EDP Sciences EDP Sciences EDP Sciences EDP Sciences

Imager l'invisible avec la lumière

Comment l’optique moderne révolutionne l’imagerie du vivant

de Cathie Ventalon (auteur), Sylvain Gigan (auteur)
Collection : Savoirs Actuels
janvier 2023
Livre papier
format 155 x 230 140 pages En stock
22,00 €
eBook [PDF]
140 pages Téléchargement après achat
14,99 €
Référencer ce produit sur votre site

Présentation

Notre oeil est un outil exceptionnel qui reste néanmoins limité en résolution et en sensibilité. Même avec les appareils traditionnels de l’optique, comme les microscopes, il n’est pas possible de pénétrer les environnements complexes. Les nouveaux instruments de la physique, en particulier les lasers, ont permis des avancées qui étaient jusqu’à récemment du domaine de la science-fiction : voir en profondeur dans un tissu biologique, discerner une molécule unique, visualiser le fonctionnement interne d’une cellule ou encore voir un neurone en action. Quelles techniques, quels outils ont permis ces avancées ?Le livre décrit tour à tour le microscope, l’optique adaptative, l’imagerie en milieu diffusant, l’holographie et la microscopie de fluorescence. Il présente de manière accessible les concepts physiques en jeu et montre que nous avons aujourd’hui des outils permettant de répondre à des questions fascinantes : comment fonctionne notre cerveau, neurone par neurone ? Peut-on détecter précocement un cancer ou des maladies de la rétine ?

Sommaire

Introduction générale vii

1 Imager, résoudre et agrandir : le microscope 1

1.1 Une vision unifiée des systèmes d’imagerie optique . . .. . . . . . . . 1

1.1.1 Introduction : du microscope au lecteur DVD . . . . .. . . . 1

1.1.2 Microscopie plein champ et à balayage . . . . . . . .. . . . . 3

1.1.3 Réciprocité . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 4

1.2 Le microscope à balayage . . . . . . . . . . . . . . . .. . . . . . . . . 5

1.2.1 Formation de l’image . . . . . . . . . . . . . . . . .. . . . . . 5

1.2.2 La résolution . . . . . . . . . . . . . . . . . . . .. . . . . . . . 7

1.2.3 Le grandissement . . . . . . . . . . . . . . . . . . .. . . . . . 10

1.3 Les nouvelles microscopies optiques . . . . . . . . . .. . . . . . . . . . 10

1.3.1 Amélioration du contraste . . . . . . . . . . . . . .. . . . . . 11

1.3.2 Amélioration de la résolution . . . . . . . . . . . .. . . . . . . 14

1.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 16

2 Optique adaptative 19

2.1 Formation d’images . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 19

2.1.1 L’optique géométrique . . . . . . . . . . . . . . . .. . . . . . . 19

2.1.2 La diffraction . . . . . . . . . . . . . . . . . . . .. . . . . . . 22

2.2 Aberrations . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 23

2.2.1 Aberrations optiques . . . . . . . . . . . . . . . . .. . . . . . 23

2.2.2 Milieux non homogènes aberrants . . . . . . . . . . .. . . . . 26

2.2.3 Qualité des images . . . . . . . . . . . . . . . . . .. . . . . . . 27

2.3 Optique adaptative . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 27

2.3.1 Correction de surface d’onde . . . . . . . . . . . . .. . . . . . 29

2.3.2 Mesure de surface d’onde . . . . . . . . . . . . . . .. . . . . . 31

2.3.3 Etoile guide . . . . . . . . . . . . . . . . . . . . .. . . . . . . 33

2.4 Optique adaptative en astronomie . . . . . . . . . . . .. . . . . . . . 34

2.5 Optique adaptative pour les applications biomédicales .. . . . . . . . 38

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 41

3 Imager en milieux diffusants 45

3.1 Milieux diffusants . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 45

3.1.1 Lumière balistique, diffusion simple et multiple . . .. . . . . . 45

3.1.2 Ordre de grandeur en biologie . . . . . . . . . . . .. . . . . . 46

3.1.3 Imagerie balistique . . . . . . . . . . . . . . . . .. . . . . . . 47

3.2 Imager avec la lumière diffuse . . . . . . . . . . . . .. . . . . . . . . . 49

3.2.1 Le speckle . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 50

3.2.2 Le contrôle de front d’onde . . . . . . . . . . . . .. . . . . . . 51

3.2.3 La conjugaison de phase . . . . . . . . . . . . . . .. . . . . . 52

3.2.4 Optimisation . . . . . . . . . . . . . . . . . . . . .. . . . . . . 53

3.2.5 Matrice de transmission . . . . . . . . . . . . . . .. . . . . . . 55

3.2.6 Imager grâce au contrôle de front d’onde . . . . . . .. . . . . 57

4 Holographie 63

4.1 Introduction à l’holographie . . . . . . . . . . . . . .. . . . . . . . . . 64

4.1.1 Tridimensionnalité ou stéréoscopie ? . . . . . . . . .. . . . . . 64

4.1.2 Enregistrer ou restituer ? . . . . . . . . . . . . . .. . . . . . . 66

4.1.3 Phase des ondes . . . . . . . . . . . . . . . . . . .. . . . . . . 67

4.1.4 Notion de cohérence . . . . . . . . . . . . . . . . .. . . . . . . 69

4.2 Principe de l’holographie . . . . . . . . . . . . . . .. . . . . . . . . . . 70

4.2.1 L’holographie : enregistrement . . . . . . . . . . . .. . . . . . 70

4.2.2 Restitution analogique de l’hologramme . . . . . . . .. . . . . 72

4.3 Holographie numérique . . . . . . . . . . . . . . . . .. . . . . . . . . . 74

4.3.1 Configuration expérimentales . . . . . . . . . . . . .. . . . . . 74

4.3.2 Reconstruction numérique . . . . . . . . . . . . . . .. . . . . 74

4.4 Applications en microscopie . . . . . . . . . . . . . .. . . . . . . . . . 77

4.4.1 Refocalisation numérique et suivi d’objets. . . . . .. . . . . . 77

4.4.2 Imagerie holographique doppler . . . . . . . . . . . .. . . . . 78

4.4.3 Imagerie de phase quantitative . . . . . . . . . . . .. . . . . . 80

4.5 La projection holographique en microscopie et enbiologie . . . . . . . 87

4.5.1 Hologrammes de synthèse . . . . . . . . . . . . . . .. . . . . . 87

4.5.2 Projection dynamique de motifs optiques . . . . . . .. . . . . 87

4.5.3 Applications optogénétiques . . . . . . . . . . . . .. . . . . . 88

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 96

5 Microscopie de Fluorescence 99

5.1 Fluorescence et marqueurs fluorescents pour la biologie. . . . . . . . . 100

5.1.1 Qu’est-ce que la fluorescence ? . . . . . . . . . . .. . . . . . . 100

5.1.2 Les protéines fluorescentes et leurs applications enbiologie . . 101

5.2 Microscopie plein champ conventionnelle . . . . . . . .. . . . . . . . . 104

5.2.1 Architecture et grandissement du microscope pleinchamp . . 105

5.2.2 Définition de la PSF et résolution latérale . . . . .. . . . . . . 106

5.2.3 Forme de la PSF dans les 3 dimensions spatiales . . .. . . . . 107

5.2.4 Formation des images . . . . . . . . . . . . . . . . .. . . . . . 108

5.2.5 Le problème du fond . . . . . . . . . . . . . . . . .. . . . . . 111

5.2.6 Une application de la microscopie plein champ en neurosciences . . . . . . . . . . . . . . . . . . . . . . .. . . . . 112

5.2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 114

5.3 Microscopies à balayage laser . . . . . . . . . . . . .. . . . . . . . . . 114

5.3.1 Microscopie confocale . . . . . . . . . . . . . . . .. . . . . . . 114

5.3.2 Microscopie à deux photons . . . . . . . . . . . . . .. . . . . 119

5.4 Techniques de microscopie rapides à sectionnement optique . . . . . . 123

5.4.1 Microscopie confocale à disque rotatif . . . . . . . .. . . . . . 125

5.4.2 Microscopie à feuille de lumière . . . . . . . . . . .. . . . . . 125

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 129

Conclusion 133

Remerciements 135

Les auteurs 137

Sponsors 139

Revue de presse

Compléments

Caractéristiques

Langue(s) : Français

Public(s) : Etudiants, Professionnels, Recherche

Editeur : EDP Sciences

Collection : Savoirs Actuels

Publication : 12 janvier 2023

Référence Livre papier : L26544

Référence eBook [PDF] : L26551

EAN13 Livre papier : 9782759826544

EAN13 eBook [PDF] : 9782759826551

Intérieur : Couleur

Format (en mm) Livre papier : 155 x 230

Nombre de pages Livre papier : 140

Nombre de pages eBook [PDF] : 140

Taille(s) : 17 Mo (PDF)

L'hydrogène vert Le défi de demain, pour une énergie inépuisable et décarbonée

Bernard Wiesenfeld

À partir de 8,99 €

Insaisissable Graal La fusion nucléaire par laser au temps des pionniers (1962-1975)

Jean-Louis Bobin

À partir de 12,99 €

Groupes de symétrie en physique Brisure spontanée et transitions de phase

Jean Zinn-Justin

À partir de 33,99 €

Mieux voir les étoiles Ier siècle de l'interférométrie optique

Daniel Bonneau

À partir de 19,99 €

--:-- / --:--