Preface..................................................... III
CHAPTER 1
Introduction................................................. 1
1.1 About Optimization ...................................... 1
1.2Classification of Optimization ............................... 4
1.3Preliminaries in Convex Analysis ............................ 10
1.4Exercises............................................... 15
CHAPTER 2
Fundamentals of Optimization ................................... 17
2.1Unconstrained Optimization Problem ......................... 17
2.2 What isa Solution? ...................................... 18
2.2.1Definitions of Different Solutions ....................... 18
2.2.2Recognizing a Local Minimum ......................... 20
2.2.3Non smooth Problems ................................ 23
2.3Overview of Algorithms ................................... 25
2.3.1 Line Search Strategy ................................ 26
2.3.2 Trust Region Strategy ............................... 30
2.4Convergence ............................................ 31
2.5 Scaling................................................ 32
2.6Exercises............................................... 33
CHAPTER 3
Line Search Methods .......................................... 35
3.1 StepLength ............................................ 35
3.1.1 The Wolfe Conditions ............................... 37
3.1.2 The Goldstein Conditions ............................ 40
3.1.3Sufficient Decrease and Backtracking .................... 41
3.2Convergence of Line Search Methods ......................... 42
3.3 Rate of Convergence ...................................... 44
3.3.1Steepest Descent Method ............................. 44
3.3.2Newton’s Method................................... 46
3.3.3Quasi-Newton Methods .............................. 48
3.4Exercises............................................... 50
CHAPTER 4
Trust Region Methods ......................................... 51
4.1 Outlineof the Trust Region Approach ........................ 52
4.2Algorithms Based on the Cauchy Point ........................ 54
4.2.1 The Cauchy Point .................................. 54
4.2.2 The Dogleg Method ................................. 56
4.2.3Two-Dimensional Subspace Minimization ................. 58
4.3 Global Convergence ...................................... 59
4.3.1Reduction Obtained by the Cauchy Point ................ 59
4.3.2Convergence to Stationary Points....................... 61
4.4 Local Convergence ....................................... 65
4.5 Other Enhancements......................................65
4.6 Exercises...............................................68
CHAPTER 5
Conjugate Gradient Methods.................................... 69
5.1 Linear Conjugate Gradient Method........................... 69
5.1.1Conjugate Direction Method .......................... 69
5.1.2Conjugate Gradient Method........................... 72
5.1.3 A Practical Form of the Conjugate Gradient Method ........ 75
5.1.4 Rate of Convergence ................................ 76
5.1.5Preconditioning .................................... 77
5.2Nonlinear Conjugate Gradient Methods ....................... 78
5.2.1 ThePolak-Ribiere Method and Variants.................. 80
5.2.2Global Convergence ................................. 81
5.3Exercises............................................... 83
CHAPTER 6
Semi smooth Newton’s Method ................................... 85
6.1Semi smoothness ......................................... 85
6.2Non smooth Version of Newton’s Method....................... 87
6.3 Support Vector Machine ................................... 89
6.4Semi smooth Newton’s Method for SVM ....................... 91
6.5Exercises............................................... 96
CHAPTER 7
Theory of Constrained Optimization ............................... 97
7.1 Local and Global Solutions ................................. 97
7.1.1Smoothness ....................................... 98
7.2Examples .............................................. 99
VI Contents
7.3 Tangent Cone and Constraint Qualifications .................... 103
7.4First-Order Optimality Conditions ........................... 105
7.5Second-Order Conditions .................................. 106
7.6 Duality................................................ 109
7.7 KKTCondition ......................................... 112
7.8 DualProblem ........................................... 114
7.9Exercises............................................... 118
CHAPTER 8
Penalty and Augmented Lagrangian Methods ........................ 119
8.1 The Quadratic Penalty Method.............................. 119
8.2 ExactPenalty Method .................................... 122
8.3Augmented Lagrangian Method ............................. 123
8.4Quadratic Penalty Method for Hypergraph Matching ............. 125
8.4.1Hypergraph Matching ............................... 126
8.4.2Mathematical Formulation ............................ 126
8.4.3Relaxation Problem ................................. 128
8.4.4Quadratic Penalty Method for (8.21) .................... 129
8.4.5Numerical Results .................................. 130
8.5Augmented Lagrangian Method for SVM ...................... 132
8.5.1Support Vector Machine ............................. 132
8.5.2Mathematical Formulation ............................ 133
8.5.3Augmented Lagrangian Method (ALM) .................. 133
8.5.4Semismooth Newton’s Method for the Subproblem.......... 136
8.5.5Reducing the Computational Cost ...................... 137
8.5.6Convergence Result of ALM ........................... 138
8.5.7Numerical Results on LIBLINEAR...................... 139
8.6Exercises............................................... 141
CHAPTER 9
Bilevel Optimization and Its Applications ........................... 143
9.1Introduction ............................................ 143
9.2 Bilevel Model for a Case of Hyperparameter Selection in SVC ....... 145
9.2.1 AnMPEC Formulation .............................. 147
9.3 The Global Relaxation Method (GRM)........................ 148
9.4MPEC-MFCQ: A Hidden Property ........................... 149
9.5 Numerical Results........................................ 150
Bibliography................................................. 153