58E+15						
650	3,88E+16	3,38E+16	2,14E+16	1,53E+16						
750	4,20E+16	2,14E+16	9,43E+15	4,88E+15						
900	2,77E+15	2,35E+15	1,32E+15	7,92E+14						
1165	1,66E+15	1,35E+15	7,20E+14	4,53E+14						
1415	8,33E+14	6,89E+14	3,36E+14	1,69E+14						
1580	4,50E+13	2,98E+13	7,61E+12	1,95E+12						
1830	3,99E+13	2,37E+13	5,80E+12	1,48E+12						
2250	1,90E+14	1,23E+14	2,25E+13	4,25E+12						
2750	4,13E+12	2,86E+12	7,26E+11	1,85E+11						
3250	4,25E+11	3,02E+11	7,73E+10	1,98E+10						
TOTAL	1,09E+17	7,44E+16	3,88E+16	2,43E+16						

IV.4 RESULTATS COMBUSTIBLE MOX

MOX - Activité totale des produits de fission (TBq/tonne)				
(1/2)				
ISOTOPES	Refroidi 6 mois	Refroidi 1 an	Refroidi 3 ans	Refroidi 5 ans
ZN 72	2,81E-29	0,00E+00	0,00E+00	0,00E+00
GA 72	4,03E-29	0,00E+00	0,00E+00	0,00E+00
AS 77	6,00E-33	0,00E+00	0,00E+00	0,00E+00
SE 79	2,77E-02	2,77E-02	2,77E-02	2,77E-02
BR 82	8,90E-36	0,00E+00	0,00E+00	0,00E+00
KR 85	4,25E+02	4,11E+02	3,61E+02	3,18E+02
RB 86	6,83E-02	7,91E-05	1,28E-16	2,13E-28
RB 87	1,03E-06	1,03E-06	1,03E-06	1,03E-06
SR 89	1,44E+03	1,19E+02	5,21E-03	2,32E-07
SR 90	3,17E+03	3,14E+03	2,99E+03	2,85E+03
Y 90	3,17E+03	3,14E+03	2,99E+03	2,85E+03
Y 91	2,97E+03	3,44E+02	5,97E-02	1,05E-05
ZR 93	1,18E-01	1,18E-01	1,18E-01	1,18E-01
ZR 95	6,70E+03	9,33E+02	3,39E-01	1,25E-04
NB 95	1,32E+04	2,03E+03	7,53E-01	2,77E-04
MO 99	6,44E-16	7,80E-36	0,00E+00	0,00E+00
TC 99	1,28E+00	1,28E+00	1,28E+00	1,28E+00
TC 99M	6,16E-16	7,47E-36	0,00E+00	0,00E+00
RU103	3,02E+03	1,22E+02	3,13E-04	8,15E-10
RU106	2,94E+04	2,09E+04	5,35E+03	1,37E+03
RH103M	3,02E+03	1,22E+02	3,13E-04	8,14E-10
RH105	2,72E-33	0,00E+00	0,00E+00	0,00E+00
RH106	2,94E+04	2,09E+04	5,35E+03	1,37E+03
PD107	2,57E-02	2,57E-02	2,57E-02	2,57E-02
AG110M	7,14E+03	4,31E+03	5,67E+02	7,49E+01
AG111	2,85E-04	1,26E-11	0,00E+00	0,00E+00
CD113	1,33E-14	1,33E-14	1,33E-14	1,33E-14
CD113M	6,58E+00	6,41E+00	5,79E+00	5,23E+00
CD115	7,51E-23	0,00E+00	0,00E+00	0,00E+00
CD115M	5,54E+00	3,27E-01	3,81E-06	4,51E-11
IN115	1,10E-12	1,10E-12	1,10E-12	1,10E-12
SN121	2,09E+00	2,08E+00	2,03E+00	1,98E+00
SN121M	2,70E+00	2,68E+00	2,61E+00	2,55E+00
SN123	2,06E+01	7,75E+00	1,54E-01	3,06E-03
SN125	6,76E-04	1,40E-09	2,09E-32	0,00E+00
SN126	9,56E-02	9,56E-02	9,56E-02	9,56E-02
SB122	3,73E-19	0,00E+00	0,00E+00	0,00E+00
SB124	1,03E+01	1,27E+00	2,80E-04	6,27E-08
SB125	5,71E+02	5,04E+02	3,05E+02	1,85E+02
SB126	9,66E-02	9,56E-02	9,56E-02	9,56E-02
SB127	2,13E-11	1,26E-25	0,00E+00	0,00E+00
TE123	2,59E-13	2,88E-13	3,03E-13	3,03E-13

MOX - Activité totale des produits de fission (TBq/tonne)							
(2/2)							
ISOTOPES	Refroidi 6 mois	Refroidi 1 an	Refroidi 3 ans	Refroidi 5 ans			
TE123M	1,35E+00	4,72E-01	6,84E-03	9,99E-05			
TE125M	1,31E+02	1,16E+02	7,06E+01	4,28E+01			
TE127	1,74E+02	5,48E+01	5,24E-01	5,05E-03			
TE127M	1,78E+02	5,59E+01	5,35E-01	5,16E-03			
TE129M	5,05E+01	1,18E+00	3,34E-07	9,63E-14			
TE132	6,73E-13	1,03E-29	0,00E+00	0,00E+00			
l 129	3,64E-03	3,64E-03	3,64E-03	3,64E-03			
l 131	5,66E-03	8,67E-10	3,71E-37	0,00E+00			
XE131M	3,33E-02	9,00E-07	3,99E-25	0,00E+00			
XE133	2,90E-06	1,04E-16	0,00E+00	0,00E+00			
XE133M	2,54E-22	0,00E+00	0,00E+00	0,00E+00			
CS134	1,39E+04	1,17E+04	5,99E+03	3,06E+03			
CS135	1,12E-01	1,12E-01	1,12E-01	1,12E-01			
CS136	6,17E-01	4,24E-05	8,06E-22	1,61E-38			
CS137	9,87E+03	9,76E+03	9,32E+03	8,90E+03			
BA137M	9,35E+03	9,24E+03	8,83E+03	8,43E+03			
BA140	2,89E+00	1,46E-04	8,03E-22	0,00E+00			
LA140	3,33E+00	1,68E-04	9,25E-22	0,00E+00			
CE141	1,13E+03	2,33E+01	3,95E-06	6,85E-13			
CE142	4,87E-12	4,87E-12	4,87E-12	4,87E-12			
CE143	4,26E-36	0,00E+00	0,00E+00	0,00E+00			
CE144	2,29E+04	1,47E+04	2,48E+03	4,20E+02			
PR143	4,79E+00	4,43E-04	2,77E-20	1,82E-36			
PR144	2,29E+04	1,47E+04	2,48E+03	4,20E+02			
ND144	9,81E-11	1,01E-10	1,06E-10	1,06E-10			
ND147	2,29E-01	2,37E-06	2,25E-26	0,00E+00			
PM147	7,33E+03	6,43E+03	3,79E+03	2,23E+03			
PM148	7,53E+00	3,55E-01	1,67E-06	7,97E-12			
PM148M	1,42E+02	6,72E+00	3,16E-05	1,51E-10			
PM149	2,47E-21	0,00E+00	0,00E+00	0,00E+00			
SM147	2,65E-07	2,87E-07	3,52E-07	3,91E-07			
SM148	5,81E-12	5,81E-12	5,81E-12	5,81E-12			
SM149	3,40E-12	3,40E-12	3,40E-12	3,40E-12			
SM151	1,06E+02	1,06E+02	1,04E+02	1,03E+02			
SM153	1,24E-24	0,00E+00	0,00E+00	0,00E+00			
EU152	9,15E+00	8,92E+00	8,03E+00	7,24E+00			
EU154	1,56E+03	1,50E+03	1,28E+03	1,09E+03			
EU155	1,77E+03	1,65E+03	1,25E+03	9,46E+02			
EU156	1,94E+00	4,79E-04	1,56E-18	5,33E-33			
TB160	2,41E+01	4,20E+00	3,80E-03	3,47E-06			
TB161	7,83E-07	9,22E-15	0,00E+00	0,00E+00			
TOTAL	1,95E+05	1,27E+05	5,35E+04	3,47E+04			

MOX - Source gamma des produits de fission						
(gamma/sec/tonne)						
GROUPE	Refroidi 6 mois	Refroidi 1 an	Refroidi 3 ans	Refroidi 5 ans		
(keV)						
10	4,558E+11	3,246E+11	8,302E+10	2,127E+10		
18	4,420E+12	3,061E+12	7,790E+11	1,989E+11		
25	1,904E+14	1,240E+14	2,276E+13	4,320E+12		
38	3,921E+13	2,499E+13	6,225E+12	1,593E+12		
53	4,805E+13	3,196E+13	8,171E+12	2,093E+12		
68	5,257E+14	4,288E+14	2,034E+14	1,017E+14		
88	1,665E+15	1,368E+15	7,980E+14	5,574E+14		
108	2,163E+15	1,858E+15	1,154E+15	7,814E+14		
135	3,293E+16	1,400E+16	5,751E+15	3,035E+15		
175	2,665E+16	2,315E+16	1,489E+16	1,099E+16		
250	9,701E+15	7,276E+15	2,618E+15	1,059E+15		
350	3,164E+15	4,984E+14	2,174E+14	1,227E+14		
425	6,868E+13	2,435E+13	5,602E+12	1,494E+12		
480	7,922E+12	5,631E+12	3,311E+12	2,392E+12		
555	1,440E+14	1,164E+14	9,679E+13	8,223E+13		
650	3,841E+13	3,377E+13	2,047E+13	1,241E+13		
750	3,803E+15	2,331E+15	8,637E+14	5,492E+14		
900	2,064E+14	1,925E+14	1,454E+14	1,100E+14		
1165	6,343E+14	4,958E+14	2,536E+14	1,714E+14		
1415	7,725E+10	5,306E+06	1,008E-10	2,020E-27		
1580	6,149E+13	4,536E+13	2,543E+13	1,856E+13		
1830	2,684E+15	1,919E+15	6,969E+14	3,998E+14		
2250	3,367E+14	5,187E+13	8,085E+12	3,160E+12		
2750	5,158E+11	4,811E+11	3,637E+11	2,751E+11		
3250	4,652E+14	2,967E+14	5,375E+13	1,119E+13		
TOTAL	8,553E+16	5,428E+16	2,784E+16	1,801E+16		