Table des matières

1 Introduction générale, concepts et outils de base : statisti			rale, concepts et outils de base : statistique quan-		
	tiqu	ie et in	teractior	1	1
	1.1	Le gaz	z parfait o	de bosons : rappels et mise en bouche	3
		1.1.1	Dans l'e	ensemble grand-canonique	4
			1.1.1.1	Condensation par saturation des modes excités	5
			1.1.1.2	Signatures à un corps : profil de densité, fonction g_1	8
			1.1.1.3	Signatures à deux corps : fonction g_2 , fluctuations	
				géantes de n_0 , bruit de partition symétrique	12
		1.1.2	Dans l'e	ensemble canonique puis microcanonique	14
			1.1.2.1	Motivation expérimentale	14
			1.1.2.2	Élimination du mode du condensat et approxima-	
				tion du condensat jamais vide	15
			1.1.2.3	Fluctuations canoniques de \hat{N}_0 : premiers moments	
				et distribution de probabilité	16
			1.1.2.4	Fluctuations microcanoniques de \hat{N}_0	20
	1.2	Quel 1	nodèle p	our l'interaction	22
		1.2.1	Le prob	lème de la métastabilité, la solution par l'universa-	
			lité et la	discrétisation de l'espace	22
		1.2.2	Ce fil co	onducteur qu'est la matrice T	27
		1.2.3	La notio	on de longueur de diffusion dans l'onde <i>s</i>	29
			1.2.3.1	En dimension trois	29
			1.2.3.2	En dimensionalité réduite	31
	1.3	Ampli	itude de	diffusion, matrice <i>T</i> et lien avec les atomes froids	
		pourl	e modèle	e de Wigner-Bethe-Peierls d'une interaction de por-	
		tée nu	ılle		32
		1.3.1	En dim	ension trois	32
		1.3.2	En dim	ensionalité réduite	37
			1.3.2.1	Cas <i>d</i> = 2	37
			1.3.2.2	Cas <i>d</i> = 1	41
	1.4	L'inte	raction d	e contact la plus simple : le modèle sur réseau	43
		1.4.1	Dans l'e	espace réel discrétisé	43
		1.4.2	Dans l'e	espace des impulsions	45

		1.4.3	Matrice	<i>T</i> , constante de couplage nue et hamiltonien	46
2	Le r	égime	du conde	ensat pur : l'équation de Gross-Pitayevski	49
	2.1	Cas st	ationnaiı	re	52
		2.1.1	En dime	ension trois	52
			2.1.1.1	Une formulation variationnelle	52
			2.1.1.2	Cas $a > 0$ et longueur de relaxation ξ	53
			2.1.1.3	Cas $a < 0$ et instabilité par effondrement	54
			2.1.1.4	Cas piégé et limite de Thomas-Fermi	54
		2.1.2	En dime	ension deux	57
			2.1.2.1	Une invariance d'échelle critiquable	57
			2.1.2.2	Limite de Thomas-Fermi	59
		2.1.3	En dime	ension un : le soliton brillant	59
			2.1.3.1	Analyse critique de la constante de couplage	61
			2.1.3.2	Applications : équation d'état, limite de Thomas-	
				Fermi, soliton brillant et brisure d'invariance par	
				translation	62
			2.1.3.3	Ce que nous apprend l'ansatz de Bethe : forte ou	
				faible densité, condensat ou pas, soliton quantique.	
				chat de Schrödinger, transition liquide-gaz	64
		2.1.4	Complé	ment : condition de minimisation locale de l'énergie	69
	2.2	Applie	cations : o	condensats stationnaires avec des défauts de phase	73
		2.2.1	Une éau	ation enrichie par un terme de rotation	73
		2.2.2	En dime	ension un : soliton gris et seconde branche de Lieb	76
			2.2.2.1	Une formulation salvatrice	76
			2222	Intégrabilité de l'équation de Schrödinger non li-	
				néaire	78
			2223	À la limite thermodynamique	79
			2224	Obtention de la seconde branche de Lieb par l'éner-	10
			2.2.2.1	oje	80
			2225	Obtention de la seconde branche de Lieb par le	00
			2.2.2.0	dénhasage	81
			2226	Et dans le cas attractif?	83
		223	En dime	ension deux : condensate niégés tournants avec des	05
		2.2.0	tourbille	ons quantiques	84
			2231	Une fonction d'essai de Thomas-Fermi avec tour-	01
			2.2.3.1	billons	85
			2.2.3.2	Énergie moyenne de <i>n</i> tourbillons	87
			2.2.3.3	Discussion physique à Ω fixé	89
			2.2.3.4	Discussion physique à L_z fixé pour $n = 1$	92
			2.2.3.5	Ni des condensats au sens strict ni des superfluides	93
		2.2.4	En dime	ension trois : le tourbillon à ligne de cœur courbée .	95
				0	

		2.2.4.1	Un raisonnement simple par découpage en tran-
			ches
		2.2.4.2	Des prédictions à l'épreuve du numérique 9'
		2.2.4.3	À moment cinétique L_z fixé
2.3	Cas d	épendan	t du temps
	2.3.1	Forme of	de l'équation et de ses réductions dimensionnelles . 10
	2.3.2	Les équ	ations hydrodynamiques comme un équivalent de
		l'approx	kimation de Thomas-Fermi dans le cas dépendant
		du temp	ps, et comment les résoudre 10
		2.3.2.1	Obtention par passage en représentation phase-
			module
		2.3.2.2	Solution des équations hydrodynamiques 10
		2.3.2.3	En point de vue de Lagrange 10
		2.3.2.4	Équations hydrodynamiques linéarisées 10
		2.3.2.5	Modes propres en l'absence de rotation 10
	2.3.3	Quelqu	es solutions exactes de l'équation de Gross-Pitayev-
		ski	
		2.3.3.1	Cas 1D : mettre en mouvement le soliton brillant . 11
		2.3.3.2	Cas 2D : se ramener à un piège de raideur cons-
			tante par changement de jauge et d'échelle 11
		2.3.3.3	Cas général : modifier le mouvement d'ensemble
			dans un piège
	2.3.4	Applica	tion : élucidation du mécanisme de formation des
		réseaux	de tourbillons dans l'expérience de l'ENS 12
		2.3.4.1	La procédure expérimentale de l'ENS et l'échec
			des scénarios thermodynamiques
		2.3.4.2	Un nouveau mécanisme en deux temps, résonance
			et instabilité dynamique 12
		2.3.4.3	Une procédure vérificatoire : mise en rotation lente 12
		2.3.4.4	Le scénario thermodynamique à la Landau, suite
			et fin
		2.3.4.5	Moralité
		2.3.4.6	Complément : solutions stationnaires générales des
			équations hydrodynamiques dans un piège har-
			monique tournant autour d'un de ses axes propres 13
	2.3.5	Étude d	e la stabilité dynamique . .
		2.3.5.1	Un calcul très simple 14
		2.3.5.2	Une obtention plus rigoureuse de $\mathscr{L}(t)$ 14
		2.3.5.3	Cas indépendant du temps : modes propres nor-
			maux et anormaux, transformation de Bogoliou-
			bov, stabilité dynamique et thermodynamique 14
		2.3.5.4	Cas dépendant du temps 15

	2.4	Limitations à la validité de l'équation de Gross-Pitayevski pour				
		l'évol	ution ten	nporelle	154	
		2.4.1	Évolutio	on d'un soliton brillant « au repos »	155	
			2.4.1.1	Par équations de Heisenberg pour le champ quan-		
				tique	156	
			2.4.1.2	Par étude linéaire de stabilité pour le champ clas-		
				sique	157	
		2.4.2	Un méc	anisme de brouillage de phase omis par l'équation		
			de Gros	s-Pitayevski	159	
			2.4.2.1	Modèle à deux modes	159	
			2.4.2.2	Champ classique contre champ quantique	160	
			2.4.2.3	Amélioration du champ classique par ajout d'un		
				bruit de Wigner dans l'état initial	163	
		2.4.3	Généra	lité de ce mécanisme de brouillage : mode pulsant		
			dans ur	n piège harmonique isotrope	164	
			2.4.3.1	Excitation par changement de raideur du piège	164	
			2.4.3.2	Stabilité du mode pulsant : effet des fluctuations		
				du facteur d'échelle	166	
			2.4.3.3	Stabilité des autres modes	169	
		2.4.4	Absence	e du mécanisme d'émission spontanée dans l'équa-		
			tion de	Gross-Pitayevski	170	
			2.4.4.1	Une analogie avec le rayonnement quantique	170	
			2.4.4.2	Déplétion quantique rapide dans un modèle à deux	2	
				modes	171	
			2.4.4.3	En champ classique amélioré par bruit de Wigner	175	
		2.4.5	Un autr	e exemple, multimode, dominé par l'émission spon-		
			tanée d	e paires : les faisceaux jumeaux	176	
			2.4.5.1	Modèle 1D avec constante de couplage modulée		
				en temps	176	
			2.4.5.2	Analyse linéaire de stabilité en champ classique .	178	
			2.4.5.3	Propriétés statistiques des faisceaux jumeaux	181	
		2.4.6	Moralit	é de la discussion sur la validité de Gross-Pitayevski	182	
3	Lat	héorie	de Bogol	liouboy : premières corrections au condensat pur e	n	
Ŭ	dim	ensior	n trois et	opérateur phase du condensat	183	
	3.1	Idée g	énérale o	de la méthode de Bogolioubov	184	
		3.1.1	Le chan	np non condensé $\hat{\psi}_{\perp}$ comme perturbation	184	
		3.1.2	Mise en	œuvre : développement de l'hamiltonien, élimina-		
			tion du	mode du condensat, opérateur phase $\hat{\theta}$ et champ		
			non cor	ndensé redéfini $\hat{\Lambda}$, correction à Gross-Pitavevski .	185	
		3.1.3	Une per	rcée historique	188	
	3.2	Cas st	ationnai	re spatialement homogène	189	

3.2.1	Cas du	modèle sur réseau	190
	3.2.1.1	Mise en œuvre de la méthode de Bogolioubov et	
		premières interprétations physiques	190
	3.2.1.2	Un développement caché	193
	3.2.1.3	Forme finale de l'hamiltonien de Bogolioubov; spec	;-
		tre d'excitation, énergie de l'état fondamental	195
3.2.2	Pour ur	vrai potentiel d'interaction $V(\mathbf{r})$	199
3.2.3	Applica	tions simples : statistique de n_0 , densité non conden-	
	sée ano	rmale, équation d'état, distribution et corrélations	
	en impi	ulsion, fonctions g_1 et g_2 , cohérence temporelle du	
	champ	non condensé	202
	3.2.3.1	Statistique de n_0 à l'équilibre	202
	3.2.3.2	La densité non condensée anormale ρ_{an}	210
	3.2.3.3	L'équation d'état du gaz de bosons en interaction	
		faible à l'approximation de Bogolioubov	211
	3.2.3.4	Fonction de cohérence du premier ordre g_1 et dis-	
		tribution en vecteur d'onde $n_{\mathbf{k}}^{cin}$ du gaz; fonction	
		de corrélation dans l'espace des impulsions	221
	3.2.3.5	Fonction de distribution de paires $g_2 \ldots \ldots \ldots$	225
	3.2.3.6	Fonction de cohérence spatio-temporelle g_1 dans	
		l'approximation de Bogolioubov	229
3.2.4	Le cas à	a part de la superfluidité	237
	3.2.4.1	Superfluidité n'est pas condensation	237
	3.2.4.2	La vitesse critique de Landau et au-delà	238
	3.2.4.3	Les courants métastables et leur analyse de Bogo-	
		lioubov	242
	3.2.4.4	Définition thermodynamique de la fraction nor-	
		male	249
	3.2.4.5	Variante énergétique et borne de Leggett	252
3.2.5	Complé	ément I : exposé et mise en œuvre sur la densité non	
	conden	sée normale et anormale d'une méthode générale	
	de déve	eloppement à haute et à basse température, et mise	
	en diffie	culté de la théorie de Hartree-Fock	256
	3.2.5.1	La densité non condensée	256
	3.2.5.2	À l'ordre dominant en température	258
	3.2.5.3	Comment aller au-delà de l'ordre dominant	259
	3.2.5.4	La densité non condensée anormale	262
	3.2.5.5	Quel est l'intérêt du développement à haute tem-	
		pérature?	264
	3.2.5.6	Application : mise de Hartree-Fock en difficulté	264
3.2.6	Complé	ément II : adiabaticité quantique et adiabaticité ther-	
	modyna	amique	267

3.3	Cas st	ationnai	re dans un piège	271		
	3.3.1	Motivat	ion et spécificités	271		
		3.3.1.1	Quel mode spatial du condensat?	271		
		3.3.1.2	Quels modes de Bogolioubov? Limite semi-classi-			
			que	272		
	3.3.2	Un cas s	simplifié pour comprendre pourquoi les termes d'or-			
		dre 3 er	n $f_{\rm nc}^{1/2}$ dans l'hamiltonien peuvent influer sur des			
		valeurs	moyennes à l'ordre 2	274		
		3.3.2.1	Calcul de Bogolioubov pour un degré de liberté	274		
		3.3.2.2	Moralité	277		
	3.3.3	Approximation cubique de l'hamiltonien				
		3.3.3.1	Première étape de la cubisation	277		
		3.3.3.2	Deuxième étape de la cubisation	278		
		3.3.3.3	Le résultat final et son interprétation	279		
	3.3.4	Lien en	tre $\hat{\Lambda}^{(2)}$, $\langle \hat{\Lambda}^{(1)} \rangle$ et $\phi_{\perp}^{(2)}$	282		
	3.3.5	Dévelop	ppement explicite de la théorie à l'ordre 3 en $f_{\rm nc}^{1/2}$.	283		
		3.3.5.1	Vue d'ensemble sur la suite du développement en			
			$f_{\rm nc}^{1/2}$	283		
		3.3.5.2	À l'ordre 0 en $f_{\rm nc}^{1/2}$	283		
		3.3.5.3	À l'ordre 1 en $f_{\rm nc}^{1/2}$	284		
		3.3.5.4	À l'ordre 2 en $f_{\rm nc}^{1/2}$: l'hamiltonien de Bogolioubov			
			discret et sa forme réduite	284		
		3.3.5.5	À l'ordre 3 en $f_{\rm nc}^{1/2}$: fonction d'onde du condensat			
			au-delà de Gross-Pitayevski	290		
		3.3.5.6	Calcul de $\langle \hat{\Lambda}^{(1)}(\mathbf{r}) \rangle_{\hat{\mu}(0-2)+\hat{\mu}(3)}^{(2)}$ et interprétation phy-			
			sique par déplétion-interaction	292		
	3.3.6	Dévelop	ppement de g_0 à l'ordre un en a/b et passage à la li-			
		mite con	ntinue (ou d'une interaction de portée négligeable)			
		$b/\xi \to 0$		296		
		3.3.6.1	Contexte et motivation	296		
		3.3.6.2	Géométrie considérée pour le passage à la limite			
			continue	297		
		3.3.6.3	Cas de l'énergie de l'état fondamental	298		
		3.3.6.4	Cas de la fonction d'onde du condensat	301		
	3.3.7	Synthès	e : formulation directe dans l'espace continu de la			
		théorie	de Bogolioubov indépendante du temps	303		
		3.3.7.1	Motivation et obtention	303		
		3.3.7.2	Cas de $\phi^{(2)}$, première correction à Gross-Pitayevski			
			sur le mode spatial du condensat $\ldots \ldots \ldots$	305		
		3.3.7.3	Cas de l'hamiltonien de Bogolioubov et de son ni-			
			veau d'énergie fondamental	308		
		3.3.7.4	Cas d'une observable plus générale	310		

		3.3.7.5	Récapitulatif en espace continu : principales étapes
			et équations
3.4	La thế	eorie de E	Bogolioubov dans le cas dépendant du temps 312
	3.4.1	Motivat	ions physiques et vue d'ensemble
		3.4.1.1	Une question utile et un problème fondamental . 312
		3.4.1.2	Un premier progrès sur Gross-Pitayevski 313
		3.4.1.3	Un second progrès sur Gross-Pitayevski 314
		3.4.1.4	Vue d'ensemble de la méthode
	3.4.2	Équatio	n du mouvement pour le champ $\hat{\Lambda}$ à l'ordre 2 en $f_{ m nc}^{1/2}$ 315
	3.4.3	Fonctio	n d'onde du condensat à l'ordre 0 en $f_{\rm nc}^{1/2}$ 321
	3.4.4	Évolutio	on du champ non condensé et correction à $\phi^{(0)}$ à
		l'ordre 1	$en f_{nc}^{1/2} \dots 323$
	3.4.5	Contrib	ution d'ordre 2 en $f_{ m nc}^{1/2}$ à la fonction d'onde du con-
		densat	
	3.4.6	Dévelop	ppement de g_0 au premier ordre en a/b et limite
		continu	e (ou de portée négligeable) $b/\xi \rightarrow 0$
	3.4.7	Synthès	e : formulation directe de la théorie de Bogoliou-
		bov dép	endant du temps dans l'espace continu 331
		3.4.7.1	Quel petit paramètre?
		3.4.7.2	Ordre 0 : l'équation de Gross-Pitayevski retrouvée 332
		3.4.7.3	Ordre 1 : des modes de quasi-particules sans in-
			teraction
		3.4.7.4	Ordre 2 : première correction à Gross-Pitayevski . 335
		3.4.7.5	De l'importance de $\phi_{\perp}^{(2)}$ dans les observables 336
		3.4.7.6	Et si N fluctue?
	3.4.8	Lien ave	ec la physique de champ classique et l'approxima-
		tion de l	a troncature de Wigner
	3.4.9	Les diffe	érents scénarios de sortie du régime de validité de
		l'équati	on de Gross-Pitayevski dépendant du temps 344
		3.4.9.1	Mise en échec par divergence de la déplétion 345
		3.4.9.2	Mise en échec au niveau de $\phi^{(2)}$
3.5	Ľopéi	ateur ph	ase du condensat
	3.5.1	Introdu	ction de l'opérateur phase θ_{ϕ}
	3.5.2	Équatio	n d'évolution de θ_{ϕ} lorsque $\partial_t \phi \equiv 0$
	3.5.3	Lissage	temporel $\overline{d\hat{\theta}_{\phi}/dt}^{\iota}$ de l'équation d'évolution 354
		3.5.3.1	Motivation et mise en œuvre
		3.5.3.2	Lissage des termes quadratiques dans $d\hat{\theta}_{\phi}/dt$ 356
		3.5.3.3	Lissage des termes linéaires dans $d\hat{\theta}_{\phi}/dt$: il faut
			connaître les termes quadratiques $\hat{S}^{(2)}$ de d $\hat{\Lambda}_{\phi^{(0)}}/\mathrm{d}t$ 357
		3.5.3.4	Lissage de l'opérateur source $\hat{S}^{(2)}$ et d'un opéra-
			teur $\hat{\phi}^{(2)}$

fin	
 3.5.4 Reconnaître dans d∂_φ/dtⁱ un opérateur potentiel chimiqu 3.5.4.1 Reconnaître des dérivées par rapport à N 3.5.4.2 Triturer les dérivées en trois étapes	. 360
3.5.4.1Reconnaître des dérivées par rapport à N3.5.4.2Triturer les dérivées en trois étapes3.5.4.3Regroupement, résultat final et interprétation.3.5.5Au-delà de l'approximation de Bogolioubov : le cas homogène spatialement3.5.5.1Intérêt, idée et mise en œuvre du calcul3.5.5.2Le résultat; ses termes diagonaux; ses termes nor diagonaux, diffusion de phase et lissage tempore3.5.6Cas où le nombre de particules fluctue3.5.6.1Motivation3.5.6.2Extension du calcul de $d\hat{\theta}_{\phi}/dt$ des sections précédentes3.5.6.3Simplification supplémentaire pour un grand système3.5.6.4Le résultat et son application à un mélange statistique d'ensembles canoniques3.5.7Dans le cas spatialement homogène, sans lissage tempore (avec les termes oscillants)3.5.7.1À N fixé3.5.7.2Lorsque N fluctue3.5.8Complément : les paradoxes de l'opérateur phase4Application I : Amortissement et déplacement d'énergie des modes de citation d'un condensat spatialement homogène4.1Une expérience de pensée4.1.1Une expérience de pensée4.1.2Solution de l'équation de Gross-Pitayevski au premier ordre en e 4.1.4Correction $\phi^{(2)}$ à la fonction d'onde de Gross-Pitayevski au premier ordre en e 4.1.4.1Structure du résultat et considérations générales4.1.4.1Structure du résultat et considérations générales4.1.4.1Structure du résultat et considérations générales4.1.5Résultat : la première correction à Gross-Pitayevski sur les pulsatio	e 362
3.5.4.2Triturer les dérivées en trois étapes3.5.4.3Regroupement, résultat final et interprétation3.5.5Au-delà de l'approximation de Bogolioubov : le cas homogène spatialement3.5.5.1Intérêt, idée et mise en œuvre du calcul3.5.5.2Le résultat; ses termes diagonaux; ses termes nor diagonaux, diffusion de phase et lissage temporel3.5.6Cas où le nombre de particules fluctue3.5.6.1Motivation3.5.6.2Extension du calcul de $d\hat{\theta}_{\phi}/dt$ 3.5.6.3Simplification supplémentaire pour un grand système3.5.6.4Le résultat et son application à un mélange statistique d'ensembles canoniques3.5.7Dans le cas spatialement homogène, sans lissage tempore (avec les termes oscillants)3.5.7.1À N fixé3.5.7.2Lorsque N fluctue3.5.8Complément : les paradoxes de l'opérateur phase4Application I : Amortissement et déplacement d'énergie des modes d citation d'un condensat spatialement homogène4.1Une expérience de pensée4.1.1Une expérience de pensée4.1.2Solution de l'équation de Gross-Pitayevski au premier ordre er e et amplitudes $\mathcal{A}_{k_1,k_2}^{k_3}, \mathcal{A}_{k_1,k_2,k_3}$ 4.1.4Correction $\phi^{(2)}$ al a fonction d'onde de Gross-Pitayevski sur les premier ordre en e 4.1.4.1Structure du résultat et considérations générales 4.1.4.24.1.5Résultat : la première correction à Gross-Pitayevski sur les pulsations propres du condensat	. 362
3.5.4.3 Regroupement, résultat final et interprétation 3.5.5 Au-delà de l'approximation de Bogolioubov : le cas homogène spatialement 3.5.5.1 Intérêt, idée et mise en œuvre du calcul 3.5.5.2 Le résultat; ses termes diagonaux; ses termes nor diagonaux, diffusion de phase et lissage tempore 3.5.6 Cas où le nombre de particules fluctue	. 364
3.5.5Au-delà de l'approximation de Bogolioubov : le cas homogène spatialement3.5.5.1Intérêt, idée et mise en œuvre du calcul3.5.5.2Le résultat ; ses termes diagonaux ; ses termes nor diagonaux, diffusion de phase et lissage temporel3.5.6Cas où le nombre de particules fluctue3.5.6.1Motivation3.5.6.2Extension du calcul de $d\hat{d}_{\phi}/dt$ des sections pré- cédentes3.5.6.3Simplification supplémentaire pour un grand sys- tème3.5.6.4Le résultat et son application à un mélange statis- tique d'ensembles canoniques3.5.7Dans le cas spatialement homogène, sans lissage tempore (avec les termes oscillants)3.5.7.1À N fixé3.5.7.2Lorsque N fluctue3.5.8Complément : les paradoxes de l'opérateur phase4Application I : Amortissement et déplacement d'énergie des modes d citation d'un condensat spatialement homogène4.1Une expérience de pensée4.1.2Solution des modes de Bogolioubov au premier ordre er e et amplitudes $\mathscr{A}_{k_1,k_2,k_3}^{k_3}, \mathscr{A}_{k_1,k_2,k_3}, \ldots$ 4.1.4Correction $\phi^{(2)}$ à la fonction d'onde de Gross-Pitayevski au premier ordre en e 4.1.4.1Structure du résultat et considérations générales 4.1.4.24.1.5Résultat : la première correction à Gross-Pitayevski sur les pulsations propres du condensat	. 366
gène spatialement3.5.5.1Intérêt, idée et mise en œuvre du calcul3.5.5.2Le résultat; ses termes diagonaux; ses termes nor diagonaux, diffusion de phase et lissage temporel3.5.6Cas où le nombre de particules fluctue3.5.6.1Motivation3.5.6.2Extension du calcul de $d\hat{\theta}_{\phi}/dt$ des sections pré- cédentes3.5.6.3Simplification supplémentaire pour un grand sys- tème3.5.6.4Le résultat et son application à un mélange statis- tique d'ensembles canoniques3.5.7Dans le cas spatialement homogène, sans lissage tempore (avec les termes oscillants)3.5.7.1À N fixé3.5.7.2Lorsque N fluctue3.5.8Complément : les paradoxes de l'opérateur phase4Application I : Amortissement et déplacement d'énergie des modes d citation d'un condensat spatialement homogène4.1Obtention par analyse d'une excitation de Bragg de faible ampli- tude ϵ 4.1.2Solution des modes de Bogolioubov au premier ordre en ϵ 4.1.4Correction $\phi^{(2)}$ à la fonction d'onde de Gross-Pitayevski au premier ordre en ϵ 4.1.4.1Structure du résultat et considérations générales 4.1.4.24.1.5Résultat : la première correction à Gross-Pitayevski sur les pulsations propres du condensat	
3.5.5.1Intérêt, idée et mise en œuvre du calcul3.5.5.2Le résultat; ses termes diagonaux; ses termes nor diagonaux, diffusion de phase et lissage tempore3.5.6Cas où le nombre de particules fluctue3.5.6.1Motivation3.5.6.2Extension du calcul de $d\hat{\theta}_{\phi}/dt'$ des sections précédentes3.5.6.3Simplification supplémentaire pour un grand système3.5.6.4Le résultat et son application à un mélange statistique d'ensembles canoniques3.5.7Dans le cas spatialement homogène, sans lissage tempore (avec les termes oscillants)3.5.7.1À N fixé3.5.8Complément : les paradoxes de l'opérateur phase3.5.8Complément : les paradoxes de l'opérateur phase4Application I : Amortissement et déplacement d'énergie des modes d citation d'un condensat spatialement homogène4.1Une expérience de pensée4.1.3Évolution des modes de Bogolioubov au premier ordr en ε 4.1.4Correction $\phi^{(2)}$ à la fonction d'onde de Gross-Pitayevski au premier ordre en ε 4.1.4.1Structure du résultat et considérations générales 4.1.4.24.1.5Résultat : la première correction à Gross-Pitayevski sur les pulsations propres du condensat .	. 367
3.5.5.2Le résultat; ses termes diagonaux; ses termes nor diagonaux, diffusion de phase et lissage tempore3.5.6Cas où le nombre de particules fluctue	. 367
diagonaux, diffusion de phase et lissage temporel 3.5.6 Cas où le nombre de particules fluctue	
3.5.6Cas où le nombre de particules fluctue3.5.6.1Motivation3.5.6.2Extension du calcul de $d\hat{\theta}_{\phi}/dt$ des sections précédentes3.5.6.3Simplification supplémentaire pour un grand système3.5.6.4Le résultat et son application à un mélange statistique d'ensembles canoniques3.5.7Dans le cas spatialement homogène, sans lissage tempore(avec les termes oscillants)	369
3.5.6.1Motivation \dots 3.5.6.2Extension du calcul de $d\hat{\theta}_{\phi}/dt$ des sections précédentes3.5.6.3Simplification supplémentaire pour un grand système3.5.6.4Le résultat et son application à un mélange statistique d'ensembles canoniques3.5.7Dans le cas spatialement homogène, sans lissage tempore(avec les termes oscillants)	. 371
3.5.6.2Extension du calcul de $d\hat{\theta}_{\phi}/dt$ des sections précédentes3.5.6.3Simplification supplémentaire pour un grand système3.5.6.4Le résultat et son application à un mélange statistique d'ensembles canoniques3.5.7Dans le cas spatialement homogène, sans lissage tempore(avec les termes oscillants)	. 371
cédentes3.5.6.3Simplification supplémentaire pour un grand système3.5.6.4Le résultat et son application à un mélange statistique d'ensembles canoniques3.5.7Dans le cas spatialement homogène, sans lissage tempore(avec les termes oscillants)	
3.5.6.3Simplification supplémentaire pour un grand système3.5.6.4Le résultat et son application à un mélange statistique d'ensembles canoniques3.5.7Dans le cas spatialement homogène, sans lissage tempore(avec les termes oscillants)	. 372
tème	
3.5.6.4Le résultat et son application à un mélange statis- tique d'ensembles canoniques	. 374
tique d'ensembles canoniques3.5.7Dans le cas spatialement homogène, sans lissage tempore (avec les termes oscillants)3.5.7.1À N fixé3.5.7.2Lorsque N fluctue3.5.8Complément : les paradoxes de l'opérateur phase4Application I : Amortissement et déplacement d'énergie des modes d citation d'un condensat spatialement homogène4.1Obtention par analyse d'une excitation de Bragg de faible ampli- tude ϵ 4.1.1Une expérience de pensée4.1.2Solution de l'équation de Gross-Pitayevski au premier ordre en ϵ et amplitudes $\mathscr{A}_{k_1,k_2}^{k_3}, \mathscr{A}_{k_1,k_2,k_3}$ 4.1.4Correction $\phi^{(2)}$ à la fonction d'onde de Gross-Pitayevski au premier ordre en ϵ 4.1.4.1Structure du résultat et considérations générales 4.1.4.24.1.5Résultat : la première correction à Gross-Pitayevski sur les pulsations propres du condensat	
3.5.7 Dans le cas spatialement homogène, sans lissage tempore (avec les termes oscillants)3.5.7.1 À N fixé3.5.7.2 Lorsque N fluctue3.5.7.2 Lorsque N fluctue3.5.8 Complément : les paradoxes de l'opérateur phase4 Application I : Amortissement et déplacement d'énergie des modes d citation d'un condensat spatialement homogène4.1 Obtention par analyse d'une excitation de Bragg de faible ampli- tude ϵ 4.1.1 Une expérience de pensée4.1.2 Solution de l'équation de Gross-Pitayevski au premier ordr en ϵ 4.1.3 Évolution des modes de Bogolioubov au premier ordre en ϵ et amplitudes $\mathscr{A}_{k_1,k_2}^{k_3}, \mathscr{A}_{k_1,k_2,k_3}$ 4.1.4 Correction $\phi^{(2)}$ à la fonction d'onde de Gross-Pitayevski au premier ordre en ϵ 4.1.4.1 Structure du résultat et considérations générales 4.1.4.2 Calcul explicite de $\phi^{(2)}$ aux temps longs4.1.5 Résultat : la première correction à Gross-Pitayevski sur les pulsations propres du condensat	. 375
(avec les termes oscillants)	
3.5.7.1A N fixé3.5.7.2Lorsque N fluctue3.5.7.2Lorsque N fluctue3.5.8Complément : les paradoxes de l'opérateur phase4Application I : Amortissement et déplacement d'énergie des modes d citation d'un condensat spatialement homogène4.1Obtention par analyse d'une excitation de Bragg de faible ampli- tude ϵ 4.1Une expérience de pensée4.1.1Une expérience de pensée4.1.2Solution de l'équation de Gross-Pitayevski au premier ordr en ϵ 4.1.3Évolution des modes de Bogolioubov au premier ordre en ϵ et amplitudes $\mathscr{A}_{k_1,k_2}^{k_3}, \mathscr{A}_{k_1,k_2,k_3}$ 4.1.4Correction $\phi^{(2)}$ à la fonction d'onde de Gross-Pitayevski au premier ordre en ϵ 4.1.4.1Structure du résultat et considérations générales $4.1.4.2$ 4.1.5Résultat : la première correction à Gross-Pitayevski sur les pulsations propres du condensat	. 376
3.5.7.2 Lorsque N fluctue3.5.7.2 Lorsque N fluctue3.5.8 Complément : les paradoxes de l'opérateur phase4 Application I : Amortissement et déplacement d'énergie des modes d citation d'un condensat spatialement homogène4.1 Obtention par analyse d'une excitation de Bragg de faible ampli- tude ϵ 4.1 Une expérience de pensée4.1.1 Une expérience de pensée4.1.2 Solution de l'équation de Gross-Pitayevski au premier ordr en ϵ 4.1.3 Évolution des modes de Bogolioubov au premier ordre er ϵ et amplitudes $\mathscr{A}_{k_1,k_2}^{k_3}, \mathscr{A}_{k_1,k_2,k_3}$ 4.1.4 Correction $\phi^{(2)}$ à la fonction d'onde de Gross-Pitayevski au premier ordre en ϵ 4.1.4.1 Structure du résultat et considérations générales 4.1.4.2 Calcul explicite de $\phi^{(2)}$ aux temps longs4.1.5 Résultat : la première correction à Gross-Pitayevski sur les pulsations propres du condensat	. 376
 3.5.8 Complément : les paradoxes de l'opérateur phase 4 Application I : Amortissement et déplacement d'énergie des modes d citation d'un condensat spatialement homogène 4.1 Obtention par analyse d'une excitation de Bragg de faible amplitude <i>ε</i>	. 378
 4 Application I: Amortissement et déplacement d'énergie des modes d citation d'un condensat spatialement homogène 4.1 Obtention par analyse d'une excitation de Bragg de faible amplitude <i>ε</i>	. 379
 citation d'un condensat spatialement homogène 4.1 Obtention par analyse d'une excitation de Bragg de faible amplitude ε	ex-
 4.1 Obtention par analyse d'une excitation de Bragg de faible amplitude ε	381
 tude ε	
 4.1.1 Une expérience de pensée	. 383
 4.1.2 Solution de l'équation de Gross-Pitayevski au premier ordr en ε	. 383
 en ε	9
 4.1.3 Évolution des modes de Bogolioubov au premier ordre en <i>ε</i> et amplitudes A^{k3}_{k1,k2}, A_{k1,k2,k3}	. 385
 <i>ε</i> et amplitudes A^{k3}_{k1,k2}, A_{k1,k2,k3}	
 4.1.4 Correction φ⁽²⁾ à la fonction d'onde de Gross-Pitayevski au premier ordre en ε	. 387
 premier ordre en ε	
 4.1.4.1 Structure du résultat et considérations générales 4.1.4.2 Calcul explicite de φ⁽²⁾ aux temps longs 4.1.5 Résultat : la première correction à Gross-Pitayevski sur les pulsations propres du condensat	. 390
 4.1.4.2 Calcul explicite de φ⁽²⁾ aux temps longs 4.1.5 Résultat : la première correction à Gross-Pitayevski sur les pulsations propres du condensat. 	. 390
4.1.5 Résultat : la première correction à Gross-Pitayevski sur les pulsations propres du condensat	. 393
pulsations propres du condensat	
41 El Traja armanaciona á guivalantes	. 399
4.1.5.1 Ifols expressions equivalentes	. 400

		4.1.5.2	Survol de la littérature sur ce sujet	402
		4.1.5.3	Conditions d'applicabilité du résultat (4.84)	403
4.2	Obter	ntion et ir	nterprétation physique en termes d'interaction entre	
	les qu	asi-parti	cules de Bogolioubov	405
	4.2.1	Signal d	le Bragg et fonctions de corrélation du système non	
		perturb	é	405
	4.2.2	Calcul p	par équation pilote et théorème de régression quan-	
		tique .		407
		4.2.2.1	Processus d'interaction entre quasi-particules et	
			amplitudes A retrouvées	408
		4.2.2.2	L'équation pilote dans l'approximation de Born-	
			Markov	410
		4.2.2.3	Le théorème de régression quantique	412
	4.2.3	Retrouv	ver le résultat de la section 4.1.5	414
		4.2.3.1	Un désaccord apparent	414
		4.2.3.2	Résolution par inclusion de \hat{H}_4	415
	4.2.4	Une con	ndition de validité du résultat : celle de la règle d'or	417
4.3	Quelq	lues résu	ltats explicites sur $\omega_{\mathbf{q}}^{(2)}$	419
	4.3.1	Synthès	se : ensemble des résultats analytiques sur $\omega_{\mathbf{q}}^{(2)}$ et	
		illustrat	ions numériques	419
		4.3.1.1	Classement par variable fuyante (tendant vers 0	
			$ou + \infty$)	420
		4.3.1.2	Illustrations numériques après réduction à une in-	
			tégrale simple	423
		4.3.1.3	Complément : calcul des intégrales sur λ dans les	
			équations (4.160), (4.162) et (4.167)	429
	4.3.2	Cas $T =$	0 : développement de $\omega_{\mathbf{q}}^{(2)}$ aux faibles q à l'ordre 4;	
		le résul	tat est réel mais nécessite un développement mul-	
		tiéchell	e	429
		4.3.2.1	Motivation initiale : quelle vitesse du son?	429
		4.3.2.2	Un développement trop naïf sous le signe intégral	431
		4.3.2.3	La bonne méthode est multiéchelle	432
		4.3.2.4	Un raccordement vérificatoire	433
		4.3.2.5	Le résultat final à l'ordre 4	435
	4.3.3	Cas $T =$	0 : développement de $\omega_{\mathbf{q}}^{(2)}$ aux faibles q à l'ordre 5;	
		le résult	tat devient complexe et un logarithme de <i>q</i> apparaît	435
		4.3.3.1	Une réelle motivation physique	435
		4.3.3.2	Une intégrale modèle pour s'exercer, qui montre	
			l'importance de la courbure de la relation de dis-	
			persion	436
		4.3.3.3	Retour au vrai problème	442
		4.3.3.4	Le résultat à l'ordre 5	447

	4.3.4	Cas $T \neq 0$: linéarisation de $\omega_{\mathbf{q}}^{(2)}$ aux faibles q	447
		4.3.4.1 Motivations et vue d'ensemble	447
		4.3.4.2 Développement dans la zone $k < Aq$	450
		4.3.4.3 Développement dans la zone $k > Aq$	452
		4.3.4.4 Une forme finale plus agréable	453
		4.3.4.5 À basse température	454
		4.3.4.6 À haute température	455
		4.3.4.7 À température quelconque	457
	4.3.5	Que vaut $\omega_{\mathbf{q}}^{(2)}$ aux grands q ?	458
		4.3.5.1 Motivation physique	458
		4.3.5.2 Ce que l'intuition suggère sur la partie réelle	459
		4.3.5.3 Ce que l'intuition suggère sur la partie imaginaire	461
		4.3.5.4 Développement de $\omega_{\mathbf{q}}^{(2)}$ aux grands q à $T = 0$	463
		4.3.5.5 À $T > 0$: développement aux grands q de la partie	
		thermique de $\hbar \omega_{\mathbf{q}}^{(2)}$	468
	4.3.6	Étude de la partie thermique $\omega_{\mathbf{q}}^{(2)\text{th}}$ de $\omega_{\mathbf{q}}^{(2)}$ à basse et à haute	
		température	471
		4.3.6.1 Limite de basse <i>T</i> à nombre d'onde <i>q</i> fixé \ldots .	472
		4.3.6.2 Limite de basse <i>T</i> à rapport $\hbar c_{\text{GP}} q / k_{\text{B}} T$ fixé	473
		4.3.6.3 Limite de haute T à nombre d'onde q fixé	476
		4.3.6.4 Limite de haute <i>T</i> à rapport $\hbar^2 q^2 / m k_{\rm B} T$ fixé	479
	4.3.7	Complément I : sectorisation des processus de Belyaev et	
		de Landau dans l'espace des vecteurs d'onde	482
	4.3.8	Complément II : les singularités aux frontières de l'inté-	
		grande de $\int dk dans \omega_{\mathbf{q}}^{(2)} \dots \dots \dots \dots \dots$	485
4.4	Moral	e de notre calcul de $\omega_{\mathbf{q}}^{(2)}$	490
Princip	oales no	otations	493
Index			499
Bibliog	raphie		511