EDP Sciences EDP Sciences EDP Sciences EDP Sciences

The Ferromagnetic Chain Equations at High Temperatures

Analysis and Applications of the Landau–Lifshitz–Bloch Equations

de Boling GUO (auteur), Qiaoxin LI (auteur), Fangfang LI (auteur), Yitong PEI (auteur), Ying ZHANG (auteur), Lichen ZHAO (auteur)
septembre 2025
194 pages Téléchargement après achat
51,99 €
Référencer ce produit sur votre site

Présentation

This book presents a comprehensive exploration of the mathematical theory and recent advances related to the ferromagnetic chain equations at high temperatures, with a particular focus on the Landau–Lifshitz–Bloch (LLB) equation and its extensions. More specifically, the work addresses key topics, including the LLB equation, the coupled Maxwell–LLB system, temperature-dependent LLB models, nonlinear electron polarization systems, and stochastic and fractional LLB equations. It highlights a series of innovative results: ranging from the existence of weak and smooth solutions to the construction of global attractors and the analysis of periodic behaviors. By integrating rigorous mathematical derivations with underlying physical principles, it serves as a valuable reference for researchers in mathematics, physics, and materials science.

Sommaire

Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III

CHAPTER 1

The Physics Background of Landau–Lifshitz–Bloch Equation . . . . . . . . . . . . 1

1.1 Landau–Lifshitz Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Landau–Lifshitz–Bloch Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Landau–Lifshitz–Bloch Equation with Temperature Effect . . . . . . . . . 4

CHAPTER 2

Smooth Solutions of the Landau–Lifshitz–Bloch Equation. . . . . . . . . . . . . . . 7

2.1 Existence of Smooth Solutions in Two Dimensions . . . . . . . . . . . . . . . 9

2.2 Existence of Smooth Solutions for Small Initial Values in Three Dimensions . . . .. . 14

2.3 Uniqueness of Smooth Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

CHAPTER 3

The Initial-Boundary Value Problem of Landau–Lifshitz Equation . . . . . . . . 19

3.1 Landau–Lifshitz–Bloch–Maxwell Equation . . . . . . . . . . . . . . . . . . . . . 19

3.1.1 Approximate Solutions and a Priori Estimates . . . . . . . . . . . . . 22

3.2 The Existence of Generalized Solutions . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3 Regularity and Global Smooth Solutions . . . . . . . . . . . . . . . . . . . . . . . 34

3.3.1 In the Case of d = 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3.2 In the Case of d = 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

CHAPTER 4

Landau–Lifshitz–Bloch–Maxwell Equations with Temperature Effect . . . . . . 49

4.1 The System with Temperature Effect . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2 The Existence of Global Weak Solution. . . . . . . . . . . . . . . . . . . . . . . . 51

4.3 The Existence of Global Smooth Solution . . . . . . . . . . . . . . . . . . . . . . 59

4.4 The Uniqueness of Global Smooth Solution . . . . . . . . . . . . . . . . . . . . . 64

CHAPTER 5

The Periodic Initial Value Problem for the High-Dimensional Generalized Landau–Lifshitz–Bloch–Maxwell Equations . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.1 The Periodic Initial Value Problem for the Landau–Lifshitz–Bloch–Maxwell Equations . . .. 67

5.2 The Approximate Solution to the Periodic Initial Value Problem . . . . 68

5.3 The Estimation of the Approximate Solution . . . . . . . . . . . . . . . . . . . 69

5.4 Existence of Global Weak Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.5 The Solution to the Initial Value Problem of the High-Dimensional Generalized Landau–Lifshitz–Bolch Equation . . . . . . . . . . . . . . . . . . . 74

5.5.1 The Approximate Solutions are Uniformly Bounded and Convergent . . .. . . 75

5.5.2 The Global Weak Solution for an Infinitely Long Cylinder . . . . 77

5.5.3 Uniqueness of Smooth Solutions . . . . . . . . . . . . . . . . . . . . . . . . 78

CHAPTER 6

Weak and Strong Solutions to Landau–Lifshitz–Bloch–Maxwell Equations with Polarization .. 85

6.1 Physical Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.2 Solutions to the Viscosity Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.2.1 Global Solutions to the ODE (6.2.24)–(6.2.32) . . . . . . . . . . . . . 91

6.2.2 Existence of Weak Solution for the Viscosity Problem . . . . . . . 99

6.3 A Prior Estimates Uniform in   and Existence of Global Weak Solutions .. . 102

6.4 Global Smooth Solution for Problem (6.1.1)–(6.1.4) . . . . . . . . . . . . . . . 106

CHAPTER 7

Smooth Solutions of the Fractional Order Landau–Lifshitz–Bloch Equation . 115

7.1 A Priori Estimates for Local Smooth Solutions . . . . . . . . . . . . . . . . . . 116

7.2 Proof of Uniqueness of Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

CHAPTER 8

Well-Posedness and Ergodicity of Solutions for Stochastic Landau–Lifshitz–Bloch Equations .. . . . 123

8.1 Smooth Solutions of Stochastic Landau–Lifshitz–Bloch Equation . . . . 123

8.1.1 A Priori Estimates of Solutions . . . . . . . . . . . . . . . . . . . . . . . . 126

8.1.2 The Uniqueness of the Path . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

8.2 Ergodicity of Stochastic Landau–Lifshitz–Bloch Equation . . . . . . . . . . 131

8.2.1 Relevant Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

8.2.2 The Main Results of This Section. . . . . . . . . . . . . . . . . . . . . . . 135

8.3 The Existence of an Invariant Measurable Set . . . . . . . . . . . . . . . . . . . 138

8.3.1 Energy Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

8.3.2 The Pathwise Uniqueness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

8.3.3 Higher Regularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

8.3.4 Invariant Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

8.4 Ergodicity: The Uniqueness of the Invariant Measure Set . . . . . . . . . . 153

8.4.1 Asymptotic Strong Feller Property . . . . . . . . . . . . . . . . . . . . . . 153

8.4.2 The Compact Property of Invariant Measures . . . . . . . . . . . . . 160

8.4.3 Proof of the Gradient Flow Equation . . . . . . . . . . . . . . . . . . . . 163

CHAPTER 9

The Initial Value Problem of the Landau–Lifshitz–Bloch Equation Coupled with Spin Polarization Transport Equation . . . . . . . . . . . . . . . . . . . . . . . . . . 167

9.1 Landau–Lifshitz–Bloch Equation Coupled with Spin Polarization Transport Equation .. . . . 167

9.2 Existence of Global Smooth Solutions . . . . . . . . . . . . . . . . . . . . . . . . . 169

9.3 Uniqueness for the Global Smooth Solution. . . . . . . . . . . . . . . . . . . . . 180

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183


Compléments

Caractéristiques

Langue(s) : Anglais

Public(s) : Etudiants

Editeur : EDP Sciences & Science Press

Collection : Current Natural Sciences

Publication : 15 septembre 2025

EAN13 (papier) : 9782759838479

Référence eBook [PDF] : L38486

EAN13 eBook [PDF] : 9782759838486

Intérieur : Noir & blanc

Nombre de pages eBook [PDF] : 194

Taille(s) : 1,94 Mo (PDF)

--:-- / --:--