Contents
Preface
Acknowledgements
Chapter 1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Symbols and Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3 Sets of Monotone Sequence and Various Generalizations. . . . . . . . . . . . . . . .10
1.3.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3.2 History and Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.3.3 Relationships among Sets of Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.4 Notes and Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
1.4.1 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.4.2 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Chapter 2 Uniform Convergence of Trigonometric Series . . . . . . . . . . . . . . . . . . . . . . 26
2.1 Classic Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2 Development: MVBV Concept in Positive Sense . . . . . . . . . . . . . . . . . . . . . . . 33
2.3 Further Discussion: In Positive Sense . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.4 Breakthrough: MVBV Concept in Real Sense . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.5 Notes and Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52
2.5.1 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.5.2 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Chapter 3 L1-Convergence of Fourier Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.1 History and Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.2 Further Development: In Positive Sense . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.3 Mean Value Bounded Variation: In Real Sense . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.4 L1-Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.5 Convexity of Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
3.6 Notes and Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93
3.6.1 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
3.6.2 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Chapter 4 Lp-Integrability of Trigonometric Series . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.1 Lp-Integrability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.2 Lp-Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.3 Lp-Integrability for Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
4.4 A Conjecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
4.5 Notes and Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
4.5.1 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
4.5.2 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Chapter 5 Fourier Coefficients and Best Approximation. . . . . . . . . . . . . . . . . . . . . .123
5.1 Classical Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .123
5.2 A Generalization to Strong Mean Value Bounded Variation . . . . . . . . . . . 124
5.3 Approximation by Fourier Sums with Strong Monotone Coefficients . . . 138
5.3.1 Strong Monotonicity and Fourier Approximation. . . . . . . . . . . . . . . . . . . .138
5.3.2 Quasi-Geometric Monotone Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . .145
5.4 Notes and Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
5.4.1 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
5.4.2 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
Chapter 6 Integrability of Trigonometric Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
6.1 Weighted Integrability: In Positive Sense . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
6.2 Weighted Integrability: In Real Sense . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
6.3 Integrability of Sine Series and Logarithm Bounded Variation
Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
6.4 Logarithm Bounded Variation Conditions: In Real Sense . . . . . . . . . . . . . . 181
6.5 Integrability of Derivatives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .186
6.6 Notes and Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
6.6.1 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
6.6.2 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
Chapter 7 Other Classical Results in Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
7.1 Important Trigonometric Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
7.2 An Asymptotic Equality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
7.3 Strong Approximation and Related Embedding Theorems. . . . . . . . . . . . .218
7.4 Abel’s and Dirichlet’s Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
7.5 Notes and Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
7.5.1 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
7.5.2 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
Chapter 8 Trigonometric Series with General Coefficients . . . . . . . . . . . . . . . . . . . .234
8.1 Piecewise Bounded Variation Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
8.1.1 “Rarely Changing” Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .234
8.1.2 Piecewise Bounded Variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
8.1.3 Piecewise Mean Value Bounded Variation . . . . . . . . . . . . . . . . . . . . . . . . . . 236
8.2 No More Piecewise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
8.3 Notes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .241
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
Index . . . . . . . . . . . . . . . . . . . . . . 249