EDP Sciences EDP Sciences EDP Sciences EDP Sciences

Application of Microwave Heating in the Comprehensive Utilization of Titanium Resources

de Guo Chen (auteur), Lei Gao (auteur), Jin Chen (auteur)
mai 2022
eBook [PDF]
272 pages Téléchargement après achat
75,99 €
Référencer ce produit sur votre site

Présentation

The titanium industry is developing at a fantastic speed in China, which is promoted by the increasing demand for high-quality titanium resources. Thus, our research group led by Prof. Guo CHEN in Yunnan Minzu University is devoted to developing microwave heating applications in the production chain of titanium, and the corresponding results are summarized in this book.This book is divided into six chapters which initially look at the response and amenability of titanium-based elements tomicrowave power. Upon establishing its potential usefulness in titanium processing, the book assesses and introduces the various effects of microwave for different titanium related processes, including preweakening, drying, carbothermic reduction, leaching and roasting. A wide variety of analysis tools to determine the effects of microwave on these processes were utilized to support and explain the results. These include DSC, Raman, FTIR, SEM, EDAX. Finally, life cycle analysis was used to evaluate and to optimize microwave heating devices to provide information for further development of this process in the titanium industry. We hope this compilation can provide researchers and professionals working in the general minerals processing field the benefits of the microwave technique.

Sommaire

Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III

CHAPTER 1

Microwave Absorbing Properties and Temperature Behaviour . . . . . . . . . . . . 1

1.1 Dielectric Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Measuring Instrumentation and Principle . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Microwave Heating Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Microwave-Absorbing Characteristics of Oxidised Ilmenite . . . . . . . . . 5

1.4.1 Materials and Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4.2 Microwave-Absorbing Characteristics of Carbothermic Reduction Products of Ilmenite and Oxidised Ilmenite . . . . . . . 6

1.4.3 Effect of Carbonaceous Reducing Agents on Microwave Absorbing Properties of Ilmenite . . . . . . . . . . . . . . . . . . . . . . . 13

1.4.4 Effect of Catalyst on Microwave Absorbing Properties of Ilmenite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.5 Microwave Absorbing Properties of Mechanically Activated Ilmenite . . 21

1.5.1 Materials and Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.5.2 Effect of Mechanical Activated on Microwave Absorbing Properties of Ilmenite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.6 Microwave Absorbing Characteristics of Mechanical Activated High Titanium Slag . . . . . . . . . . . .. . . . . . . . . . . . . . . . 26

1.6.1 Materials and Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.6.2 Dielectric Loss Factor of Mechanical Activated High Titanium Slag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.6.3 Dielectric Constant of Mechanical Activated High Titanium Slag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.6.4 Loss Tangent Coefficient of Mechanical Activated High Titanium Slag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.7 Microwave Absorbing Properties of High Titanium Slag . . . . . . . . . . . 30

1.7.1 Materials and Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.7.2 Effect of Particle Size of High Titanium Slag on Microwave Absorbing Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.7.3 Effect of Mass Fraction of V2O5 on Microwave Absorbing Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1.8 Temperature Behaviour of Titanium Slag Under Microwave Heating . . 34

1.8.1 Materials and Instrumentation . . . . . . . . . . . . . . . . . . . . . . . . . 35

1.8.2 Temperature Rise Characteristics of the Titanium-Rich Slag Using Microwave Heating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

1.9 Microwave Absorption Properties and Thermal Behaviour of Vanadium Titano-Magnetite (VTM) . . . . . . . . . . . . . . . . . . . . . . . . 38

1.9.1 Materials and Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

1.9.2 Thermal Behaviour of VTM During Microwave Heating . . . . . . 41

1.9.3 Thermochemical Characteristics of VTM . . . . . . . . . . . . . . . . . 42

1.9.4 Dielectric Properties of VTM . . . . . . . . . . . . . . . . . . . . . . . . . . 45

1.9.5 Microwave Heating Characteristics of VTM . . . . . . . . . . . . . . . 47

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

CHAPTER 2

Microwave Pretreatment and Microwave Drying . . . . . . . . . . . . . . . . . . . . . . 53

2.1 Microwave Pretreatment of Ilmenite Ore . . . . . . . . . . . . . . . . . . . . . . . 54

2.1.1 Materials and procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.1.2 Effects of Microwave Energy. . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.1.3 Microwave Pretreatment Optimisation . . . . . . . . . . . . . . . . . . . 64

2.2 Microwave Pretreatment of Titanium Slag . . . . . . . . . . . . . . . . . . . . . 72

2.2.1 Materials and Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

2.2.2 Effects of Microwave Energy. . . . . . . . . . . . . . . . . . . . . . . . . . . 73

2.3 High Effective Microwave-Assisted Drying of a Small Portion of Titanium Slag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

2.3.1 Materials and Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

2.3.2 Microwave Drying Behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . 78

2.3.3 Effects of Microwave Energy. . . . . . . . . . . . . . . . . . . . . . . . . . . 80

2.3.4 Drying Kinetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

2.4 High Effective Microwave-Assisted Drying of a Large Portion of Titanium Slag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

2.4.1 Materials and Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

2.4.2 Microwave Drying Behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . 83

2.4.3 Effects of Microwave Energy. . . . . . . . . . . . . . . . . . . . . . . . . . . 86

2.4.4 Drying Kinetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

CHAPTER 3

Microwave Carbothermic Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.1 Microwave Carbothermic Reduction of Ilmenite Ores . . . . . . . . . . . . . 96

3.1.1 Materials and Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

3.1.2 Effects of Microwave on Carbothermic Reduction . . . . . . . . . . . 97

3.1.3 Phase Diagram for the FeO–TiO2–TiO1.5 System . . . . . . . . . . . 101

3.2 Microwave Carbothermic Reduction of Ilmenite Ores with Sodium Silicate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

3.2.1 Materials and Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

3.2.2 Calibrations of Weight-Loss Fraction During Microwave Carbothermic Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

3.2.3 Effects of Sodium Silicate on Microwave Carbothermic Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

3.3 Microwave Carbothermic Reduction of Ilmenite Ores with NaCl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

3.3.1 Materials and Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

3.3.2 Calibrations of Weight-Loss Fraction During Microwave Carbothermic Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

3.3.3 Effects of NaCl on Microwave Carbothermic Reduction . . . . . . 113

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

CHAPTER 4

Microwave-Assisted Leaching and Intensification. . . . . . . . . . . . . . . . . . . . . . 119

4.1 Microwave-Assisted Leaching of Primary Titanium-Rich Materials . . . 120

4.1.1 Materials and Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.1.2 Non-Isothermal Microwave Leaching Kinetics . . . . . . . . . . . . . . 121

4.1.3 Microwave Absorption Characteristics During Leaching . . . . . . 126

4.2 Microwave-Assisted Leaching of Titanium Slag Using Dilute Sulfuric Acid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

4.2.1 Materials and Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

4.2.2 Principle for the Simultaneous Removal of Cr(III) and V(V) . . 132

4.2.3 Effects of Microwave Energy During the Process. . . . . . . . . . . . 133

4.2.4 Effects of the Na2CO3/Slag Mass Ratio . . . . . . . . . . . . . . . . . . 133

4.3 Microwave-Assisted Leaching of Titanium Slag Using Hydrochloric Acid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

4.3.1 Materials and Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

4.3.2 Characterisation by XRD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

4.3.3 Characterisation by Raman Spectroscopy . . . . . . . . . . . . . . . . . 151

4.3.4 Characterisation by FI-IR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

4.3.5 Characterisation by SEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

4.4 Microwave-Assisted Leaching of High Titanium Slag Using Phosphoric Acid . . . . . . . . . . .  . . . . . . . . . . . . 155

4.4.1 Materials and Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

4.4.2 Characterisation by XRD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

4.4.3 Characterisation by SEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

4.4.4 Characterisation by FT-IR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

4.4.5 Characterisation by Raman . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

4.5 Microwave Intensification for the Preparation of Rutile TiO2 from Panzhihua Sulphate Titanium Slag . . . . . . .  . . . . . . . 161

4.5.1 Materials and Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

4.5.2 Characterisation by XRD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

4.5.3 Characterisation by SEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

4.5.4 Characterisation by Raman Spectroscopy . . . . . . . . . . . . . . . . . 165

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

CHAPTER 5

Microwave Roasting Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

5.1 Preparation of Synthetic Rutile from Titanium Slag . . . . . . . . . . . . . . 172

5.1.1 Materials and Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

5.1.2 Roasting Process with Conventional Heating . . . . . . . . . . . . . . 175

5.1.3 Process Optimisation with Response Surface Methodology . . . . 180

5.2 The Effect of Na2CO3/Slag Ratio and a Comparison Between Conventional and Microwave Heating for the Preparation of Rutile TiO2 . . . . . . . . . . . . . .  . . 186

5.2.1 The Effect of Na2CO3/Slag Ratio . . . . . . . . . . . . . . . . . . . . . . . 186

5.2.2 The Comparison Between Different Heating Methods . . . . . . . . 189

5.3 Optimisation of Microwave Roasting Process Using Response Surface Methodology (RSM) . . . . . . . . .. . . . . . . . . . . . . . . 194

5.3.1 Materials and Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

5.3.2 Process Optimisation with Response Surface Methodology . . . . 196

5.3.3 Characterization of the Synthetic Rutile . . . . . . . . . . . . . . . . . . 201

5.3.4 Another Optimisation Case . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

5.4 Phase Transformation of Titanium Slag Using Microwave Irradiation . 209

5.4.1 Materials and Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

5.4.2 Systematical Study on the Influence of Microwave on the Sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

5.5 Preparation of Synthetic Rutile from Sulphate Titanium Slag with the Assistance of Microwave . . . . . . . . .  . . . . . . . . . . . 214

5.5.1 Materials and Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

5.5.2 Characterization of the Synthetic Rutile . . . . . . . . . . . . . . . . . . 216

5.6 Preparation of Synthetic Rutile from High Titanium Slag with the Assistance of Microwave . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

5.6.1 Materials and Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

5.6.2 Roasting Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

5.6.3 Weight Increase Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

5.6.4 Sulfur and Carbon Content Analysis . . . . . . . . . . . . . . . . . . . . 226

5.6.5 TiO2 Content Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

CHAPTER 6

Microwave Heating Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

6.1 Analytic Hierarchy Process and Fuzzy Comprehensive Evaluation of Microwave Tube and Shaft Furnace . . . . . . . . . . . . . . 232

6.1.1 Hierarchical Structure of Assessment . . . . . . . . . . . . . . . . . . . . 232

6.1.2 Details for the Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

6.1.3 Features of the Microwave Tube Furnace . . . . . . . . . . . . . . . . . 237

6.1.4 Features of Microwave Shaft Furnaces . . . . . . . . . . . . . . . . . . . 238

6.2 Life Cycle Assessment on Microwave Leaching Process . . . . . . . . . . . . 240

6.2.1 Materials and Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

6.2.2 Analytic Hierarchy Process. . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

6.2.3 Pairwise Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

6.2.4 Life Cycle of Assessment of the Microwave-Assisted Leaching . . 243

6.3 Life Cycle Assessment on Microwave Hot Air Systems . . . . . . . . . . . . . 243

6.3.1 Materials and Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

6.3.2 Features of Microwave Hot Air Systems . . . . . . . . . . . . . . . . . . 249

6.3.3 Life Cycle of Assessment of the Microwave Hot Air Systems . . . 250

6.4 Numerical Modeling of the Microwave Heating Device. . . . . . . . . . . . . 250

6.4.1 Materials and Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

6.4.2 Details for Numerical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

6.4.3 Temperature Rise Curve of High Titanium Slag by Microwave Irradiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

6.4.4 Characterisation of High Titanium Slag . . . . . . . . . . . . . . . . . . 256

6.4.5 Distribution of the Microwave Fields . . . . . . . . . . . . . . . . . . . . 257

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

Compléments

Caractéristiques

Langue(s) : Anglais

Public(s) : Professionnels, Recherche

Editeur : EDP Sciences & Science Press

Collection : Current Natural Sciences

Publication : 12 mai 2022

EAN13 (papier) : 9782759826964

EAN13 eBook [PDF] : 9782759826971

Intérieur : Couleur

Nombre de pages eBook [PDF] : 272

Taille(s) : 31 Mo (PDF)

--:-- / --:--